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Abstract—Based on the information present in 

cumulative acoustic signal acquired from a roadside-

installed single microphone, this paper considers the 

problem of vehicular traffic density state estimation. 

The occurrence and mixture weightings of traffic noise 

signals (Tyre, Engine, Air Turbulence, Exhaust, and 

Honks etc) are determined by the prevalent traffic 

density conditions on the road segment. In this work, we 

extract the short-term spectral envelope features of the 

cumulative acoustic signals using MFCC (Mel-

Frequency Cepstral Coefficients). Support Vector 

Machines (SVM) is used as classifier is used to model 

the traffic density state as Low (40 Km/h and above), 

Medium (20-40 Km/h), and Heavy (0-20 Km/h). For the 

developing geographies where the traffic is non-lane 

driven and chaotic, other techniques (magnetic loop 

detectors) are inapplicable. SVM classifier with 

different kernels are used to classify the acoustic signal 

segments spanning duration of 20–40 s, which results in 

average classification accuracy of 96.67% for Quadratic 

kernel function and 98.33% for polynomial kernel 

function, when entire frames are considered for 

classification. 

 

Index Terms — Acoustic signal, Noise, MFCC, Traffic, 

Density, Neuro-Fuzzy  

 

I.  INTRODUCTION  

Density of traffic on roads and highways has been 

increasing constantly in recent years due to motorization, 

urbanization, and population growth. As the number of 

vehicle in urban areas is ever increasing, it has been a 

major concern of city authorities to facilitate effective 

control of traffic flows in urban areas [1]. Especially in 

rush hours, even a poor control at traffic signals may 

result in a long time traffic jam causing a chain of delays 
in traffic flows and also CO2 emission [2]. Intelligent 

traffic management systems are needed to avoid traffic 

congestions or accidents and to ensure safety of road 

users.  

Traffic in developed countries is characterized by lane 

driven. Use of magnetic loop detectors, video cameras, 

and speed guns proved to be efficient approach for 

traffic monitoring and parameter extraction but the 

installation, operational and maintenance cost of these 

sensors significantly adds to the high operational 

expense of these devices during their life cycles. 

Therefore researchers have been developing several 

numbers of sensors, which have a number of significant 

advantages and disadvantages relative to each other. 

Nonintrusive traffic-monitoring technologies based on 

ultrasound, radar (Radio, Laser, and Photo), video and 

audio signals. All above present different characteristics 

in terms of robustness to changes in environmental 

conditions; manufacture, installation, and repair costs; 
safety regulation compliance, and so forth [3]. 

Traffic surveillance systems based on video cameras 

cover a broad range of different tasks, such as vehicle 

count, lane occupancy, speed measurements and 

classification, but they also detect critical events as fire 

and smoke, traffic jams or lost cargo. The problem of 

traffic monitoring and parameter estimation is most 

commonly solved by deploying inductive loops. These 

loops are very intrusive to the road pavement and, 

therefore cost associated with these is very high. Most 

video analytics systems on highways focus on counting 

and classification [4], [5], [6], [7], [8]. Using general 

purpose surveillance cameras for traffic analysis is 

demanding job. The quality of surveillance data is 

generally poor, and the range of operational conditions 

(e.g., night time, inclement, and changeable weather) 

requires robust techniques. The use of road side 
acoustic signal seems to be good approach for traffic 

monitoring and parameter estimation purpose having 

very low installation, operation and maintenance cost; 

low-power requirement; operate in day and night 

condition.  

Support Vector Machine is most widely used neural 

network supervised learning model. SVM is used for the 

purpose of Classification and Regression. SVM does not 

have prior knowledge about problem but learns about it 

during training phase. Generalization capability is major 

advantage of SVM. This feature makes it better than 

most of the other models present in this field. To attain 

it right balance has to be maintained between the 
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accuracy attained on the training data and the capacity 

of the machine [9]. SVM works equally for both linearly 

separable data as well as non-linearly separable data. 

The major advantage of SVM is its ability to classify 

unknown data set with high accuracy as it works on the 

concept of maximum margin hyperplane. Search of 

kernel function is not an easy task and it leads to major 

hurdle in the implementation of SVM. In order to get the 

best results, parameters of the kernel function have to be 

fine tuned. As different problems require different 

kernel functions, the choice of kernel function itself is a 

difficult task. 

