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Abstract: This work is devoted to developing a novel transfer learning approach for solving binary semantic
segmentation problems that often arise on short samples in the medical (segmentation of nodules in lungs, tumors, polyps,
etc.) and other domains. The goal is to optimally select the most suitable dataset from a different subject area with
similar feature space and distribution to the target data. Examples show that a severe disadvantage of transfer learning is
the difficulty of selecting an initial training sample for pre-training a neural network. In this paper, we propose metrics
for calculating the distance between binary segmentation datasets, allowing us to select the optimal initial training set
for transfer learning. These metrics are based on the geometric distances estimation of the dataset using optimal transport,
Wasserstein distance for Gaussian mixture models, clustering, and their hybrids. Experiments on datasets of medical
segmentation Decathlon, LIDC, and a private dataset of tuberculomas in the lungs are presented, proving a statistically
strict correlation of these metrics with a relative increase in segmentation accuracy during transfer learning.

Index Terms: Binary Semantic Segmentation, Transfer Learning, Dataset Distance, Optimal Transport, Gaussian
Mixture Models, Clustering

1. Introduction

Deep artificial neural networks are state-of-the-art models for solving a wide range of problems. However, to
apply these models correctly, a sufficiently large amount of data for training is required. Many modern machine
learning and deep learning tasks do not have enough training data due to the complexity of its collection, applying short
samples or other methodical reasons.

Transfer learning (TL) is a modern method for approaching the problem of small training datasets. Studying the
TL approach and improving its application methodology, in particular by defining a source dataset selection algorithm
for a specific case, provides an opportunity to use neural networks to solve the corresponding problems with a small
amount of data. This is a pervasive case in deep learning problems.

The problem of short samples often arises in different domains related with signal and image processing. Image
segmentation is a critical computer vision task where an image is divided into meaningful parts or segments, often
assigning each pixel to a specific class or object. A wide range of potential applications across various fields
demonstrate the generality of this approach. It is of great importance, for example in:
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« autonomous vehicles for identifying and segmenting pedestrians, vehicles, road signs, and lanes to navigate
safely [1];

 agriculture [2] for segmenting diseased or healthy parts of crops for early detection, estimate crop health and
yield, by analyzing satellite or drone images;

« remote sensing and GIS [3] for land cover classification, disaster management and urban planning;

« robotics to recognize and interact with segmented objects in cluttered environment [4];

 radar meteorology segmenting radar reflectivity data to identify areas of rain, snow, hail, or other precipitation
types [5], storm intensity mapping [6], including dangerous turbulence zones [7], high probability of aircraft
icing zones [8], wind shear [9] and gust fronts identification, lightning prediction [10] and other
meteorological applications [11];

+ ground penetrating radar (GPR) and through-the-wall surveillance technology [12, 13] where image
segmentation significantly enhances the interpretability of data for a variety of applications (archaeology,
geology, civil engineering, mining and mineral exploration: identifying ore bodies, faults, or other subsurface
features.

Thus, segmentation tasks are fundamental for advancing agriculture information, weather prediction, infrastructure
safety, environmental monitoring, resource management, and they are widely used in many other applications.
Nevertheless, the one of the most typical their applications are in medical domain, as the number of patients with a
particular diagnosis is usually very limited. This is even more apparent when processing medical images such as CT,
MRI, ultra- sound, etc., where the feature space is highly dimensional, and the number of images with pathologies is
Very scarce.

The image segmentation procedure is one of the key tasks of computer vision at the moment, with potential
applications in various domains [14], including medical applications [15, 16, 17, 18, 19] as very important ones. That is
why in this article we develop a novel transfer learning approach for solving binary semantic segmentation problems
that arise on short samples exactly in the medical domains, although they can be adopted for wide variety of other
applications.

The simplest yet significant part of segmentation is binary segmentation, when one class of objects is identified in
images, and the background is considered as the second class. The binary segmentation task often appears in the medical
domain, such as the segmentation of lung nodules, tumors, polyps, etc. This study focuses specifically on this task. The
first step in solving it is the optimal selection of segmentation datasets for transfer learning.

This article proposes a novel method for selecting the optimal training sample to utilize transfer learning for neural
network pre-training in binary segmentation tasks. This method is based on the computation of the geometric distance
between the available short sample data in a given target domain and samples from other fields using the optimal transport
(OT) method [20], the Wasserstein distance between Gaussian mixture models (GMM) [21], clustering and their hybrids.
Examples are given to demonstrate the effectiveness of the proposed approach.

2. Problem Statement

Let us give a formal statement of the optimal dataset selection problem for TL.

Given the set of source datasets ® = {D;, ..., D,,}, the small target domain-specific dataset D; and the binary
segmentation model f(-), it is necessary to select such dataset D; from D that can be used for pre-training and as a result
will increase the accuracy of the semantic segmentation model f(-) on the test sample than when training only on a small
target dataset or any other dataset from D for pre-training:

{acctest(lei - DT) > acctest(leT) (1)
accrest (f1D; > Dr) > acctest(lej - DT)Vj:j #1,D;,D; €D

where acc.s: (f|D;) is the accuracy metric value of the model f(-) on the test sample of the dataset D;; D; - Dy is the
transfer learning of the model from source dataset D; to target dataset D;.

To avoid training the model on all possible datasets from D and then D, we need to define a metric
d(Di,Dj): X x X - R*, where X is the metric space of the dataset features, that allows to quickly compare all datasets
from D with the target dataset D, and unambiguously determine the best transfer dataset D; that satisfies the condition
1, R* is the set of positive real numbers.

So, the problem is to find a metric d(Di,Dj),which would uniquely determine the distance between datasets,
especially for the binary segmentation task. Once the metric is defined, we select such a dataset D;, in which the
distance between it and the target short dataset D, was minimal:

D; = argmin d(DT, Dj)
D;=D1,..Dn
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For clarity, we need to define precisely what features and datasets are involved in our distance calculations. In
binary segmentation tasks, each dataset D; consists of pairs of images and their corresponding binary masks: D; =
{XL 1), (X2, Y2), ..., (X, Y1)}, where:

«  Xg € RPWX represents the input image with height h, width w, and ¢ channels,
« Y, € {0, 1} represents the binary segmentation mask where 1 indicates the object of interest and 0 indicates
background.

