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Abstract—This paper implements a block based 

compressive sensing technique for thermal image 

reconstruction using greedy algorithms. A total of 

fourteen different sensing patterns were tested for data 

acquisition. Orthogonal Matching Pursuit (OMP) and 

Regularized Orthogonal Matching Pursuit (ROMP) with 

two different thresholds were implemented for image 

reconstruction with OMP having an edge over ROMP in 

terms of error and PSNR. ROMP was faster in terms of 

iterations needed for reconstruction. As the threshold for 

ROMP was increased the number of iterations needed 

decreased. Gaussian, Bernoulli and Hadamard patterns 

were the best for reconstruction. Hadamard matrix, 

Bernoulli matrix with +/-1 entries and Bernoulli matrix 

with 0/1 entries have the added advantage of being more 

conducive for hardware implementation. This paper used 

Discrete Cosine Transform as the sparsifying basis for 

reconstruction. 

 

Index Terms—Compressive sensing, greedy 

reconstruction, sensing pattern, Regularized Orthogonal 

Matching Pursuit. 
 

I.  INTRODUCTION 

Compressive sensing is a data acquisition technique 

where data is sampled using linear projections at a rate 

much below than the Nyquist rate. This is possible if the 

signal is sparse in a known domain, and accordingly 

sensing matrices can be designed to take linear 

projections of the data or signal under consideration[1-2].  

In [3], fourteen different sensing matrices have been 

considered for acquiring the signal, some of which have 

the potential for object specific reconstruction. This paper 

tests all the fourteen sensing patterns using Orthogonal 

Matching Pursuit (OMP) and Regularized Orthogonal 

Matching Pursuit (ROMP) as reconstruction algorithms. 

A brief survey of compressive sensing was conducted 

in [4]. Object specific reconstruction based on the 

reconstructed algorithm for surveillance was proposed in 

[5]. The different sensing matrices implemented in [3] are 

based on [6-9]. The combinatorial algorithms for 

reconstruction are not efficient for real time applications 

hence this paper implements greedy algorithms for 

reconstruction [10-12]. 

The next section explains the block based compressive 

sensing process, section III explains the greedy 

reconstruction algorithm, section IV calculates the 

sparsity of the database, followed by experimental results 

and conclusion in section V and VI respectively. 

 

II.  BLOCK BASED COMPRESSIVE SENSING 

This paper focuses on block based compressive sensed 

image reconstruction. A 256x256 image is divided into 

8x8 blocks which gives a total of 1024 blocks in a single 

frame. Each of these blocks is reconstructed based on the 

compressive sensing paradigm. All the reconstructed 

blocks are combined to generate the frame. This process 

is repeated across all frames in the video under test. This 

paper tests fourteen different sensing patterns described 

in [3] for acquiring the data. Greedy reconstruction 

algorithms implemented in this paper include Orthogonal 

Matching Pursuit and Regularized Orthogonal Matching 

Pursuit. The sparsifying basis assumed is Discrete Cosine 

Transform. 

 

III.  GREEDY RECONSTRUCTION ALGORITHM 

A.  Orthogonal Matching Pursuit 

Orthogonal Matching Pursuit (OMP) algorithm is 

given below based on [10].  

Let Φ be the sensing matrix.  

Let Ψ the sparsifying basis.  

Let A=ΦΨ
-1

 be an MxN matrix.  

Let Aλϵ R
M

 be the λth column of A.  

Let AS ϵ R
MxS

 be the Matching Pursuit estimation 

matrix where S is the sparsity which is also equal to the 

number of iteration.  

Let y ϵ R
M

 be the acquired data  

Let yp ϵ R
M

 be the estimate of y. 

Let yr ϵ R
M

 be the residual error in estimating y. 
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Let x’ ϵ R
N
 be the estimate of x.  

Let x’k ϵ R be the k
th

 element of x’. 

 

1. AS =0, yr=y, k=0. 

2. k=k+1; 

3. Take dot product of yr with every column of A 

and find the index λ which corresponds to the 

highest dot product value and which was not 

selected earlier. 