We start with a characterization of the road side 
cumulative acoustic signal which comprising several 

noise signals (tire noise, engine noise, air turbulence 

noise, and honks), the mixture weightings in the 

cumulative signal varies, depending on the traffic 

density conditions [10]. For low traffic conditions, 

vehicles tend to move with medium to high speeds, and 

hence, their cumulative acoustic signal is dominated by 

tire noise and air turbulence noise [10], [11]. On the 

other hand, for a heavily congested traffic, the acoustic 

signal is dominated by engine-idling noise and the 

honks. Therefore, in this work, we extract the spectral 

features of the roadside acoustic signal using Mel-

Frequency Cepstral Coefficients (MFCC), and then 

SVM Classifier with various kernels are used to 

determine the traffic density state (low, Medium and 

Heavy).  

We begin with description of the various noise signals 

in the cumulative acoustic signal in Section II. Overview 
of past work based on acoustic signal for traffic 

monitoring is provided in Section III, followed by 

feature extraction using Mel-Frequency Cepstral 

Coefficients in IV. Finally, the experimental setup and 

the classification results by SVM are provided in 

Section V, and the conclusion is summarized in Section 

VI. 

 

II. VEHICULAR ACOUSTIC SIGNAL  

A vehicular acoustic signal is mixture of various 

noise signals such as tyre noise, engine idling noise, 

noise due to exhaust, engine block noise, noise due to 

aerodynamic effects, noise due to mechanical effects 

(e.g., axle rotation, brake, and suspension), air-

turbulence noise and the honks. The mixture weighting 

of spectral components at any location is depends upon 

the traffic density condition and vehicle speed. In former 
case if we consider traffic density as freely flowing then 

acoustic signal is mainly due to tyre noise and air 

turbulence noise. For medium flow traffic acoustic 

signal is mainly due to wide band drive by noise, some 

honks. For heavy traffic condition the acoustic signal is 

mainly due to engine idling noise and several honks. 

Vehicular acoustic signals are summarized in TABLE. 1. 

III. ACOUSTIC SIGNALS FOR TRAFFIC MONITORING 

Today’s urban environment is supported by 

applications of computer vision techniques and pattern 

recognition techniques  including detection of traffic 

violation, vehicular density estimation, vehicular speed 

approximation, and the identification of road users. 

Currently magnetic loop detector is most widely used 

sensor for traffic monitoring in developing countries 
[21]. However traffic monitoring by using these sensors 

still have very high installation and maintenance cost. 

This not only includes the direct cost of labor intensive 

earth work but also, perhaps more importantly, the 

indirect cost associated with the disruption of traffic 

flow. Also these techniques require traffic to be orderly 

flow, traffic to be lane driven and in most cases it should 

be homogeneous. 

Referring to the developing regions such India and 

Asia the traffic is non lane driven and highly chaotic. 

Highly heterogeneous traffic is present due to many two 

wheelers, three wheelers, four wheelers, auto-rickshaws, 

multi-wheeled buses and trucks, which does not follow 

lane. So it is the major concern of city authority to 

monitor such chaotic traffic. In such environment the 

loop detectors and computer-vision based tracking 

techniques are ineffective. The use of road side acoustic 
signal seems to be good alternative for traffic 

monitoring purpose having very low installation, 

operation and maintenance cost.  

A. Vehicular Speed Estimation 
 

Doppler frequency shift is used to provide a 

theoretical description of single vehicle speed. 

Assumption made that distance to the closest point of 

approach is known the solution can accommodate any 

line of arrival of the vehicle with respect to the 

microphone. [22], [23].  
Sensing techniques based on passive sound detection 

are reported in [24], [25]. These techniques utilizes 

microphone array to detect the sound waves generated 

by road side vehicles and are capable of capable of 

monitoring traffic conditions on lane-by-lane and 

vehicle-by-vehicle basis in a multilane carriageway. S. 

Chen et Al develops multilane traffic sensing concept 

based passive sound which is digitized and processed by 

an on-site computer using a correlation based algorithm. 

The system having low cost, safe passive detection, 

immunity to adverse weather conditions, and 

competitive manufacturing cost. The system performs 

well for free flow traffic however for congested traffic 

performance is difficult to achieve [26].  