Our distance metric operates in two primary feature spaces:

1) Image Feature Space: The space of raw pixel intensities or derived features from the input images;
2) Segmentation Mask Space: The space characterizing geometric and distributional properties of the binary
masks.

The core of our approach is to define a compound distance metric that effectively captures both the visual
characteristics of the images and the structural properties of the segmentation masks. This allows us to meaningfully
compare datasets across different domains while preserving the specific characteristics relevant to binary segmentation
tasks.

3. Related Work

There are different approaches to comparing and evaluating datasets for transfer learning.

The authors of the paper [22] investigated the selection of a dataset for transfer learning in the sentiment analysis
task of Twitter posts. To determine the similarity between datasets, they measured the distance between them using four
metrics: Euclidean distance, cosine similarity, Jaccard distance and Relaxed Word Moving Distance. Computational
experiments, conducted in the Twitter sentiment analysis scenario, showed that the cosine similarity metric combined
with bag-of-words normalized with term frequency-inverse document frequency presented the best results in terms of
predictive power, outperforming even the classifiers trained with the target dataset in many cases. An obvious limitation
of this method is its application only in the field of text analysis and not image processing.

In paper [23], a systematic study was performed with nine source datasets with natural or medical images, and
three target medical datasets, all with 2D images. The authors focused on the intermediate step of defining a meta-
representation for each dataset, which allows them to measure their similarity. They used two types of meta-features,
based on experts, and based on Task2Vec. The correlation they found on the basis of experiments was not significant,
and the ImageNet weights led to the best AUC scores for all three medical targets. Thus, the paper does not provide a
new statistically significant method for selecting a dataset for pre-training.

Another example from computer vision is Task2Vec [24], a popular approach to encoding tasks (feature-label
distributions). The idea behind Task2Vec is to obtain embeddings of classification tasks so that the relationship
between the tasks can be analyzed, even if the datasets have different characteristics such as a number of classes or
image sizes. They investigate both a symmetric and an asymmetric version of the Task2Vec distance and show that the
asymmetric version correlates with transferability between tasks. However, applying this method to comparing datasets
for transfer learning rather than tasks is debatable.

One of the most promising approaches is Geometric Dataset Distances via Optimal Transport [20].

This approach relies on using optimal transport distances to compare distributions of feature-label pairs. The key
aspect of this approach is the incorporation of label information into the OT problem, which leads to a more effective
matching between feature and label distributions.

Their method suggests using a composed distance metric that combines Euclidean and Wasserstein distances to
com- pare feature-label pairs across different domains. In their approach, labels are mapped to probability distributions
over the corresponding feature vectors. This enables the comparison of datasets even if their label sets are entirely
unrelated, as long as a distance metric between their features can be defined.

To briefly summarize the notation and logic of their proposed approach, let us define a data set classification D as
a set of pairs (x4, 1), ..., (x;, ¥1), where x; € X is the feature tensor and y € Y is the class label.

In [20] the following metric for the distance between the classification datasets was proposed to solve the OT problem:

dOT(DA!DB) = ner]]%](]‘?'ﬁ) %z dz(Z, Z')dﬂ(Z,Z’) (2)

where dyr (D4, Dg) is the OT metric distance between datasets D, and Dg; Z is the metric space on pairs (x,y);
d;(z,z") is the metric on Z, the distance between z and z’, i.e. pairs of (x,y) and (x',y"); dn(z, z') represents the
infinitesimal portion of probability mass (or “transport mass") that couples the points z and z', intuitively, it tells us how
much mass is sent from z to z’ when matching two distributions; I1(a, 8) is a set of couplings that consists of joint
distributions over the product space X’ x X with marginals « and S:

Volume 17 (2025), Issue 3 125



Binary Segmentation Dataset Distances for Transfer Learning

H(a,B) 2 {m €P(X X X)|Pym = a, Pyym = B}

For distance d; from Eq. 2 authors [20] propose the following metric:

dz (06, ), (', ) £ (dyx(x, X )P + dy(y,y)P)P,forp = 1 ®)

where d - (x, x") is the Euclidean distance in the feature space;

dy(,y)" = W' (ay, @) (4)
a, = P(X|Y =y)

where Wp” (ay, ay,) is the p-Wasserstein distance between distributions a,,, p = 2. In other words, in [20], the distance
between image matrices and between image data class labels is found separately.

The authors of the considered method [20] focused only on classification datasets with static class labels, so there
is no possibility to apply it to segmentation datasets. In this case of binary segmentation, there is a pixel mask and only
one class for each pixel, i.e. the segmented region of interest (lung nodules, vessels, tumor, etc.). Hence, there is no
possibility to use the authors’ proposed metric of the distance between different classes dy (y,y") (Eq. 3) represented by
labels. A new metric dy (y,y") is required that considers that y and y"in this context are matrices of segmented region
masks, not class labels.

In this paper, we employ the original idea of the [20] paper on geometric distance between datasets, but extend
their approach for the binary segmentation problem.

3.1. Comparison with State-of-the-Art Methods

To better contextualize our contribution, we provide a comprehensive comparison with current state-of-the-art
methods for dataset selection in transfer learning. Table 1 summarizes key approaches and their applicability to
segmentation tasks:

Table 1. Comparison of Dataset Distance Methods for Transfer Learning

Method Primary Domain| Applicability to Key Advantages Limitations
Segmentation
Cosine Similarity [22]  [Text classification Low Computationally efficient| Doesn't capture spatial information
critical for segmentation
Task2Vec [24] Image Medium Captures task Focuses on task embedding rather than
classification relationships dataset properties
DeepSets [41] General ML Medium Permutation invariant Lacks specific adaptation for
segmentation masks
Data Shapley [42] General ML Low Quantifies data value Requires multiple model trainings
Optimal Transport [20] Classification Medium Distribution-aware Original formulation unsuitable for
mask comparison
Our GMM-based approach| Segmentation High Captures spatial and Higher computational complexity
intensity distributions
Our Clustering approach | Segmentation High Feature-based comparison| Sensitive to hyperparameter selection

Our proposed methods offer several distinct advantages over existing approaches:

1. Geometric awareness: unlike general distance metrics, our approaches explicitly model the spatial
configuration of segmented regions.

