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Abstract— The existing traditional cryptosystems, such as 
RSA, DES, IDEA, SAFER and FEAL, are not ideal for 
image encryption because of  their slow speed and 
ineffectiveness in removing the correlations of the adjacent 
pixels. Meanwhile chaos-based cryptosystems, which have 
been extensively used over the past two decades, are almost 
all based on symmetric cryptography. Symmetric 
cryptography is much faster than asymmetric ciphers, but 
the requirements for key exchange make them hard to use. 
To remedy this imperfection, a hybrid-key based image 
encryption and authentication scheme is proposed in this 
paper. In particular, ergodic matrices are utilized not only 
as public keys throughout the encryption/decryption process, 
but also as essential parameters in the confusion and 
diffusion stages. The experimental results, statistical 
analysis and sensitivity-based tests confirm that, compared 
to the existing chaos-based cryptosystems, the proposed 
image encryption scheme provides a more secure means of 
image encryption and transmission.  
 
Index Terms— hybrid-key, ergodic matrix, symmetric, 
asymmetric, entropy, diffusion 

I. INTRODUCTION 

Transmitting information through the internet has been 
a mainstream task in modern life for these reasons: 
geographical position independence, fast speeds, and low 
costs. However, while we are taking the advantage of the 
internet, unauthorized individuals can purloin the images 
for processing, distributing or replicating. Hence 
information security is an important problem. Therefore 
cryptography plays a vital role in many fields, such as 
mobile phone communications, sending private emails, 
security of bank cards, online payments, users’ passwords, 
online personal photograph albums and other touches of 
our daily lives [1]. Cryptography is a technique of 
transforming plaintexts into ciphertexts and 
retransforming the messages back to the original form. 
Modern cryptography involves not only the disciplines of 
mathematics but also computer sciences and engineering. 

Image cryptography has various applications in 
telemedicine, military image database and multimedia 

systems, etc. Although there are many cryptosystems, 
such as RSA, DES, IDEA, SAFER and FEAL, which can 
be used to encrypt images, these are not ideal for two 
reasons [2]. One is that the image size is generally much 
greater than that of text. This results in conventional 
cryptosystems taking much more time to encrypt images 
directly. The other reason is that image data has high 
correlation among adjacent pixels. Consequently, it is 
rather difficult for these cryptosystems to shuffle and 
diffuse image data effectively. 

By and large, there are two main schemes that can be 
used to protect digital images: 

(1) Information hiding, which is a technology that 
uses anonymity, watermarking, covert channel and 
steganography; and 

(2) Encryption, which includes traditional encryption 
and other such as chaotic encryption [3-4].  

Chaos-based cryptosystems usually have higher speeds 
and lower costs. Moreover, these systems are sensitive to 
initial conditions and control parameters. These 
optimistic characters make them suitable for image 
encryption. In this respect, during the past decade a great 
number of chaotic systems have been proposed. For 
example, Chen et al. used a 3D baker map [6] and a 3D 
cat map [7] in the permutation process. Guan et al. 
employed a 2D cat map for substitution and the diffusion 
of Chen’s chaotic system for masking the pixel values [8]. 
Jiri Giesl et al. used the chaotic maps of Peter de Jong’s 
attractor to improve the chaos image encryption speed [5]. 
Yang et al. introduced a keyed hash function to generate a 
128-bit hash value so that the scheme could be used to 
encrypt and authenticate [9]. 

However, the deficiencies of these chaos-based 
cryptosystems can be summarized as below: 

(1) The communication session is mostly based on 
symmetric cryptography.  

(2) Lack of authentication, which means it is difficult 
for the receiver to confirm that the cipher image is sent by 
the one he wants to communicate with. 

The disadvantage of symmetric cryptography is that it 
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presumes two parties have agreed on a key and been able 
to exchange that key in a secure manner prior to 
communication. Since the cipher key is public, the 
distribution and management of keys are much simpler, 
i.e. in a population of n people the total keys are 4n. For 
this reason, the requirements for key exchange make 
symmetric cryptosystems difficult to use. In addition, the 
distribution of keys remains the biggest challenge in the 
use of cryptosystems of this kind [12].  