Valcarce et al. exploit the differential time delays to 

estimate the speed. Pair of omnidirectional microphones 

was used and technique is based on maximum 
likelihood principle [3]. Lo and Ferguson develop a 

nonlinear least squares method for vehicle speed 

estimation using multiple microphones. Quasi-Newton 

method for computational efficiency was used. The 

estimated speed is obtained using generalized cross 

correlation method based on time-delay-of-arrival 

estimates [27]. 
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Cevher et al. uses single acoustic sensor to estimate 

vehicle’s speed, width and length by jointly estimating 

acoustic wave patterns. Wave patterns are approximated 

using three envelop shape components. Results obtained 

from experimental setup shows the vehicle speeds are 

estimated as (18.68, 4.14) m/s by the video camera and 

(18.60, 4.49) m/s by the acoustic method [28].  

B. Traffic Density Estimation 
 

Time estimation for reaching from source to 

destination using real time traffic density information is 
major concern of city authorities. J. Kato proposed 

method for traffic density estimation based on 

recognition of temporal variations that appear on the 

power signals in accordance with vehicle passes through 

reference point [29]. HMM is used for observation of 

local temporal variations over small periods of time, 

extracted by wavelet transformation. Experimental 

results show good accuracy for detection of passage of 

vehicles 

 

IV. FEATURE EXTRACTION USING MFCC  

An omnidirectional microphone was placed on the 

pedestrian sidewalk at about 1 to 1.5 m height, and it 

recorded the cumulative signal at 16000 Hz sampling 

frequency. Samples were collected for time durations of 

around 30s for different traffic density state conditions 

(low, medium and heavy). The various traffic density 
states induce different cumulative acoustic signals. To 

prove the above statement, we have examined the 

spectrogram of the different traffic state’s cumulative 

acoustic signals. 

 For the low density traffic condition in Fig. 1, we 

only see the wideband drive-by noise and the air 

turbulence noise of the vehicles. No honks or very 

few honks are observed for low density traffic 

condition.  

 For the medium density traffic condition in Fig. 2, 

we can see some wideband drive-by noise, some 

honk signals, and some concentration of the spectral 

energy in the low-frequency ranges (0, 0.1) of the 

normalized frequency or equivalently (0, 800) Hz. 

 For the heavy density traffic condition in Fig. 3, we 

notice almost no wideband drive-by engine noise or 

air turbulence noise and are dominated by several 
honk signals. We note the several harmonics of the 

honk signals, and they are ranging from (2, 6) kHz.  

 

 
Figure. 1 Spectrogram of the low density traffic (above 40 

km/h). 

 

Figure. 2 Spectrogram of the Medium density traffic (20 to 40 
km/h). 

 

 
Figure. 3 Spectrogram of the Heavy density traffic (0 to 20 

km/h). 

 

The goal of feature extraction is to give a good 

representation of the audio tract from its response 

characteristics at any particular time. Mel-Frequency 

cepstral coefficients (MFCC), which are the Discrete 
Cosine Transform (DCT) coefficients of a Mel-filter 

smoothed logarithmic power spectrum. First 13–20 

cepstral coefficients of a signal’s short time spectrum 

succinctly capture the smooth spectral envelope 

information. We have decided to use first all the cepstral 

coefficients to represent acoustic signal for 

corresponding traffic density state. These coefficients 

have been very successfully applied as the acoustic 

features in speech recognition, speaker recognition, and 

music recognition and to vast variety of problem 

domains. Features extraction using MFCC is as follows, 

A. Pre-emphasis 

Pre-emphasis phase emphasizes higher frequencies. 

The pre-emphasis is a process of passing the signal 

through a filter. It is designed to increase, within a band 

of frequencies, the magnitude of some frequencies 

(higher) with respect to the magnitude of the others 
frequencies (lower) in order to improve the overall SNR. 

 

y[n]= x[n]-αx[n-1], α € (0.9, 1)                                   (1) 

 

Where x[n] denotes input signal, y[n] denotes output 

signal and the coefficient α is in between 0.9 to 1.0, α= 

0.97 usually. The goal of pre-emphasis phase is to 

compensate high-frequency part that was suppressed 

during the sound collection. 

B. Framing and Windowing 

Typically, speech is a non-stationary signal; therefore 

its statistical properties are not constant across time. The 

acquired signal is assumed to be stationary within a 

short time interval. The input acoustic signal is 
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segmented in frames of 20~40 ms with overlap (optional) 

of 1/3~1/2 of the frame size. In order to keep the 

continuity of the first and the last points in the frame, 

typically each frame has to be multiplied with a 

hamming window. Its equation is as follows, 

 

W[n]=
2

0.54 0.46cos ,0
n

n N
N


  


             (2) 

 

Where N is frame size 

 

Y[n]= X[n] * W[n]                (3) 

Where Y[n] = Output signal 

    X[n] = Input signal 

    W[n] = Hamming Window 

 

Due to the physical constraints, the traffic density 

state could change from one to another (low to medium 

flow to heavy) over at least 5–30 min duration. 