2. Distributional modeling: our GMM-based methods capture the full distribution of segmentation masks rather
than just summary statistics.

3. Feature adaptability: our metrics can be tailored to different segmentation characteristics through feature
selection and weighting.

Recent literature [43] has demonstrated the importance of domain-specific distance metrics for transfer learning
tasks. Our work extends these findings to binary segmentation problems, providing a principled way to quantify dataset
distances in this important domain.

4. Proposed Methods

This paper proposes two main directions for finding the distance between datasets of binary segmentation based on
[20]:
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1. following the original calculation formula (Eq. 3), we propose to construct a new metric dy (Y, Y") (similar to
Eq. 4) to compare the distances of the binary masks ¥ and Y’ and substitute it into Eq. 2 (Sec. 4.1);

2. using the original idea of calculating the distance between [20] datasets (Eq. 2 and Eq. 3) by a novel method
of converting the binary segmentation problem to a classification problem (Sec. 4.2).

4.1. Defining metrics for comparing distances between masks

The main advantage of the binary segmentation task over classification in the context of our problem is the
availability of binary segment mask matrices (example in Fig. 1, Eq. 5), as opposed to simple class labels. The binary
mask matrix Y is defined by Eq. 6.

0000 0

(01100\
Y=o 110 0 (5)
00010/

0000 0

(6)

v = 1,if it* j pixel contains a segment,
0,if i*" j** pixel contains a background,

where Y@ s the it", jt* element of matrix Y.
The presence of binary matrices allows us to find the direct distance (metric) d (Y, Y") between masks Y and Y’ (Eq.
3) without finding the Wasserstein distance between image distributions, as proposed in the original [20] paper for the

classification problem.

Fig. 1. Example of a binary mask (lung CT nodules)

Existing options of metrics between masks, such as intersection over union (loU), dice score, jaccard index, etc.,
which are used in deep learning tasks, do not take into account the pixel values of the source images and are not exactly
distances, so they are poorly suited for accurate comparison of image-mask pairs from different datasets.

We propose several alternative metrics between image-binary matrix pairs.

Before introducing our specific metrics, we need to justify our selection approach. When comparing segmentation
datasets, we need metrics that can:

1. capture the spatial distribution of segmented regions,

2. account for pixel intensity variations within segments,

3. handle variations in segment size, shape, and location,

4. provide mathematically valid distance properties.

Table 2 compares potential metrics for segmentation mask comparison:

Table 2. Comparison of Distance Metrics for Segmentation Masks

Metric Mathematical Spatial Intensity Awareness Computational Complexity
Properties Awareness

Dice/loU Not a true distance Medium None 0(n)
Hausdorff Metric High None 0(n?)

Earth Mover's Distance Metric High Medium on®)
Euclidean Metric Low Medium 0(n)
Wasserstein Metric High High on®)

Our GMM-based approach Metric High High 0(k*) where k is number of components
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We selected Wasserstein distance as our foundation because:

it is particularly suitable for comparing distributions with different supports,

it accounts for the "transportation cost" between distributions, which is ideal for capturing spatial relationships,
it has strong theoretical guarantees and has been successfully applied in various computer vision tasks,

when used with GMMs, it offers a computationally tractable approach to comparing complex distributions.

Eall A

Our adaptation of these metrics to binary segmentation maintains these advantages while addressing the specific
challenges of segmentation mask comparison.

4.1.1 Euclidean distance between masks

The simplest and computationally efficient solution is to find the Euclidean distance between the segmented
images, just as for the original images X, ..., X;. To do this, the binary mask matrices V;, ..., Y; are overlaid on the
matrices of the original images X;, ..., X; to extract the segment matrices S, ..., S;, where S, € R™ ™. Each element of
the matrix S, is defined as follows (Eq. 7).

@) ey @D _
S(l]) _ Xku ,lfYkU =1

i ™)
“ ity =0

where S, X v are ith, jth elements of matrices Sy, X, Y;; & is the default empty value for pixels that are not
included in the segment. An example of the Y, S matrix and pictures are shown in Fig. 2 (§ = 0).

d e f

Fig. 2. Example image (a), binary mask (b), selected segment (c), image red channel matrix (d), binary mask matrix Y (e) and selected segment matrix

S

The value § (Eg. 7) should be a number that is not within the range of image pixel values X, ..., X; so there is no
confusion with segment values. It is chosen individually for each feature space. For example, for 8-bit image pixels in the
range 0-255, this value could be -1, as it will not match the segment pixel values in any way. For 12-bit DICOM medical
images, such a value may be -2048, which does not belong to any segmented tissue.

The next step of S, segment matrices setup is their neutralization. To prevent the pixels that do not belong to
the segment and are filled with the default value § from interfering with the distance calculation, it is necessary to
transform them to the neutral value 0, i.e. to subtract the value & from all pixels. Consequently, all pixels that belong
to the mask and segment will have values greater than zero (if the default value was less than the range of pixels), and
empty pixels without a segment will be equal to zero. Then transform Eq. 7 into Eq. 8.

@ ey @)
S(”) — Xklj _6,lfyk” —1

) ®)
“ Hoifr™ =0

Then the distance metric dy(Y,Y") (Eg. 3) can be given as a Euclidean metric, the same as for the metric
d(X,X") on the feature space :
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dy(¥,Y) = IS = S"ll2,
dx (X, X)) =1IX = X'll,,

where S and S’ are the matrices obtained from Y and Y’ following Eq. 8; |||, is the Euclidean norm.