Asymmetric (also called public-key) cipher is noticed 
as the most significant new development in cryptography 
in the last 30-40 years [25]. It is a technique employed by 
many cryptographic algorithms and cryptosystems. Its 
feature lies in the asymmetric key algorithm, where the 
key used to encrypt a plain-text is different from the key 
used to decrypt it. Each user holds a pair of cryptographic 
keys – public keys and private keys [21-22]. The public 
keys can be distributed whilst the private key is kept 
secret. Plain-texts are encrypted with the recipient’s 
public key and can be uniquely decrypted with the private 
key held by the recipient. This thought came from the 
publication of “New Directions in Cryptography” by 
Diffie and Hellman in 1976. 

However, in practice, the asymmetric-key 
cryptography system has not replaced the symmetric-key 
cryptography system. Though the asymmetric-key 
encryption system is based on sophisticated mathematical 
problems (its calculation is very complicated and makes 
it more secure), its speed is also far slower than 
symmetric-key encryption systems. As a result, in 
practical applications we can make use of the advantages 
of both these two algorithms, using symmetric algorithm 
to encrypt files and asymmetric algorithm to encrypt the 
keys of the encrypted document key (or it may be called 
session key), which is a hybrid encryption system. This 
provides a better way to solve the computing speed issues 
and the key distribution and management issues. 

To realize the hybrid image cryptosystem, ergodic 
matrix shall be used in this paper. Zhao et al. [10-11] 
have proved some theorems of ergodic matrix; it is said 
that the matrix has large period over ॲ௤. This profound 
property makes it feasible in the image encryption 
process. 

The rest of this paper is organized as follows: Section 
2 gives the background about ergodic matrices; Section 3 
is devoted to the description of the proposed image 
encryption and authentication scheme; the security of this 
scheme is tested in Section 4; Section 5 analyzes the 
performances; and finally, some conclusions and future 
works are drawn in Section 6. 
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II. OVERVIEW OF ERGODIC MATRIX 

Ergo c matrix was introduced by Zhao et al. [10-11].  
The b ea can be briefly described as below: 

di
asic id

Let ॲ௡ൈ௡
௤  be a set of all n×n matrices over the finite 

field ॲ௤ , (ॲ௡ൈ௡
௤ , +, ×) form a 1-ring, here + and × are 

addition and multiplication over ॲ௤ , respectively. We 
randomly generate two nonsingular matrices Q1,Q2∈ 
ॲ௡ൈ௡
௤ , then: 

(1) (ॲ௡ൈ௡
௤ , ×) is a monoid, its identity element is ܫ௡ൈ௡, 

(2) (〈Q1〉, ×) and (〈Q2〉, ×) are Abelian groups, their 
identity elements are also ܫ௡ൈ௡ . Here Q1, Q2 are 
nonsingular and Q1, Q2 ൈ௡

௤ , and  ∈ॲ௡
(3) for any m1,m2∈ॲ௡ൈ௡

௤ , generally m1×m2≠m2×m1. i.e. 
the multiplication is not commutative in ॲ௡ൈ௡

௤ . 
Ergodic matrix has the f lowing defin ons and 

properties: 
ol iti

Definition 1: Given Q∈ ॲ௡ൈ௡
௤  if ∀ v∈ ॲ௡ൈଵ

௤ \{0}, 
{Qv,Q2v, … ,ܳ௤೙ିଵ v} just takes over ॲ௡ൈଵ

௤ \{0}, then Q 
is what so-called ergodic matrix over finite field ॲ௤ . 
(Here 0=[0 0 … 0]T) 

Definition 2:  G en Q∈ॲ௡ൈ௡
௤ , if 〈Q〉 = { Qx|x = 1, 2, 

3,…}, then 〈Q〉 is th erating set of  Q over ॲ௡ൈ௡
௤ . 

iv
e gen

Theorem 1: Q∈ॲ௡ൈ௡
௤  is an ergodic matrix if and only 

if the order of Q is (qn-1) after the multiplication of Q 
over finit field ॲ௤. e 

Theorem 2: Given n and (qn-1) are coprime, g＝ (gn … 
g2 g1)∈( ॲ௤ )n∧(gn≠0), given Q is an ergodic matrix, 
then (ॲ௤[Q],+,•) co str ts a field of qn elements, {Q0＝I, 
Q1,… Qn-1} is a basis o ௤[Q] over ॲ௤. 

n uc
, f  ॲ

Lemma 1: For ׊v∈ॲ௤[ ], there is unique a0, a1, …, 
an-1∈ॲ௤ such that v = a0I +  a2Q2 + … + an-1Qn-1. 