4. Augment AS with Aλ 

5. Perform least squares estimation to calculate x’ 

using AS. 

 

x’= (AS
T
AS)

-1
AS

T
 y 

 

6. Take the projection of x’ onto AS to calculate yp 

 

yp = AS x’ 

 

7. Update the residual yr 

 

yr = y −  yp 

 

8. Perform steps 2 to 7 until k=s. 

 

Finally we get x’ which is the sparse signal in Ψ 

domain using sensing matrix Φ. 

B.  Regularized Orthogonal Matching Pursuit 

Regularized Orthogonal Matching Pursuit (ROMP) 

algorithm is given below based on [10]. 

Let Φ be the sensing matrix.  

Let Ψ the sparsifying basis.  

Let A=ΦΨ
-1

 be an MxN matrix. 

Let Aλϵ R
M

 be the λth column of A.  

Let AS ϵ R
MxS

 be the Matching Pursuit estimation 

matrix where S is the sparsity. 

Let y ϵ R
M

 be the acquired data.  

Let yp ϵ R
M

 be the estimate of y.  

Let yr ϵ R
M

 be the residual error in estimating y.  

Let x’ ϵ R
N
 be the estimate of x.  

Let x’k ϵ R be the kth element of x’. 

 

1. AS=0, yr=y, k=0, index= empty. 

2. k=k+1; 

3. Take dot product of yr with every column of A 

and sort the correlated data along with its index 

in descending order. 

4. Select S highest correlated data along with 

indices (intermediate indices) 

5. For each of these intermediate indices, find all 

those indices which lie about it based on some 

threshold and calculate its norm. 

6. Select that set of indices which has the highest 

norm (current indices). 

7. Find the union: index= index ∪current indices. 

8. Update AS: AS=Aindex 

9. Perform least squares estimation to calculate x’ 

using AS. 

x’= (AS
T
AS)

-1
AS

T
 y 

10. Take the projection of x’ onto AS to calculate yp 

 

yp = AS x’ 

 

11. Update the residual yr 

 

yr = y −  yp 

 

12. Perform steps 2 to 11 until number of supports is 

less than s. 

 

Finally we get x’ which is the sparse signal in Ψ 

domain using sensing matrix Φ. Two thresholds i.e. 10% 

and 20% about the intermediate index under consideration 

are used for testing. 

 

IV.  SPARSITY CALCULATION FOR DATABASE 

IEEE OTCBVS WS Series Bench is an OTCBVS 

Benchmark Dataset Collection, which has been used for 

the experiments. The codes were tested for Dataset 01: 

OSU Thermal Pedestrian Database which had 10 

different sequences [13]. 

The sparsity in DCT domain for the above mentioned 

10 different video sequences for different block sizes viz. 

8x8, 16x16, 32x32 and 64x64, and different energy 

compactions viz. 99.9%, 99%, 95% and 90% are given in 

table I. The parameters calculated are defined below.  

Average Frame Sparsity (FSave), indicates on an 

average how many coefficients are needed to reconstruct 

the frame with a given energy compaction. Average 

Block Sparsity (BSave), indicates on an average how 

many coefficients are needed to reconstruct the block 

with a given energy compaction. Least Sparsity of Block 

across the video sequences (LSblock), indicates that even 

though the average sparsity is low, there are some blocks 

which are not very sparse. It gives the maximum number 

of coefficients needed to reconstruct the block with a 

given energy compaction. 

The defined parameters are calculated for each of the 

10 video sequences and for each of the energy 

compaction value. The results in table I are the average 

across all the 10 video sequences for each block size. 

 

V.  EXPERIMENTAL RESULTS 

The parameters used for quantitative analysis have 

been defined below: 

 

1. Relative Error: Relative error gives an indication 

of how good the reconstructed image is compared 

to the original, relative to the size of the image 

under consideration.  