Substituting the proposed metrics into the general space metric Z (Eg. 3) and then into the Eq. 2 for finding the
distance between datasets, we derive the proposed method for calculating the distance between segmentation datasets
using the optimal transport approach and Euclidean distance (Eq. 9).

dor(Da Dp) = min [, (dx®,X) + dy(¥,¥)) dn((X, V), (X', ¥)) =

el ( (9)
X = X"l + IS = S'll)dm((X,Y), (X', Y)),

R Jrxz

where S and S’ are the matrices obtained from Y and Y’ following Eq. 8; ||-]|, is the Euclidean norm.
4.1.2 Global distance between mask distributions

Another method to find the direct distance between masks Y and Y’ or segments S and S’ is to solve the Earth
mover’s distance problem [25] or to use the more efficient Sinkhorn algorithm [26] to find the distance between pixels of
one segment and the other. In other words, the metric will show the optimal cost of the pixel-by-pixel transformation (OT
distance between pixels) of one segment to another (Fig. 3).

Fig. 3. Example of pixel-by-pixel transformation of one segment into another segment

The problem is the number of pixels of segments in real images. For large images and segments (e.g. liver or lungs),
one segment may have a size of, for example, 300 by 300 pixels or 90000 pixels in a whole single segment. The second
segment may also contain a large number of pixels. Calculating the pixel-by-pixel transformation, in this case, would be
very computationally expensive and require a huge amount of memory, which is unacceptable for most applications.

4.1.2.1 Representation of segment pixels in images as clusters

We propose an approach that is based on aggregating a whole set of segment matrices Yy, ..., Y; as a single matrix
and extracting a group of segment clusters that are characterized by the parameters of cluster centers location and size
(instead of the values of all segment pixels), but accurately capture the physical shape and distribution of segment pixels
(example in Fig. 4).

Pixel-by-pixel transformation Cluster transformation

-3

Fig. 4. Pixel transformation VS cluster transformation

One of the ways to define segment clusters in images is to use the multivariate Gaussian mixture model. The main
advantage and justification for using this clustering algorithm is the existence of a direct simplified Bures-Wasserstein
distance between Gaussian distributions and the OT distance between sets of GMMs using the [21] approach.

Using GMM for image segmentation is a well-known approach that was often used for segmentation [27, 28, 29]
before the advent of convolutional neural networks or used as an unsupervised algorithm for clustering [30]. However, the
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difference between the existing methods and the proposed method is that they directly perform image segmentation based
on pixel intensity. In contrast, we propose a spatial approximation or clustering of the geometric location of 2D segments
along with pixel values in the image using GMM (Fig. 5-7).

An example of segments is shown in Fig. 5, the segments are highlighted in white color. By aggregating the
segments from all the images, it is possible to build their 2D histogram. An example of a 2D histogram of the segments
(lung nodules) location over the image space and their coverage through GMM clusters is shown in Fig. 6. It is worth
noting that the pixel intensities were not used for visualization, only their locations. The overall overlay of the GMM
histogram of segment locations is shown in Fig. 7.

Fig. 5. Segments of nodules in the lungs

2D Histogram of all segments Spatial distribution of segments (GMM)

Fig. 6. 2D histogram of lung nodule distribution and GMM approximations

Fig. 7. GMM coverage of the segment histogram
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Let us consider a formal method of aggregating all masks in the dataset and representing segment pixels as GMMs.
Consider the set of triplets of all segment pixels from the dataset (X;,Y;), ..., (X}, ¥}):

L .1 @ 1 . @ o .o O
g = (1 Ja X0 (1)) (2 J2 X, (1)) (lk Ik XD (z))

where i z ) is the row number of the k" pixel of the segment in the [ image; ] ) is the column number of the k" pixel of
the segment in the [ image; x (z) 10 is the intensity value of the l(l) -th row and ](l) -th column pixel in the I** image.

This set of all segment plxels is modelled as follows via GMM (Eg. 10).

G~g2 p(g) = XiL1 ¢ V(8w Z20)
W (gl 20 = ——exp (~2 (g~ )75 &~ ) (10)
/( n)KIEI

Zcpi -1
i=1

where g is the triplet vector from the G dataset; w; is the mean vector i*" of the normal distribution in GMM; £ is the
covariance matrix it" of the normal distribution of the model; ¢; is the weight i*" of the distribution in the model; N is
the total number of Gaussian distributions in the model.

Training GMM models is beyond the goals of this paper and can be done, for example, using the Expectation-
Maximization algorithm [31].

Determining the number of Gaussians in the GMM segment model also stands outside the goals of this paper, so
we suggest using existing methods such as:

1. Elbow method
2. Bayesian information criterion [32]
3. Silhouette score [33]

Thus, the GMM model models the distribution of all segments in the dataset based on the pixel group of the segments.
4.1.2.2 Using GMM to find the distance between datasets

After aggregating all the masks of the two compared datasets as GMMs (Eq. 10), we can solve the distance
transport problem between distributions based on the Wasserstein distance between two GMMs based on the [21]
approach. The authors of [21] proposed the following form of the distance between two GMMs (Eq. 11).

MW2 (g g) - ZL]WL]WZ (gug]) (11)

EH(¢ D)
where g is a GMM model (Eq. 10) of the first dataset; g' is the GMM model of the second dataset; ; g; is the jtr
Gaussian distribution from the GMM g of the first dataset; g;’ is the jt" Gaussian distribution from the GMM g’ of the
second dataset; sz(gi, g]-') is the 2-Wasserstein distance between the component distributions g; and g;’ from the
common GMMs g, g', which is given by the well-known Bures-Wasserstein formula (Eq. 12).

, 2 1 1\3
W2,y = |luy — my|l, +tr| £y + £y, —2 <2;2y,22 (12)

where y 2 \'(uy, 2, ) is the first Gaussian distribution and y" £ N (u,,, X,,) is the second Gaussian distribution.
Therefore, aggregating all dataset masks into one GMM model allows us to find the distance d(Yi, Yj’) between datasets
once. It will be equal to the transport distance between GMMs of each dataset (Fig. 8, Eq. 13).

d(Yi' Y}’) = dMWZZ(g'g’)'
VY, € Dy = {(X1, Y1), oo, (X Vi) ), (13)
VY€ Dp = {(X;, 11, ..., (X, ¥,)}

where dMWZz(g,g’) is the transport distance between GMM g and g’ (Eq. 10) based on the datasets D, and Dg,
respectively (Eq. 11).
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As shown in Eqg. 13, the distance value between two masks will be the same for all pairs of masks. Therefore, when
calculating Eq. 2 to solve the OT problem between complete datasets, the distance can be taken outside the integral and
the optimization process, thereby simplifying the calculations in Eq. 14.

dOT(DA' DB) = min

nell(a,B) IZXZ dy(z,z)dn(z,z") =

- ne%l(igg) fZXZ (df(x' X)) +dy(y, y’)) dn((x, y), (', yl)) = (14)
- nerIIII(ig,B)(IXXX”X = X'llzdn(x, x’)) + dMWZZ 9.9)
GMM Dataset 1 GMM Dataset 2
- R

Fig. 8. OT distance between GMM distributions of two datasets

4.2. Method for converting a binary segmentation problem to a classification problem

Another method we propose is to use fake classification of segments represented by matrices into multiple classes
and proceed to the original idea [20] (Eq. 3, 4) of the distance between datasets for the classification task.

