Comparative Study of Different Denoising Filters for Speckle Noise Reduction in Ultrasonic B-Mode Images

Full Text (PDF, 924KB), PP.1-8

Views: 0 Downloads: 0


Amira A. Mahmoud 1,* S. EL Rabaie 1 T. E. Taha 1 O. Zahran 1 F. E. Abd El-Samie 1 W. Al-Nauimy 1

1. Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt.

* Corresponding author.


Received: 2 Nov. 2012 / Revised: 30 Nov. 2012 / Accepted: 7 Jan. 2013 / Published: 8 Feb. 2013

Index Terms

Image enhancement, Ultrasonic scan, Speckle noise, Denoising filters


Image denoising involves processing of the image data to produce a visually high quality image. The denoising algorithms may be classified into two categories, spatial filtering algorithms and transform domain based algorithms. In this paper a comparative study of different denoising filters for speckle noise reduction in ultrasonic b-mode images based on calculating the Peak Signal to Noise Ratio (PSNR) value as a metric is presented. The quantitative results of comparison are tabulated by calculating the PSNR of the output image.

Cite This Paper

Amira A. Mahmoud, S. EL Rabaie, T. E. Taha, O. Zahran, F. E. Abd El-Samie, W. Al-Nauimy,"Comparative Study of Different Denoising Filters for Speckle Noise Reduction in Ultrasonic B-Mode Images", IJIGSP, vol.5, no.2, pp.1-8, 2013. DOI: 10.5815/ijigsp.2013.02.01


[1]R. G. Dantas and E.T. Costa, ''Ultrasound speckle reduction using modified gabor filters'', IEEE Trans., Ultrason., Ferroelectr., Freq. Control, vol 54, pp. 530 – 538, 2007.

[2]O. V. Michailovich and A. Tannenbaum, ''Despeckling of medical ultrasound images'', IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol 53(1), pp. 64-78, 2006.

[3]J. R. Sanchez and M. L. Oelze, ''An ultrasonic imaging speckle suppression and contrast enhancement technique by means of frequency compounding and coded excitation'', IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 56, no. 7, 2009.

[4]Y. Yue, M. M. Croitoru, A. Bidani, J. B. Zwischenberger, and J.W. Clark, ''Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images'', IEEE Trans. Med. Imag., 25(3):297– 311, Mar. 2006.

[5]Dave Hale, "Recursive gaussian filters", CWP-546, 2006.

[6]L. Chen, G. Lu and D. Zhang, ''Effects of different gabor filter parameters on image retrieval by texture'', In Proc. of IEEE 10th International Conference on Multi-Media Modelling (MMM2004), pp. 273-278, Brisbane, Australia, Jan. 2004.

[7]V. Shiv Naga Prasad and Justin Domke, ''Gabor filter visualization'', Technical Report, University of Maryland, 2005.

[8]J. Cook, V. Chandran and S. Sridharan, ''Multiscale representation for 3-d face recognition'', IEEE Trans. on Information Forensics and Security, 2007.

[9]S. Perreault, P. Hébert, ''Median filtering in constant time'', IEEE Trans. on Image Processing 16(9): 2389-2394, 2007.

[10]Y. Mi, X. Li and G. F. Margrave, ''Application of median filtering in Kirchhoff migration of noisy data'', CREWES Research Report, 49, 11, 1999.

[11]S.Solbo and T. Eltoft, "Homomorphic wavelet based statistical despeckling of SAR images," IEEE Trans. Geosc. Remote Sensing, vol. 42, no. 4, pp. 711–721, 2004.

[12]R.Vanithamani and G.Umamaheswari, ''Performance Analysis of Filters for Speckle Reduction in Medical Ultrasound Images'', International Journal of Computer Applications 12(6):23–27, December 2010.

[13]R Sivakumar and D Nedumaran ''Comparative study of Speckle Noise Reduction of Ultrasound B-scan Images in Matrix Laboratory Environment'', International Journal of Computer Applications 10(9):46–50, November 2010.

[14]Y. Yongjian and S. T. Acton, "Speckle reducing anisotropic diffusion," IEEE Trans. Image Processing, vol. 11, no. 11, pp.1260–1270, Nov. 2002. 

[15]Y. Y. Tang, "Wavelet analysis and its applications", Second International Conference, Springer-Verlag, (U.K.), 2001.

[16]L. Kaur, S. Gupta, and R. C. Chauhan, ''Image denoising using wavelet thresholding'', Third Conference on Computer Vision, Graphics and Image Processing, India Dec 16-18, 2002.

[17]A. Bultheel, ''Wavelets with applications in signal and image processing'', Sept., 22, 2003.

[18]S. Kother Mohideen, S. Arumuga Perumal and M. Mohamed Sathik, ''Image denoising using discrete wavelet transform'', International Journal of Computer Science and Network Security, vol. 8, no. 1, Jan., 2008.

[19]S. V. Vaseghi, ''Advanced digital signal processing and noise reduction'', 2000 John Wiley & Sons Ltd.

[20]N. Jacob and A. Martin. "Image denoising in the wavelet domain using wiener filtering", Unpublished course project, University of Wisconsin, Madison, Wisconsin, USA, 2004.

[21]V. Strela, "Denoising via block wiener filtering in wavelet domain", 3rd European Congress of Mathematics, Barcelona, Birkhäuser Verlag, July 2000.

[22]H. Choi and R. G. Baraniuk, "Analysis of wavelet domain wiener filters", IEEE Int. Symp. Time-Frequency and Time-Scale Analysis, (Pittsburgh), Oct. 1998.

[23]R. Zewail, A. Seil, N. Hamdy and M. Saeb,'' Iris identification based on log-gabor filtering'', Proceedings of the IEEE Midwest Symposium on Circuits, Systems & Computers, vol. 1, pp 333- 336, Dec. 2003.

[24]A. Karargyris, S. Antani and G. Thoma, ''Segmenting anatomy in chest x-rays for tuberculosis screening'', Engineering in Medicine and Biology Society, EMBC, Annual International Conference of the IEEE: 7779-82, Aug. 2011.

[25]P. Kovesi, "Phase preserving denoising of images", Proc. DICTA 99 (Perth, Australia), pp. 212- 217, 1999.

[26]Q .Huynh-Thu, M. Ghanbari ,''Scope of validity of PSNR in image/video quality assessment'', Electronics Letters, vol. 44,No.13,pp.800–801, 2008.