Q
 a1Q +

Theorem 3: Given Q∈ ௡
௤  is an ergodic matrix, QT 

must be  ergodic matrix ell. 
ॲ௡ൈ

an  as w
Theorem 4: Given Q∈ॲ௡ൈ௡

௤  is an ergodic matrix, then 
for ׊v∈ॲ௡ൈଵ

௤ \ 0}, {vTQ, TQ2, … ,vTܳ௤೙ିଵ } just takes 
over ሼ vT| v∈ॲ ൈଵ ሽ\ሼ0Tሽ. 

{ v
௡
௤

Theorem 5: Given Q∈ॲ௡ൈ௡
௤  is an ergodic matrix, there 

are ϕ(qn-1) ergodic matrices in 〈Q〉 (ϕ(x) is Euler 
function). These ergodic matrices have the same 
generation set. 

Definition 3: Ergodic matrices are equiva nt if they 
have the same generation set.  

le

From the theorems above, over finite field ॲ௤, all n×n 
ergodic matrices have the same order and their generating 
sets have the same size, which are larger than that of any 
other n×n non-ergodic matrices. Take a random ergodic 
matrix Q∈ॲହ଴ൈହ଴ଶହ଺  as an example, then the image of the 
matrix and the histogram is shown in Fig. 1. 

      
 
Figure 1: The image of a random ergodic matrix Q∈ॲହ଴ൈହ଴ଶହ଺  and the 
corresponding histogram (a) Image of random ergodic matrix, (b) 

Histogram of the corresponding ergodic matrix 

 This figure implies that an ergodic matrix is almost 
uniformly distributed, thus it can be used to encrypt an 
image. 

III. THE PROPOSED IMAGE ENCRYPTION ALGORITHM 

(b) (a)
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Fridrich suggested that an image encryption scheme 
should be composed of confusion and diffusion [4]. The 
confusion process permutes all the pixels without 
changing their values, which make it difficult to resist 
statistical attacks. Then in the diffusion process, the pixel 
values are modified such that a tiny change, for instance, 
the value of one pixel increased by only 1 bit, will spread 
out to all pixels in the cipher-image. 

A. Communication process 
The communication process is composed of encryption, 

decryption and authentication. 
In consideration of the basic need of cryptology, the 

cipher-text should have close connection to the key. 
There are two ways to realize this requirement [20]: one 
is to utilize a good key generation mechanism, another is 
to thoroughly mix the key with the plain-text in the 
encryption process. 

Therefore, to realize the hybrid-based cryptosystem 
that satisfies the requirement, we carry out the process as 
below: 

(1) Alice and Bob respectively take (xa,ya=f(xa,ka)) 
and (xb,yb=f(xb,kb)) as public-keys,  ka  and kb as private-
keys. Here xa＝Qa, ya = f(xa,ka)＝Qa

ka; xb＝Qb, yb= f(xb,kb)
＝Qb

kb. 
(2) When Alice wants to communicate with Bob, 

she generates a random key kx∈K and computes 
K1=f(xb,kx)＝Qb

kx, Ka=f(yb,kx) = Qb
kbkx. Then she gets CIDa 

by encrypting her identity IDa with K1. For example, she 
encodes her identity information into an n–order matrix, 
then XOR with K1, or gets CIDa by K1×IDa＝Qb

kxIDa. 
After this, she sends (CIDa,Ka) to Bob.  

(3) Bob uses his own key kb to deduce K1=f(Ka,-
kb)=( Qb

kbkx) Qb
-kb= Qb

kx and decipher IDa by XOR CIDa 
with Qb

kx, or by the equation IDa＝K1
-1×CIDa, thus he gets 

Alice’s public-key (xa,ya) and makes sure CIDa is actually 
from Alice. 

(4) Bob generates a random key ky∈K, and 
computes K2=f(xa,ky)=Qa

ky, Kb= f(ya,ky)=Qa
kaky, CKb=f(K1, 

Kb) = Qb
kxQa

kaky. Then he sends CKb to Alice. 
(5) Alice decrypts Kb and K2 by Kb= f-1(CKb, K1), 

K2= f-1(Kb, ska). Thus K1 and K2 can be used as session 
keys between Alice and Bob. 

(6) If Alice wants to secretly send an image to Bob, 
she may encrypt the image by one of the session keys. 
Take K1 for example, then she gets the cipher-image by 
Cimg= f(K1, image) = f (Qb

kx, image). 
(7) Bob deciphers the image by Dimg = f-1( K1, 

image) = f-1(Qb
kx, image). 