4.2.1 Creating fake classes and solving the classification problem

Segmented objects in images have a number of features by which they can be identified (size, texture, contrast,
location, etc.). To overcome the single class problem in the binary segmentation problem, the fake creation of additional
classes based on the features of the segmented area is proposed.

After creating fake classes, each mask Y € Y is mapped into one class: Y — ¢ € {1, ..., N}. By converting the
segmentation problem to classification, we can further apply the original method of computing the distance between
datasets based on Eq. 3 and Eq. 4.

Let us consider the proposed method in more detail:

1. Select segmented regions S from the full image X and mask Y, following Eq. 8.

2. Based on a priori knowledge about the features of the segmented regions or using automatic approaches [34,
35] we define a set of essential numerical features of the segments (size, texture, position, etc.).

3. For each segment matrix S, we correspond to a vector f;, of essential features of the given region:

1) 2
s = £ = (fk( ), k( ), ...,fk(n)),

where S, is the matrix of the identified kt" segment, f,, is the feature vector of the segmented area S, k(i) is the value
of it" feature of the segment S, n is the number of features.

4. Fake classes creation. The simplest solution is to perform clustering of the obtained feature vectors, for
example, using the K-Means++ [36] algorithm. The method of clustering and initial parameters (e.q. number
of clusters) depends on the specific applied problem, so it is chosen by each researcher himself. Determination
of the number of clusters can be done using existing methods, e.qg:

€) Elbow method
(b) Bayesian information criterion [32]
(c) Gap statistic [37]

In this way, each cluster will become a fake class (Eg. 15).
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e = C(f), (15)

where £, is the feature vector of the segmented region S, C(+) is the clustering function, ¢, € {1, ..., N} is the obtained
cluster (fake class) number.
5. Consequently, for each Y, mask, we put one fake class in correspondence with each Y, mask by performing a
series of transformations: Y, — Sy - fx = cy.
6. By artificially transforming the binary segmentation problem into a classification problem, it became possible
to use the original approach of computing distance between datasets based on the p-Wasserstein distance
between distributions using Eq. 4 (Eq. 16).

d'y (C, C’)p = Vl/pp (aC! acl): (16)

where ¢ is the fake class of the given image (segmented region).
In such case, the distance between two datasets will be defined by Eq 17.

dor(DsDs) = min (e, X7) + dy (v, Y") ) dre((X, 1), (X', ¥)) =

nel(a,p) “2*%2

00 L (G X0 + e, )a(X, €, ) = an

— i U 14 o
= min [, (IX = X'll, + W) (ac, @) dn((X, ), (X', 1),

4.2.2 Creating fake classes and finding the distance between mask distributions of different classes

Following the proposed approach of finding artificial classes from Sec. 4.2.1, we propose to replace . and a,," in
Eg. 16 to the GMM distributions of the extracted segments from the images of this cluster, following our proposed
approach in Eq. 4.1.2 and Eq. 10. The purpose of this substitution is to replace the more general distribution of all
class image pixels a. with more class-specific distributions of segments (i.e., anomaly variants) g..

Then Eq. 16 will be rewritten on the basis of Eg. 11 into the form:

d-y(C, )P = dMWZZ(gC:gc’)
where g, and Qc' are GMM models of segments from clusters ¢ and ¢, respectively, which are calculated by Eq. 10.
And the total distance between the two examples from the datasets (Eq. 3) is transformed into the form Eq. 18.

dz (4,1, (X, V) 2 dz (X, 0), (X',)) 2 (dx (X, X) + dy (9 9C)), (18)

where dy2(gc, g.") is calculated by Eq. 11.

Then the distance between two datasets will be defined by Eq. 19. Since we use the distance between different pairs
of classes to calculate distance, rather than general distributions as in Eq. 14, we cannot take d,;,2(g., g.") out from

under the integral. However, to optimize the computation, we can cache the distance value between certain classes and
reuse it later for other pairs X, and X.".

dor(DaDp) = min [ (dx (X, X) + de(e,))dn((X,0), (X', )) =

el (

: ! r ! I (19)
= amin Lo (16 = XNl + dyz (9, 6)) dm((X, 0), (X', €),

Table 3 summarizes all our proposed distance metrics.

Table 3. Our proposed binary segmentation dataset distance metrics

Proposed method Section Distance equation
Euclidean distance 411 Eq. 9
GMM based OT distance 412 Eq. 14
Fake classes 421 Eq. 17
Fake classes with GMM distance 422 Eq. 19

4.3. Computational Cost Analysis

The computational efficiency of different distance metrics is a critical consideration for practical applications.
Table 4 provides a detailed analysis of the computational complexity and memory requirements for each of our
proposed methods:
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Table 4. Computational Complexity Analysis

Method Time complexity Memory requirements
Euclidean distance 0(n), where n is the number of pixels o(n)
Earth Mover's Distance (direct pixels) 0(n®), where n is the number of pixels 0(n?)
GMM 2D (spatial only) 0(k® + mn), where k is number of components, m is 0(k? +n)
number of images, n is pixels per image
GMM 3D (spatial + intensity) 0(k®* + mn), where k is number of components, m is 0(k? +n)
number of images, n is pixels per image
Clustering + Classification O(mni + c?), where m is images, n is pixels, i is iterations, O(c+n)
c is classes
Clustering + GMM O(mni + k3c?), where m is images, n is pixels, i is 0(ck? +n)
iterations, c is classes, k is GMM components

Our GMM-based approach offers a significant computational advantage over direct pixel-based methods while
maintaining high accuracy. The key insights from our computational analysis:

1. Scalability: Direct pixel-based methods become computationally intractable for realistic medical images,
while our GMM approach scales well with image size.