 

Error block = 
norm(xs)

xs)-norm(x
              (1)
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where x is the reconstructed signal and xs is the 

original signal. Error block is the relative error to 

reconstruct the block. 

 

 Average Relative error across the video: 

 

Error ave = 
f

Error
1
f

                (2) 

 

where f is the number of frames corresponding to 

a particular video and Error is the sum of the 

relative error for each block in the frame. Error ave 

is the average relative error across the video 

 

Average Relative error across the Database: 

 

Error database = 
v

 Error 
1

ave
v

              (3) 

 

where v is the number of videos and Error database is 

the average relative error across the database. 

 

2. Peak Signal-to-Noise Ratio(PSNR) in db: PSNR 

gives a measure of the mean square error with 

respect to the maximum signal value. The higher 

the PSNR, the better the reconstructed image  

 

Table 1. Average Sparsity of the entire database in terms of 8x8, 16x16, 32x32 and 64x64 blocks for different energy compactions 

Energy 99.9% 99% 95% 90% 

Block size FSave BSave LSblock FSave BSave LSblock FSave BSave LSblock FSave BSave LSblock 

8x8 13960.63 13.633 49 2016.1 1.969 30 1162.44 1.14 12 1070.97 1.05 7 

16x16 13081.22 51.099 157 988.01 3.859 72 307.88 1.2 19 261.507 1.02 6 

32x32 12647.5 197.62 488 602.08 9.407 120 80.62 1.26 19 65.3757 1.02 7 

64x64 12401.33 775.08 1529 414.33 25.9 271 19.2218 1.2 21 16.1123 1.01 4 

 

matches the original image and the better is the 

reconstruction algorithm. 

 

PSNR block = 
MSE

1)(2
log10

2r

10


              (4) 

 

Where r=8, is the number of bits required to 

represent the original image and MSE is the Mean 

Square Error between the original and the 

reconstructed signal. PSNR block is the peak signal 

to noise ratio of the block. 

 

Average PSNR across the video: 

 

PSNR ave = 
f

P
1
f

                    (5) 

 

Where f is the number of frames corresponding to 

a particular video and P is the sum of the peak 

signal-to-noise ratio for each block in the frame. 

PSNR ave is the average PSNR. 

 

Average PSNR across the Database: 

 

PSNR database = 
v

 PSNR
1

ave
v

         (6) 

 

Where v is the number of videos and PSNR database 

is the average PSNR across the database. 

 

3. Amount of Saving: 

Savings per frame (in pixels): 

Sper frame = (Irows × Icols) - (blocks × m)      (7) 

 

Where Irows is the number of rows in the image, 

Icols the number of columns, blocks the number of 

blocks per frame and m is the number of 

measurements per block. 

 

Savings per video (in pixels): 

 

Sper video = Sper frame × no. of frames        (8) 

 

Percentage saving per frame: 

 

S% per frame = 100x
I × I

 S

colsrows

frameper 
           (9) 

 

4. Algorithm Reconstruction Time 

Let TR be time in sec taken by the algorithm to 

reconstruct the entire video then, 

 

Average time taken to reconstruct each frame in 

the video ( TRave ): 

 

TRave =
f

RT
                             (10) 

 

Where f is the number of frames. 

 

Average time taken to reconstruct each frame in 

the database ( TRdatabase ): 

 

TRdatabase =
v

 T
1

Rave
v

                       (11)
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Where v is the number of videos. 

 

5. Number of Iterations for Reconstruction 

Let k be the number of iterations to reconstruct a 

block, 

Let kframe be the number of iterations to reconstruct 

a frame,  

Let kvideo be the number of iterations to reconstruct 

a video, 

 

Iterations needed to reconstruct a frame averaged 

across the entire video (kave per frame): 

 

kave per frame =
f

kvideo

                       (12) 

 

where f is the number of frames. 

 

Iterations needed to reconstruct a frame averaged 

across the entire database (kper frame(database)): 

 

kper frame(database) =
v

 k
1

frameper  ave
v

              (13) 

 

Where v is the number of videos. 

