A Comparative Study between Bandelet and Wavelet Transform Coupled by EZW and SPIHT Coder for Image Compression

Full Text (PDF, 1284KB), PP.9-17

Views: 0 Downloads: 0


Beladgham Mohammed 1,* Habchi Yassine 1 Moulay Lakhdar Abdelmouneim 1 Taleb-Ahmed Abdelmalik 2

1. Department of Electronic, Bechar University, Bechar, Algeria

2. Biomecanic Laboratory, Valencienne University, France

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2013.12.02

Received: 27 Jun. 2013 / Revised: 26 Jul. 2013 / Accepted: 23 Aug. 2013 / Published: 8 Oct. 2013

Index Terms

Bandelet transform, Compression, Optical flow, Quadtree segmentation, SPIHT and EZW coder


Second generation bandelet transform is a new method based on capturing the complex geometric content in image; we use this transform to study medical and satellite image compressed using the bandelet transform coupled by SPIHT coder. The goal of this paper is to examine the capacity of this transform proposed to offer an optimal representation for image geometric. We are interested in compressed medical image, In order to develop the compressed algorithm we compared our results with those obtained by the bandelet transform application in satellite image field. We concluded that the results obtained are very satisfactory for medical image domain.

Cite This Paper

Beladgham Mohammed, Habchi Yassine, Moulay Lakhdar Abdelmouneim, Taleb-Ahmed Abdelmalik,"A Comparative Study between Bandelet and Wavelet Transform Coupled by EZW and SPIHT Coder for Image Compression", IJIGSP, vol.5, no.12, pp.9-17, 2013. DOI: 10.5815/ijigsp.2013.12.02


[1]M. Nelson. The data compression book. 2nded, M&T books, New York, 1996.

[2]J. L. Starck, F. Murtagh, E. Candès, and D.L. Donoho. Gray and Color Image Contrast Enhancement by the Curvelet Transform. IEEE Transaction on Image Processing, Vol. 12, No. 6, pp 706-717, 2003.

[3]U E. J. Candès and D. L. Donoho. New Tight Frames of Curvelets and Optimal Representations of Objects with Piecewise C2 Singularities, Comm. on Pure and Appl. Math. Vol. 57, pp.219-266, 2004.

[4]M. N. Do and M. Vetterli. Contourlets, in Beyond Wavelets. J. Stoeckler and G. V. Welland, Eds. San Diego, CA: Academic Press, 2003.

[5]K. Romberg, M.B. Wakin, and R.G. Baraniuk. Approximation and Compression of Piecewise Smooth Images Using a Wavelet/Wedgelet Geometric Model. In IEEE 2003 International Conference on Image Processing -- ICIP-2003, Barcelona, Spain, September 2003.

[6]Borup. Lasse and Nielsen. Morten. Approximation with brushlet systems, Journal of Approximation Theory. Vol. 123, pp. 25-51, 2003.

[7]Vladan Velisavljevi´c, Baltasar Beferull-Lozano, Martin Vetterli and Pier Luigi Dragotti. Directionlets: Anisotropic Multidirectional Representation with Separable Filtering. IEEE Trans. Image Processing, Dec, 2004.

[8]E. Le. Pennec and S. Mallat. Bandelet representation for image compression. In Proc. Int. Conf. Image Processing, Oct. 2001.

[9]E. Le Pennec et S. Mallat. Représentation d’images par bandelettes et application à la compression. Dans GRETSI, Toulouse, Septembre 2001.

[10]E. Le Pennec. Bandelettes et représentation géométrique des images. Thèse de Doctorat, Ecole Polytechnique, 19 décembre 2002.

[11]V. Chappelier. Codage progressif d'images par ondelettes orientées. Thèse de Doctorat, Université Rennes 1, 15 décembre 2005.

[12]Ding. Time Frequency Analysis Tutorial. R99942057.

[13]Hong Han,Xing Wu. Research of Method in Human Detection Based on Bandelet Transform. Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Vol. 74951S,2009.

[14]Ruihua Liang, Lizhi Cheng, Zhicheng Zhu, Bo Chen. Image coding based on second generation bandelet transform. Modern electronics technique, 61-65 (2007).

[15]E. Le Pennec, S. Mallat. Bandelettes et représentation géométrique des images. CMAP / école Polytechnique 91128 PALAISEAU – France.

[16]E. Le Pennec, S. Mallat. Bandelet Representations For Image Compression. 0-7803-6725-1/01. IEEE. 2001.

[17]J.SHAPIRO. Embedded Image Coding using Zerotree of Wavelet Coefficients. IEEE trans. Signal processing. Vol. 41, pp. 3445-3462. Dec, 1993.

[18]A. Said and W. A. Pearlman (1996). A new and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Tech., vol. 6, pp. 243–250.

[19]W.S. Geisler, M.S. Banks. Visual Performance. Handbook of Optics – Vol. 1, McGraw-Hill, NY, USA, 1995.

[20]A.B. Watson, L.B. Kreslake. Measurement of Visual Impairment Scales for Digital Video. Human Vision and Electronic Imaging Conference, San Jose, CA, USA, SPIE Vol. 4299, Jan. 2001, 2001, pp. 79 – 89.

[21]www.GE Medical System.com (database).