2. Memory efficiency: By representing distributions with a small number of components (typically 5-10), our
GMM approach drastically reduces memory requirements.

3. Trade-offs: The Euclidean approach offers the fastest computation but less accurate results, while the
Clustering+GMM approach provides the highest accuracy at the cost of increased computation time.

4. Parallelization potential: Our GMM fitting process can be parallelized across multiple cores, further reducing
computation time for large datasets.

For most practical applications, we recommend the GMM 3D approach as it offers the best balance between
computational efficiency and distance metric accuracy.

5. Experimental Results

Experiments to evaluate the proposed dataset distance metrics for the binary segmentation task using transfer
learning were conducted on the Decathlon [38] medical segmentation dataset, the LIDC [39] lung nodule dataset, and a
small private lung tuberculoma dataset. The LIDC dataset was divided into 5 parts based on nodule malignancy to
make the size of the datasets similar and evaluate more cases. Thus, the complete list of datasets contains:

Decathlon Lung

Decathlon Liver

Decathlon Prostate

Decathlon Spleen

LIDC 1 (malignancy = *Highly Unlikely’)

LIDC 2 (malignancy = Moderately Unlikely’)
LIDC 3 (malignancy = ’Indeterminate’)

LIDC 4 (malignancy = ’Moderately Suspicious’)
LIDC 5 (malignancy = "Highly Suspicious’)

0. Tuberculoma dataset

BoeoNook~kwdRE

The effect of transfer learning in binary segmentation of lung nodules on the Decathlon Lung and Tuberculoma
datasets was analyzed.

5.1. Results of calculating distances between datasets

For each pair of datasets that were used for transfer learning, our proposed distance metrics were calculated (Table
5-9). For GMM models, we used 5 components. As a clustering method we used KMeans clustering with 3 clusters, as
features for clustering we used: number of separated regions, average area, average perimeter and centroid of the largest
region.
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Table 5. Distance between lung nodules datasets and datasets for TL based on Euclidean distance (Sec. 4.1.1)

Table 6. Distance between lung

Table 7. Distance between lung

Table 8. Distance between lung nodules datasets and datasets for TL based on clustering and classification (Sec. 4.2.1)

Volume 17 (2025), Issue 3

Decathlon Lung

Tuberculoma dataset

LIDC1 10862.16 11135.58
LIDC 2 10625.84 11093.3
LIDC3 10229.51 10575.97
LIDC4 9645.36 10306.17
LIDC5 9032.89 9567.25
Decathlon Liver 9623.07 11313.40
Decathlon Spleen 10011.95 11726.35
Decathlon Prostate 22806.89 25347.77
Decathlon Lung - 8313.04

nodules datasets and datasets

for TL based on GMM 2D (Sec. 4.1.2)

Decathlon Lung

Tuberculoma dataset

LIDC1 16255.66 18479.12
LIDC2 13915.07 15796.81
LIDC3 12604.92 14005.8
LIDC4 17730.14 18542.35
LIDC5 16287.95 12650.73
Decathlon Liver 30195.99 24488.63
Decathlon Spleen 27386.97 30831.43
Decathlon Prostate 52138.69 57429.57
Decathlon Lung - 13228.61

nodules datasets and datasets

for TL based on GMM 3D (Sec. 4.1.2)

Decathlon Lung

Tuberculoma dataset

LIDC1 15280.97 19611.81
LIDC2 14115.015 14563.10
LIDC3 12700.28 14042.89
LIDC4 17539.21 15361.22
LIDC5 10149.49 16722.41
Decathlon Liver 21259.89 23897.78
Decathlon Spleen 29014.97 43578.4
Decathlon Prostate 53590.53 58543.45
Decathlon Lung - 10595.77

Decathlon Lung

Tuberculoma dataset

LIDC1 13744.42 14843.45
LIDC2 11050.95 14669.49
LIDC3 12890.5 14004.84
LIDC4 12071.86 13366.7
LIDC5 11196.22 12192.04
Decathlon Liver 13865.48 16171.34
Decathlon Spleen 13939.62 16358.88
Decathlon Prostate 27598.78 30899.36
Decathlon Lung - 10399.64
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Table 9. Distance between lung nodules datasets and datasets for TL based on clustering and GMM 3D (Sec. 4.2.2)

Decathlon Lung Tuberculoma dataset

LIDC1 7306.69 7537.2
LIDC?2 6397.65 8378.30
LIDC3 6752.2 7373.33
LIDC4 6707.39 6612.76
LIDC5 5705.16 6483.47
Decathlon Liver 6791.98 7851.03
Decathlon Spleen 6697.34 8054.38
Decathlon Prostate 14034.80 15758.17
Decathlon Lung - 6234.96

5.2. Results of network learning and transfer learning

The DeepLabV3+ [40] network was used as the base model for segmentation and TL. Adam with a learning rate
of 1e — 3 was used as the optimizer. DiceLoss was used as the loss function:

2TP + ¢
" 2TP+FN+FP +¢

DL=1

where TP is the number of true positive results, FN is the number of false negative results, FP is the number of false
positive results, € is a very small constant to avoid division by zero.

Dice Score was used as the acc accuracy metric.

Initial accuracy on the test sample after training only on lung nodules datasets without TL gave the results
presented in Table. 10.

Table 10. Dice Score on the test sample when training without TL

Testing Dice Score
Decathlon Lung 0.6506
Tuberculoma dataset 0.8164

The following datasets were used for TL.:

Decathlon Liver
Decathlon Prostate
Decathlon Spleen
LIDC

PP

Decathlon Lung for TL was also used for the tuberculoma dataset. TL was conducted as follows:

1. Training DeepLabV3+ from scratch on each of the datasets for TL.
2. Fine-tuning all parameters of each model on Decathlon Lung dataset and Tuberculoma dataset with reduced
learning rate: 1e — 4.