 

The results are analysed for measurements m=4s per 

block, where s is the sparsity of each block which is 

assumed to be 10. The graphs in the figure display the 

Relative error, PSNR and iterations needed for 

reconstruction using OMP, ROMP-10% and ROMP-20% 

for each of the fourteen sensing matrices across the entire 

database. The average algorithm reconstruction time per 

frame for the entire database averaged across all the 

sensing matrices for 8x8 block reconstruction of a 

256x256 image is given in fig. 15. 

 

 

Fig. 1. Two-band QMF bank 

 

Fig. 2. Comparison of greedy algorithms for Gaussian (Orthogonal) 
Sensing matrix 

 

Fig. 3. Comparison of greedy algorithms for Bernoulli random (+/- 1 
entries) Sensing matrix 

 

Fig. 4. Comparison of greedy algorithms for Bernoulli random (1/0 
entries) Sensing matrix 
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Fig. 5. Comparison of greedy algorithms for Fourier Sensing matrix 

 

Fig. 6. Comparison of greedy algorithms for Fourier (without dc) 
Sensing matrix 

 

Fig. 7. Comparison of greedy algorithms for Toeplitz (gaussian random) 
Sensing matrix 

 

 

Fig. 8. Comparison of greedy algorithms for Toeplitz (bernoulli) 
Sensing matrix 

 

Fig. 9. Comparison of greedy algorithms for Circular (gaussian) Sensing 
matrix 

 

Fig. 10. Comparison of greedy algorithms for Circular (bernoulli) 
Sensing matrix 
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Fig. 11. Comparison of greedy algorithms for Hadamard Sensing matrix 

 

Fig. 12. Comparison of greedy algorithms for Hadamard (Normalised) 
Sensing matrix 

 

Fig. 13. Comparison of greedy algorithms for Hadamard (without dc) 
Sensing matrix 

 

Fig. 14. Comparison of greedy algorithms for Hadamard without dc 
(Normalised) Sensing matrix 

 

Fig. 15. Average reconstruction time for Greedy algorithms 

 

VI.  CONCLUSION 

Among the Reconstruction algorithms, OMP is the best 

followed by ROMP 10% and finally ROMP 20% in terms 

of error and PSNR. In terms of iterations ROMP 20% is 

the best followed by ROMP 10% and OMP. As the 

threshold for ROMP increases (10%, 20% and above), 

the iterations required for reconstruction reduces but at 

the cost of increased error and lower PSNR. In general, 

an iteration of ROMP would consume more time than an 

iteration of OMP. Hence efficient implementation of 

ROMP would be the key for faster reconstruction.  

The 8x8 block based reconstruction analysis done in 

this paper, can be extended to 16x16, 32x32 and 64x64 

block based frame reconstruction by selecting sparsity 

and measurements 4, 16 and 64 times that used for 8x8 

block, maintaining the same image reconstruction quality. 

Gaussian, Bernoulli and Hadamard are the best sensing 

matrices for reconstruction using greedy algorithms. 

Hadamard has the added advantage of being deterministic. 

Bernoulli (+/-1 entries and 1/0 entries) and Hadamard are 

much more friendly for hardware implementation 

compared to Gaussian. 

Fourier sensing matrix gives a lot of distortion possibly 

due to high coherence between the sensing matrix and 

DCT basis. Toeplitz and Circulant matrices were random 

in their behaviour and need more testing to validate its 

use as a reliable sensing matrix. 

Object specific reconstruction is possible by using 

Fourier and Hadamard sensing matrices without dc 

component because it removes the background 

information and preserves the object thus easing the 

process of object detection. But this technique does not 

provide high saving in terms of measurements. 

As compared to [3] which reconstructs an image of 

64x64 size with much larger time consumption which is 

further sensitive to the kind of sensing matrix selected, 

this paper reconstructs a large frame of size 256x256 in 

0.964, 0.729 and 0.649 seconds using OMP, ROMP 10% 

and ROMP 20% respectively. 
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