Therefore, we decided to use relatively longer primary 

analysis windows of the typical size 500 ms and shift 

size of 100 ms to obtain the spectral envelope. 

 

 
Figure. 4 Primary windows of size=500 ms and shifted by 

100 ms to obtain a sequence of MFCC feature vectors. 

C. DFT 

Commonly, Fast Fourier Transform (FFT) is used to 

compute the DFT. It converts each frame of N samples 

from time domain into frequency domain. The 

computation of the FFT-based spectrum as follow, 

 

X[k] =               (4) 
 

Where N is the frame size in samples, x[n] is the input 

acoustic signal, and. X[k] is the corresponding FFT-

based spectrum. 

D. Triangular bandpass filtering 

The frequencies range in FFT spectrum is wide and 

acoustic signal does not follow the linear scale. Each 

filter’s magnitude frequency response is triangular in 

shape and is equal to unity at the Centre frequency and 

decrease linearly to zero. We then multiply the absolute 

magnitude of the DFT samples by the triangular 

frequency responses of the 24 Mel-filters that have 

logarithmically increasing bandwidth and cover a 

frequency range of 0–8 kHz in our experiments. Each 

filter output is sum of its filtered spectral components. 

To compute the Mel for given frequency f in HZ, 

equation is as follows: 

 

F (Mel) = 2595 * log 10 [1+f/700]                             (5) 

 

The ith Mel-filter bank energy (MFB(i)) is obtained as 

 

                     (6) 
 

Where (Meli(k)) is the triangular frequency response 

of the ith Mel-filter. These 24 Mel-filter bank energies 

are then transformed into 13 MFCC using DCT.  

E. DCT 

This is the process to convert the log Mel spectrum 

into time domain using DCT. The result of the 

conversion is called Mel Frequency Cepstral Coefficient. 

The set of coefficient is called acoustic vectors. 

 

       (7) 

F. Data energy and Spectrum 

The acoustic signal and the frames changes, such as 

the slope of a formant at its transitions. Therefore, there 

is need to add features related to the change in cepstral 

features over time. Ex. 13 feature (12 cepstral features 

plus energy). 
 

Energy=∑ X
2 

[t]
  

                           (8) 

 Where X[t] = signal 

 

 
Figure. 5 Input Acoustic signal, corresponding log filterbank 
energies and Mel frequency cepstrum for low traffic density 

state 
 

0,otherwise
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Figure. 6 Input Acoustic signal, corresponding log filterbank 
energies and Mel frequency cepstrum for Medium traffic 

density state 
 

 

Figure. 7 Input Acoustic signal, corresponding log filterbank 
energies and Mel frequency cepstrum for Heavy traffic density 

state 

 

V. SVM CLASSIFIER 

A Linear Support Vector Machine (SVM) uses linear 

decision boundary. But in case of non-separable data set, 

linear SVM is not very effective in classification. SVMs 

build a hyperplane which divides samples such that 

samples of one class are all on one side of the 

hyperplane, and samples of the other class are all on the 
other side. However, data is rarely linearly separable. 

Thus, SVM project the data in a high-dimensional space, 

where the classification problem may be linearly 

separable, and then find the linear hyperplanes that 

separate the various classes with a high margin [30]. 

Therefore SVM is proved to be excellent classifiers for 

diverse pattern recognition applications such as 

handwritten digit recognition [31], object detection [32], 

speaker recognition [33], etc. In general, a non-linear 

SVM projects the d-dimensional input features  to 

some high-dimensional space H through a non-linear 

transform Φ. 

 
d：R H                              (9) 

 

The SVM composes the transformation Φ and the dot 

product in the higher dimensional space into a single 

kernel function k, which computes the dot product of 

two vectors when they are transformed into the higher 

space. Note that the kernel need not actually do any 

transformation to provide this dot product! This is called 

the kernel trick. 

A. Building the Hyperplane 

Consider the input data in the form (x i,yi), where 

vectors xi are in real-valued multi-dimensional space H 
and yi are the class labels. So any hyperplane is defined 

as 

 

   (10) 
 

 
Figure. 8 Hyperplane through two linearly separable classes 

 

Hyperplane is defined such that 

xi . w + b ≥ +1 when  = +1 

xi . w + b ≤ -1 when  = -1 

And minimize ||w||
2 

 

H1 and H2 are the planes: 

H1:  xi . w + b = +1 

H2:  xi . w + b = -1 
 

The points on the planes H1 and H2 are the support 

vectors. 

d+ = the shortest distance to the closest positive point 

d- = the shortest distance to the closest negative point 

The margin of a separating hyperplane is d+ + d-. 