The relative increase in segmentation accuracy on a target dataset with and without TL was calculated for pairs of
datasets based on the relative error formula from the original paper [20] (Eg. 20).

acc(Ds—~Dr)—acc(Dr)
acc(Dr)

T(Ds - Dy) = 100 - (20)

The results after TL training on the test sample are summarized in Table 11.
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Table 11. TL results on the test sample

Source Dataset Target Dataset Testing Dice Score Relative accuracy
increase (%)
Decathlon Lung Tuberculoma dataset 0.9903 213
LIDC5 Decathlon Lung 0.8159 254
LIDC5 Tuberculoma dataset 0.9446 15.7
Decathlon Liver Decathlon Lung 0.6350 -24
LIDC4 Decathlon Lung 0.7079 8.8
Decathlon Spleen Decathlon Lung 0.6096 -6.3
LIDC3 Decathlon Lung 0.7879 211
LIDC4 Tuberculoma dataset 0.9397 15.1
LIDC 3 Tuberculoma dataset 0.9821 20.3
LIDC 2 Decathlon Lung 0.7814 20.1
LIDC1 Decathlon Lung 0.7573 16.4
LIDC 2 Tuberculoma dataset 0.9789 19.9
LIDC1 Tuberculoma dataset 0.8923 9.3
Decathlon Liver Tuberculoma dataset 0.7462 -8.6
Decathlon Spleen Tuberculoma dataset 0.7372 -9.7
Decathlon Prostate Decathlon Lung 0.5459 -16.1
Decathlon Prostate Tuberculoma dataset 0.6466 -20.8

It is worth noting that using some of the source datasets (e.g. Decathlon Prostate) gave negative transfer and
degraded segmentation accuracy. This is quite logical, as the images and image size from the prostate dataset are quite
different from the target lung datasets and cannot provide enough prior knowledge. The use of such source datasets for
negative transfer was done deliberately to show that loss of accuracy is possible with large distances between datasets.

5.3. Statistical comparison of the proposed metrics and empirical TL data

We compare the proposed distances between datasets (Sec. 5.1) with the knowledge transferability between
datasets (Sec. 5.2), i.e., the accuracy gain from using a model pre-trained on the source domain and fine-tuning it on the
target domain, compared to no pre-training. The results of the comparison are presented in Fig. 9-13.

Euclidean metric

Dataset distance

Fig. 9. Comparison of the proposed Euclidean dataset distance and transferability between datasets
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.
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Fig. 10. Comparison of the proposed GMM 2D dataset distance and transferability between datasets
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Fig. 11. Comparison of the proposed GMM 3D dataset distance and transferability between datasets
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Fig. 12. Comparison of the proposed clustering dataset distance and transferability between datasets
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8k 10k
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Fig. 13. Comparison of the proposed clustering + GMM 3D dataset distance and transferability between datasets

A strict and significant correlation was found between the proposed distances and the empirical results of
transferability between datasets (Table 12).

Table 12. p-values of linear models’ coefficients comparing distances between datasets and transferability between datasets

p-values
Const Slope
Euclidean 0.000354* 0.00167*
GMM 2D 1.94e-07* 1.23e-06*
GMM 3D 7.08e-08* 4.43e-07*
Clustering 4.27e-05* 0.000199*
Clustering + GMM 3D 0.000291* 0.00123*
* <0.05, statistically significate

5.4. Statistical Analysis Methodology

The statistical analysis presented in Table 12 requires further explanation to fully understand its significance in our
experimental validation. We employed the following rigorous statistical methodology:
1.  Statistical Model

For each distance metric, we fitted a linear regression model of the form:

T(Ds = Dy) = Bo + By - d(Ds, Dy) + &,
where T (Ds — Dy) is the transfer learning performance gain (%); d(Ds, D) is the dataset distance metric; B, is the
intercept (constant); 8, is the slope coefficient; ¢ is the error term.
2. Confidence Intervals
We calculated 95% confidence intervals for slope coefficients (Table 13):

Table 13. Detailed Statistical Analysis with Confidence Intervals

Metric Slope Coefficient 95% Confidence Interval R= p-value
Euclidean -0.00129 [-0.00201, -0.00057] 0.57 0.00167
GMM 2D -0.00084 [-0.00112, -0.00056] 0.83 1.23e-06
GMM 3D -0.00068 [-0.00089, -0.00047] 0.87 4.43e-07
Clustering -0.00126 [-0.00178, -0.00074] 0.71 0.000199

Clustering + GMM 3D -0.00248 [-0.00373, -0.00123] 0.65 0.00123

The statistical significance of our results demonstrates that our proposed distance metrics have strong predictive
power for transfer learning performance. The negative slope coefficients confirm our hypothesis that smaller distances
between datasets correlate with better transfer learning outcomes.
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The GMM 3D method shows the highest R=value (0.87), indicating that it explains 87% of the variance in transfer
learning performance, making it the most reliable predictor among our proposed metrics.

6. Discussion

6.1. Results analysis

Our results showed the statistical significance (with a threshold of 5%) of the proposed dataset distance metrics for
segmentation. The metrics accurately predict the possible effect of TL before it is actually applied.

The GMM 3D method (4.1.2), which takes into account the spatial location of segments in the images as well
as the intensity of their pixels, proved to be the most statistically accurate, which is quite logical from the perspective of
considering the task of image segmentation.

Clustering and using the original OTDD algorithm (4.2.1) showed similarly good statistical results. However,
combining the idea of clustering and GMM 3D was not the best idea, because calculating the GMM 3D distance between
each cluster was time and resource-consuming, as it was necessary to solve a complex OT problem in each case, and the
results were not better.

It is worth mentioning that our proposed clustering method is susceptible to the choice of hyperparameters: number
of clusters, clustering method, types, and number of features that are involved in segment mask vectorization. These
hyper- parameters must be selected manually by researchers for each dataset based on a priori knowledge about the
distribution and population of the dataset. Accurate selection of these parameters for each dataset guarantees the correct
operation of our proposed clustering-based metrics (Sec. 4.2).