B. Confusion 
The confusion (also called discretization, permutation) 

stage shuffles the pixels in the image. It is an important 
technique used in image encryption and information 
hiding. Scientists have been conducting investigations in 
this field for a long time. Typical approaches to confusion 
include Arnold permutation [13], Hilbert permutation 
[14], Kolmogorov flows [15], baker map [16], Knight’s 
tour problem [16-17], standard map [18], etc. 

These existing techniques imply that an effective 
algorithm for confusion should follow the principles as 
below: 

(1) Transform T must be 1-1 map. This is the primate 
premise for confusion. Only by following this rule can we 
make sure each pixel of cipher image will not lose its 
original information, so that it can be completely 
decrypted. 

(2) T must disorganise the correlated positions of the 
plain-image as much as possible, such that the cipher-
image cannot be directly seen by the human eyes or be 
guessed the information of the original image. 

(3) T can rapidly disorganise the correlated positions 
of the plain-image; this is an important measure of the 
efficiency of a confusion algorithm. 

(4) The existing cryptosystems and the fast speed of 
computers make it difficult for any cipher-image to resist 
the brute-force attack. For the security of the encryption 
algorithm, key space is needed to be as large as possible. 

As a result, based on the discretization property of 
ergodic matrix, we propose a confusion scheme that goes 
by the following steps: 

First, given Qb
kx is the key to encrypt the image, if the 

size of Qb
kx is smaller than that of the image, Alice 

calculates the power of Qb by the following algorithm: 
① H and W are the height and width of the image 

respectively; 
② N is the number of the elements of the key Qb

kx; 
③ n rounds the elements of H×W/N to the nearest 

integers greater than or equal to H×W/N; 
④ ArrayB stores the result of n matrices that Alice 

calculates; 
⑤ for i=1 to n 
⑥      the i-th row of ArrayB stores the result of 

Power(Qb
kx, Qb

kx (i)); 
⑦ end 
⑧ IX=sort(ArrayB) returns an array of indices after 

sorting ArrayB. 
Then Alice discretizes the image according to IX. For 

example, if IX(i)=37, the i-th pixel of the image is put to 
the 37th position. 

The experimental result for this discretization 
algorithm is shown in Figure 2. 

    
(a) Original Lena image     (b) Permuted image  

Figure 2: Comparison of images after 1-round of permutation 

It is easy to prove that this discretization is 1-1 map, 
which satisfies the 1st principle above. Furthermore, the 
permuted image disorganizes the plain-image as much as 
possible so that it is hard to recognize, which satisfies the 
2nd principle.  
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C. Diffusion 
Shannon suggested employing diffusion and confusion 

in the cryptosystem [24]. The diffusion stage is necessary 
because an attacker can break the system by comparing a 
plain-image and corresponding cipher-image to discover 
useful information. For the purpose of diffusion, an 
explicit function which uses the ergodic matrix and the 
“XOR plus mod” [18] operation will spread out the 
influence of a single pixel, which is from the plain-image, 
over many cipher image pixels. This is detailed below. 

Respectively choose the first element from Qb
kx and the 

plain-image as initial value. 
Qb

kx is designed as M(k) and is XOR-ed with the values 
of currently operated pixel (from the plain-image) and 
previously operated pixel (from the cipher-image), 
according to formula (1) below: 
C(k) = M(k) ⊕ {[I(k) + M(k)] mod CLevel} ⊕ C(k-1)    (1) 

where I(k) is the currently operated pixel, CLevel is the 
colour level (for the image used to test, CLevel=256) of 
the image and C(k-1) is the previously output pixel of the 
cipher-image. Bob may inverse the transform of the 
above formula as formula (2). 
I(k) = {[ M(k) ⊕ C(k) ⊕ C(k-1) + CLevel − I(k) } mod 
CLevel.   (2) 

We can see that the corner pixel C(1) (namely, the 
position (1,1) in the image) is not diffused at all under 
this algorithm. Besides, one pixel change in the image 
may not alter the cipher-image much, especially if the 
change is in the last pixel (namely the position is 
(512,512)). Hence another diffusion stages from the last 
pixel in the image is needed. 

The experimental result for this discretization 
algorithm is shown in Figure 3. 
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Figure 3: Comparison of images after 1-round of diffusion 

IV. SECURITY ANALYSIS 

All tests in this paper are conducted on the 512×512 
Lena image with 8-bit gray scale. The diffusion round is 
2, whilst the confusion round is 1. 