Non Linear SVM: In the Linear SVM, to classify the 

training set a linear decision boundary is used. In case of 

non-separable data, the data set is not completely 

classified by linear decision boundary. Non-separable 

points can be classified correctly by using non-linear 

decision boundary. In general, models are not scalable 
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from linear region to non-linear region but SVM can be 

converted from linear to non-linear mode with few 

changes. Non-linear SVM employs a non-linear decision 

function to classify the training data set by mapping the 

non-separable data points to higher dimension space 

where these data points become separable. In non-linear 

SVM, decision function will depend on Φ (xi) · Φ (xj) 

instead of  xi . xj So, the  

B. Decision function 

( ) ( ) ( )i i
i

f x x x b     

,( )i i
i

k x x b                                         (11) 

C. Dual Formulation 

 

 (12) 

 

Where maximize the margin and 

minimize the training error. 

Can also be written as  

 

(13) 
 

Kernel function K( , ) is used to make non linear 

feature map. 

 
TABLE. 2 SVM kernels and kernel functions 

 
 

D. Experimental Results 

We have collected the road side cumulative acoustic 

signal samples from chhatrapati square to T-point of 

Nagpur city. Data were collected with 16 KHz sampling 

frequency.  These data covered three broad traffic 
density classes (low, medium and heavy).  Feature 

extraction is done using MFCC where primary window 

size is 500 ms and shift size is of 100 ms. Based on 

extracted features different kernel functions of SVM 

were used for the classification which results in 

classification accuracy as follows, 

 
 

 

 

 

 

 

 

 

 

 

TABLE. 3 Classification Accuracies of Various Traffic 

Density States 

 
 

VI. CONCLUSION 

This paper describes a simple technique which uses 

MFCC features of road side cumulative acoustic signal 

to classify traffic density state as Low, Medium and 
Heavy using different kernel functions of SVM. As this 

technique uses simple microphone (cost: 500 Rs) so its 

installation, operational and maintenance cost is very 

low. Technique works well under non lane driven and 

chaotic traffic condition, and is independent of lighting 

condition. Acceptable Classification accuracy is 

achieved using SVM classifier. Experimental results 

show that 96.67% and 98.33% classification accuracy 

obtained using quadratic and polynomial kernel 

functions respectively when entire cepstral coefficients 

were considered. 

The research on vehicular acoustic signal which is 

mixture of engine noise, tyre noise, noise due to 

mechanical effects etc. expands from vehicular speed 

estimation to density estimation. The use of road side 

acoustic signal seems to be an alternative, research 

shows acceptable accuracy for acoustic signal. 
Vehicular classification with Acoustic signals proved to 

be excellent approach particularly for battlefield 

vehicles, and also for city vehicles.  
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TABLE. 1 Vehicular acoustic signals  

Noise Due to: Consist of: When Noise is 

Produces 

Frequency 

Range 

Engine Noise 

[10] [16] 

 

Internal combustion  

engine  

Harmonic train and a stochastic noise. The stochastic component 

of the engine noise is largely due to the turbulent air flow in the 

air intake, the engine cooling systems, and the alternator fans.  

Vehicle is 

Stationary.  

1-4 KHz  

Tire Noise 

[11][12][13][14] 

[15]  

Vehicle’s rolling tire as 

a result of its 

interaction with the 

road surface.  

Vibration noise: caused by the contact between the tire treads and 

the road surface texture.  

Air noise: due to the air being sucked in the rubber blocks of the 

tire.  

Vehicle Rolling at 

50Km/hr  

100-

1000Hz  

 

1KHz-

3KHz  

Exhaust Noise 

[17][18] 

Engine combustion  Consists of noise produced due to the exhaust manifold, catalytic 

converter, resonator, exhaust pipe, muffler, and the tail pipe.  

Vehicle is Loaded   

Air Turbulence 

Noise 

[19][20]  

Air flow generated  

by the boundary layer 

of the vehicle  

Distinctive whoosh sound  Vehicle moves at 

medium to high 

speeds  

 

Honks  Manual  Many harmonics with bandwidth of about 100 Hz around each 

harmonic.  

Congested areas.  1-4 KHz  