A.  Key space analysis 
The key space of any cryptosystem should be 

satisfactorily large enough to resist brute-force attack. In 
this proposed public-key based image encryption 
algorithm, key (xa,ya=f(xa,ka) and (xb,yb=f(xb,kb)) are 
solely employed for encryption and decryption. Hence 
the key space primarily lies on the size of ergodic matrix 
(meaning unclear). For an n×n ergodic matrix over finite 
f ld ॲ௤ , the n n atr  is 
calcu  f
ie  umber of non-equivale t m ices

lated by omula (3) [23]: 

 ∏ ௤೙ି௤೔

௡ሺ௤೙ିଵሻ
௡ିଵ
௜ୀ଴ ൌ ௡ݍ െ ௡ݍሻሺݍ െ ڮଶሻݍ ሺݍ௡ െ ௡ିଵሻ/݊  (3) ሺݍ
In the experiments w ×50 ergodic matrix 

over finite field ॲ
e utilize a 50

ଶହ଺, thus the key space is 

ෑ
256ହ଴ െ 256௜

50 ൈ ሺ256ହ଴ െ 1ሻ
ൎ 3.08 ൈ 10ହ଼ଽ଼

ହ଴ିଵ

௜ୀ଴

 

This is quite large thus it is sufficient for practical use 
and can resist all kinds of brute force attack.  

The reason for the immense key space in the proposed 
scheme is that the session keys are n×n trices, of 
which the range of each element is [0, 255]. 

ma

From Lemma 1, any ergodic matrix Q∈ॲ௡ൈ௡
௤  can be 

denoted by an n-vector over ॲ௤ . Thus the size of the 
matrix Q∈ॲହ଴ൈହ଴ଶହ଺  used in the experiment can be reduced 
to 50 bytes from 2500 bytes. 

B. Statistical analysis 
(1) Histogram analysis 

We can see from Figure 3 that after 1-round diffusion, 
the histogram is fairly uniform and does not reveal any 
statistical information of the plain-image.  
(2) Correlation of two adjacent pixels 

The high correlation of adjacent pixels is fragile to 
resist statistical cryptanalysis.  As a result, a secure 
encryption scheme, which can eliminate the correlation 
between adjacent image pixels, is needed. Hence to 
calc correlation of two adjacent pixels, formula 
(4) ou

ulate the 
is carried t: 
,ݔሺݒ݋ܿ ሻݕ

ൌ
∑ ሺݔ െ ሻሻݔሺܧ ൈ ሺݕ௜ െ ሻሻோݕሺܧ
௜ୀଵ

ඥ∑ ሺݔ
௜

௜ െ ሻሻଶோݔሺܧ
௜ୀଵ ൈ ඥ∑ ሺݕ௜ െ ሻሻଶோݕሺܧ

௜ୀଵ
   ሺ4ሻ 

where E(x)=ଵ
ோ
∑ ோݔ
௜ୀଵ , R is the number of pairs of the 

adjacent pixels selected in the test. This formulate 
indicates −1≤cov(x, y)≤1, which means with cov(x, y) 
getting closer to 0, the correlations of two adjacent pixels 
will be less.  

The experiment was divided into 10 groups and each 
group has 10,000 pairs of pixels, i.e. R=10,000. The 
correlation distributions of two adjacent pixels in the 
cipher-image are tested respectively in horizontal, vertical 
and diagonal. Table 1 shows the results of the correlation 
coefficients of our proposed algorithm. 
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The mean correlation coefficients for our algorithm 
and the comparisons with other algorithms are listed in 

Table 2. 
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TABLE 2. CORRELATION COEFFICIENTS COMPARED IN TWO ALGORITHMS 

 Plain-image Cipher-image 
(Proposed, mean value) 

Cipher-image 
(Yang et al. [9]) 

Cipher-image 
(Ye G. [26]) 

Arnold method 
([26]) 

Horizontal 0.98024213 0.006493 0.002097 -0.0134 0.0787 
Vertical 0.97533157 0.005339 -0.016187 0.0012 -0.0793 
Diagonal 0.96573878 0.007705 0.017805 0.0398 -0.0633 
Average 0.97377083 0.006512 0.01203    0.0181   0.0738 

 
Both experiments utilized 512×512 Lena image with 

256 gray scales. It is easy to see that the result of our 
algorithm is much closer to 0. This indicates that our 
algorithm has effectively removed the correlation of 
adjacent pixels in the plain-image, thus it is better for 
image confusion and diffusion. 

Test results for correlation of adjacent pixels are 
shown in Figure 4: 

    
(a) The plain-image                 (b) The cipher-image 

Figure 4: correlation of two horizontally adjacent pixels in (a) and (b) 

Results imply that it is very difficult to deduce secret 
key from cipher-image when it is attacked by know-
plaintext attacks or chosen-plaintext attacks. 
(3) Entropy analysis 

Entropy is a scalar value representing the entropy of a 
greyscale image. It is a statistical measure of randomness 
that can be used to ha e ture of the input 
image. Entropy of a : 

 c racterize the t x
n image is defined as

E=∑ ௜ሻ௡ݔሺ݌ଶ݃݋௜ሻ݈ݔሺ݌
௜ୀ଴   (5) 

where p contains the histogram counts returned from 
imhist.  

The ideal value of entropy of a cipher-image should be 
8. If it is less than this value, there will be some certain 
predictability that threatens the security.  

Table 3 lists the mean entropy values obtained for 
different original image and the ciphered ones. The 
obtained results are much closed to the theoretical value. 
This means that information leakage after 1-round 
permutation and 2-round diffusion is so tiny that it can be 
neglected. 

TABLE 1. CORRELATION COEFFICIENTS OF TWO ADJACENT PIXELS IN THE CIPHER-IMAGE 

Horizontal -0.00563 0.00021 -0.01433 -0.00089 -0.0018 -0.00207 -0.00388 0.010665 0.013546 0.011906
Vertical 0.0033113 0.015407 0.0071656 -0.000164 -0.000174 -0.008530 -0.004694 -0.003341 0.0001274 0.010477
Diagonal -0.004935 0.009473 0.0011877 -0.008290 0.016918 0.0018506 -0.005332 0.01446 0.0040661 -0.01054

TABLE 3. ENTROPY VALUES FOR DIFFERENT ORIGINAL IMAGE AND THE CIPHERED ONES 

Original image Cipher-image Entropy of the Original-
image Entropy of the Cipher-image

  

7.4767 7.9994 
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TABLE 4. 10 GROUPS OF NPCR AND UACI OF THE PROPOSED ALGORITHM 

NPCR 0.99714 0.99544 0.99828 0.99829 0.99342 0.99809 0.99823 0.99812 0.99306 0.99802 
UACI 0.34382 0.33469 0.35326 0.31945 0.33498 0.3532 0.33637 0.34685 0.33266 0.34643 

TABLE 5. 10 GROUPS OF NPCR AND UACI OF DIFFERENT KEYS 

NPCR 0.99586 0.99604 0.99608 0.99607 0.99613 0.99612 0.99613 0.99615 0.99608 0.99607 
UACI 0.33447 0.33457 0.33458 0.33446 0.33449 0.33455 0.33453 0.33460 0.33451 0.33453 

TABLE 6. CORRELATION COEFFICIENTS WITH KEY QBKX INCREASED BY 1 AT DIFFERENT POSITIONS 

position left-top 
(1,1) 

right-top 
(1,50) 

left-bottom 
(50,1) 

right-bottom
(50,50) 

centre 
(25,1) 

Correlation Coefficient -0.00217286 0.004266592 0.0026746637 -0.000910659 -0.00149085 
 

 
C. Sensitivity-based attack 
An algorithm for encrypting an image should be robust 

enough to resist sensitivity-based attack. This means the 
cryptosystem should have high key sensitivity and 
plaintext sensitivity [19]. Further, a tiny change, even a 
single pixel being modified by one bit, in the key or in 
the original image, causes a great difference in the cipher-
image. These properties make it difficult for diverse 
sensitivity-based (chosen plaintext, or differential) attacks 
to break the system. 
(1) plain­image sensitivity 
The plain-image sensitivity of the cryptosystem is 

largely infected by the keys that Alice and Bob are 
holding. Here, two common measures are used to test the 
system: NPCR (Number of Pixels Change Rate) and 
UACI (Unified ver e ty). They are 
defin r ula (6)  

A ag  Changing Intensi
ed as fo m [7]: 

ە
۔

NPCRۓ ൌ
∑ ,ሺ݅݁ݑ݈ܸ݈ܽ݁ݔ݅݌௞ሺܦ ݆ሻሻ௉
௞ୀଵ

ܪ ൈܹ ൈ 100%

UACI ൌ
∑ ,ଵ௞ሺ݅ܥ| ݆ሻ െ ,ଶ௞ሺ݅ܥ ݆ሻ|௉
௞ୀଵ

ܪ ൈܹ ൈ 255 ൈ 100%
 

where H and W are the height and the width of 
encrypted image. Dk(pixelValue(i,j)) is determined by the 
following rule: if the pixel value of C1(i,j)= C2(i,j) then 
D(pixelValue(i,j))=0; otherwise  D(pixelValue(i,j))=1. 
NPCR calculates the average intensity of different pixel 

numbers between two cipher-images with only one or 
more pixels changed. 

UACI measures the percentage of pixel value 
differences between the two cipher-images. 

Experiments have been carried out on the influence of 
a one-bit change on a 256 gray-scale Lena image of size 
512×512, on the proposed cryptosystem. To get higher 
accuracy, we divided the experiment into 10 groups, in 
each of which was arbitrary chosen 1,000 pixels (of 
different positions, the corresponding pixel value only 
increased by 1) from the cipher-image. 

The values of NPCR and UACI for our algorithm are 
listed in Table 4.  

We can see from Table 4 that the lowest NPCR and 
UACI is 0.99306 and 0.31945, respectively; the highest 
NPCR and UACI is 0.99829 and 0.35326, respectively; 
the average of these two measures’ value is 0.996809 and 
0.34071, respectively. While the NPCR and UACI of the 
proposed, Yang et al.’s cryptosystems is 0.996185 and 
0.334795, respectively [9]. 

Results show that the average performance of the 
proposed scheme only requires 1-round confusion stage 
and 2-round diffusion stage to slightly exceed the 
performance of the scheme introduced by Yang et al. [9], 
Furthermore, our experiment was tested on the slight 
change of different pixels and a large number of cases 
(10×1,000), while Yang et al. tested their system with 1 
case. Thus our results are more precise.  

  

7.6517 7.9992 

 

7.3579 7.9994 

   
 
(6)
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(2) Key sensitivity 
The key sensitivity of our proposed scheme benefits 

from the matrix key K1. To evaluate, the key value is 
increased by 1 at a random position. The results are 
depicted in Figure 5, which shows that even a difference 
as small as one value incremented by 1, will result in an 
incorrectly decrypted image. 

 

  
 

Copyright © 2011 MECS                                                                                 I.J. Image, Graphics and Signal Processing, 2011, 4, 1-9 

  
 

Figure 6: Key sensitivity test:  (a) cipher-image using the key K1, (b) 
image encrypted with K1 (c) cipher-image using the left-top value of 

matrix key increased by 1, (b) image encrypted with K1. 

It is difficult to compare the cipher-image by merely 
observing these images. So for comparison, NPCR and 
UACI are calculated between the two cipher-images 
using a different key which is increased by 1 at a random 
position.  

For this calculation, we used the same formula given 
in (4) except that in this test is the values of 
corresponding pixels in the two cipher-images to be 
compared. The result is shown in Table 5.  

We can see from Table 5 that the average of two 
cipher-images is 0.996073 and 0.334529, respectively. To 
get more precise results, another test, which calculates the 
correlation between the corresponding pixels between the 
two cipher-images, is implemented. For this calculation, 
we used the same formula given in (3) except that in this 
test, it is the values of corresponding pixels in the two 
cipher-images that are compared in Table 6. 

Results show that, for example, the cipher-image by 
the original key K1 has 99.78% of difference (this is 
better than the result from the algorithm proposed by 
Ismail et al. [20], which was 99.59%) from the one 
encrypted by the key K1(1,1) + 1 in terms of pixel grey 
scale values, although there is only one tiny difference in 
the two keys.  

V. PERFORMANCE EVALUATION 

Apart from security considerations, other issues 
concerning the image cryptosystem, such as the 
performance speed, also play a significant role. The 
performance of an algorithm is affected by many 

conditions such as: the programmer’s skill; what kind of 
programme language he is using; the performance of the 
computer he performs tests on; and how many bits the 
operation system and the software have.  

All the experiments in this paper were carried out with 
MATLAB programming language as it is strong and 
readable in the handling of images and matrices. The 
implementation was done on a personal computer with a 
3.20 GHz Core2Duo processor and 2 GB main memory, 
running with the Windows XP 32-bit operation system.  

The encryption procedure consists of three main stages: 
Calculation of the public key Qb, confusion and diffusion. 
Table 7 shows the CPU running time when the image was 
encrypted with the key Qb

kx in Matlab. 

TABLE 7. THE RUNNING TIME (MS) OF CPU WITH THE KEY K1 IN 
MATLAB 

kx(of Qb
kx) Confusion

stage 
Diffusion 

stage Calcualtion of  Qb
kx

1 15.625 242.375 0.022 

100 15.625 234.750 15.625 

10,000 15.625 242.375 15.625 

1000,000 15.625 223.875 31.250 

100,000,000 15.625 242.375 46.875 

10,000,000,000 15.625 215.625 62.500 

1,000,000,000,000 15.625 250.000 62.500 

Experiment results indicate that it takes on average 200 
to 400 milliseconds for the encryption and decryption 
stage respectively. It is obvious that the speed of 
confusion stage and the calculation of the power of Qb is 
quite fast whilst the diffusion stage consumes a 
significant amount of time. However, in fact, the 
diffusion stage is largely the same as that proposed by 
Yang et al.[9] and Ismail et al. [20]. The reason for the 
difference is that the use of the bitwise XOR operation 
results in a longer delay in Matlab than in low level 
languages. For example, a loop that uses the operation 
and repeats 5122 times takes less than 1 millisecond to 
complete in C, whereas the same loop in Matlab takes 1.5 
seconds. 

To compare, we also test in C. Table 8 shows the CPU 
running time while using C to realize our algorithm. 

TABLE 8. THE RUNNING TIME (MS) OF CPU WITH THE KEY K1 IN C 

kx(of Qb
kx) Confusion 

stage 
Diffusion 

stage 
Calculation time of  

Qb
kx 

1 1.969 2.047 0.0266 
100 1.984 2.063 0.0313 

10,000 1.969 2.031 0.0312 
1000,000 1.953 2.047 0.0328 

100,000,000 1.922 2.063 0.0328 
10,000,000,000 1.953 2.063 0.0343 

1,000,000,000,000 1.954 2.031 0.0360 
100,000,000,000,000 1.937 2.047 0.0500 

25650-1 1.945 2.041 1787.6 
Table 8 shows the running time of confusion and 

diffusion is quite stable (it is 1.9 to 2.0 milliseconds and 
2.0 to 2.1 milliseconds, respectively).  The running time 
of the power of a 50×50 matrix is even much faster than 
that of confusion and diffusion. Even the matrix Qb to the 

(a) (b) 

(c) (d) 



8 Ergodic Matrix and Hybrid-key Based Image Cryptosystem  

Copyright © 2011 MECS                                                                                 I.J. Image, Graphics and Signal Processing, 2011, 4, 1-9 

power of 25650-1, which we thought will consume much 
time, only takes 1.7876 seconds. 

Therefore, compared to the algorithms proposed by 
Yang and Ismail in 2010, according to the performance 
evaluation, the sensitivity and statistical analysis, our 
proposed algorithm is more suitable for higher security 
purposes and is also suitable for network transmission. 

VI. CONCLUSION AND FUTURE WORK 

A hybrid-key based image encryption and 
authentication scheme is proposed in this paper. Ergodic 
matrix, which is almost uniformly distributed, plays a 
central role in the encryption/decryption process. It is 
demonstrated that an ergodic matrix Q∈ॲହ଴ൈହ଴ଶହ଺   can be 
employed to completely shuffle and diffuse the original 
image and has an immense key space of at 
least3.08×105898. With this key space, the scheme is 
robust enough for the cryptosystem to resist the brute-
force attack. Normally, 1-round diffusion and 1-round 
permutation is enough for the encryption, but it is 
vulnerable to differential attack, which, however, is 
ineffective if a tiny change in the original image (or 
session key) will cause a great difference in the cipher-
image. As a result of this, we have applied one more 
round of diffusion. It is shown that, in the 2-round 
diffusion and 1-round permutation scheme, either a single 
pixel is modified by only one bit in the original image, or 
only one element of the session key is increased by 1, a 
significant difference will occur in the cipher-image.  

Compared with the existing chaotic cryptosystems [3-9, 
15, 16, 19], the experimental tests conducted in this paper 
demonstrate more optimistic results: the change rate in 
the number of pixels and unified average changing 
intensity are both higher, whilst the correlation 
coefficient is lower. 

We can see from Table 8 that the diffusion stage 
consumes much of the encryption time. How can we 
achieve a better trade-off between the computing 
complexity and the security? Is any way that the diffusion 
stage can be reduced to one round? These are the issues 
we shall concern ourselves with in our future work. 
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