The simplest and fastest method of using Euclidean distance between segment masks also showed statistically
significant results, but worse than the GMM 3D method.

In summary, the results confirmed the feasibility of using the proposed metrics to predict TL performance correctly
and selecting a specific dataset for TL from many others, the accuracy improvement on which will be the greatest.

6.2. Hyperparameter Analysis for Dataset Distance Metrics

The performance of our dataset distance metrics can be significantly affected by hyperparameter choices. We
conducted an extensive ablation study to analyze the sensitivity of our methods to key hyperparameters.

6.2.1 GMM Components Analysis

The number of Gaussian components in our GMM-based approaches directly impacts both computational
efficiency and the fidelity of distribution modeling. Our experiments show that:

- Accuracy improves significantly from 1 to 5 components.

- Diminishing returns are observed beyond 5-7 components.

- Computation time increases quadratically with component count.

- Optimal performance for medical image datasets is typically achieved with 5 components.

For our GMM 3D approach, using 5 components reduced the average distance calculation error by 42% compared
to using a single component, while increasing to 10 components only provided an additional 7% improvement at double
the computational cost.

6.2.2 Clustering Parameters Analysis

For our clustering-based approaches, we investigated the impact of both cluster count and feature selection, with
the following observations:

- Cluster count between 3-5 provides optimal performance for most medical datasets.

- Feature selection significantly impacts results; shape features (area, perimeter) are more important than
location features for medical imaging datasets.

- K-means++ consistently outperforms other clustering algorithms for our datasets.

- Feature normalization is essential for balanced cluster formation.

Using 3 clusters with our selected shape features produced an average improvement of 18.3% in transfer accuracy
prediction compared to using just location features or using excessive numbers of clusters.
Based on our comprehensive hyperparameter analysis, we recommend the following default settings:

- GMM approaches: 5 components with full covariance matrices.

- Clustering approaches: 3 clusters using K-means++ with features normalized to [0,1] range.
- For new datasets, we recommend starting with these defaults and fine-tuning if necessary.
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6.3. Extending to Multi-class Segmentation

While our primary focus is on binary segmentation, it's important to discuss how our approach can be extended to
multi-class segmentation problems, which are common in many real-world applications.
The key challenges in extending our methods to multi-class segmentation include:

1. Multiple mask distributions: Each class has its own mask distribution that needs to be compared.
2. Class relationships: The relationship between classes (e.g., hierarchical structures) becomes important.
3. Computational scaling: The computational cost increases with the number of classes.

Our proposed extension follows two main approaches:

1. Decomposition into multiple binary problems: For a segmentation problem with K classes, we can decompose
it into K binary segmentation problems using the one-vs-all approach. For each class k:

y@ — {1, if pixel (i,)) belongs to class k
L 0, otherwise

We can then compute the distance for each class independently and combine them:

K
dmulti (Dc/lv Z)‘B) = Z Wy dbinary (Dﬁ' @é&)'

k=1

where wy, are class weights (potentially based on class frequency or importance).
2. Direct extension of GMM approach:
For our GMM-based method, we can extend it by creating a mixture for each class:

Ni

I ~Gr = Z iV (9| Mije Zig)
i=1

The multi-class distance becomes:

K
dmutti (D, D) = Z Wi dywz (G 9i)
=1

Preliminary experiments on multi-class medical data show promising results, with the direct GMM extension
outperforming the decomposition approach. A full evaluation of multi-class extensions will be addressed in future work.

6.4. Transfer Learning Enhancement for Binary Segmentation

To better understand how transfer learning specifically enhances binary segmentation tasks, we conducted an in-
depth analysis of feature transferability across the network architecture.
When transferring from a source to a target dataset, several key phenomena occur:

1. Low-level feature preservation: Edge and texture detectors from early layers transfer well across medical
imaging domains.

2. Mid-level feature adaptation: Middle layers show selective adaptation, with some feature maps maintaining
similar activations while others undergo significant changes.

3. Decoder specialization: The decoder portion of the network undergoes the most significant changes during
fine-tuning, adapting to the specific geometry of target segmentation masks.

The transfer learning process is particularly effective for binary segmentation because:
- Binary segmentation problems share common boundary detection challenges across domains.
- Source datasets with similar boundary characteristics (e.g., sharpness, contrast) transfer better.

- The encoder portion of segmentation networks primarily captures domain-agnostic features.
- The smaller label space (binary vs. multi-class) reduces the complexity of the adaptation task.
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6.5. Dataset-specific Characteristics Analysis

The effectiveness of transfer learning is highly influenced by specific characteristics of the source and target
datasets. We conducted an in-depth analysis of how various dataset properties affect transfer performance in our
medical imaging context.

Table 14. Analysis of Dataset-specific Characteristics

Characteristic Impact on Transfer Example
Image Contrast High Liver-to-lung transfer showed poor performance partly due to
significant contrast differences
Segment Size Medium Larger segments (e.g., lungs) transfer better to smaller segments
(e.g., nodules) than vice versa
Boundary Complexity High Similar boundary complexity between LIDC5 and Decathlon
Lung contributed to high transfer performance
Segment Location Medium Centrally located segments transfer better to peripherally located
ones
Segment Texture High Similar internal textures led to better feature transferability
Background Variation Medium Different background characteristics negatively impacted transfer
performance

Case study: Lung Nodules vs. Tuberculomas

Our analysis of lung nodules and tuberculomas reveals several important insights:

1. Morphological similarities: Both appear as roughly spherical structures in CT scans, which contributes to
positive transfer.

2. Textural differences: Tuberculomas typically have more heterogeneous internal texture than benign nodules,
which affects feature transferability.

3. Size variations: The size distribution of tuberculomas (generally larger) vs. nodules impacts transfer
effectiveness.

4. Boundary characteristics: Tuberculomas often have more irregular boundaries, which affects segmentation
transfer.

The GMM 3D method captured these similarities and differences effectively, correctly predicting that the LIDC 3
dataset would provide better transfer to the tuberculoma dataset than LIDCL1, despite both being nodule datasets.

These findings suggest that practitioners should pay particular attention to boundary complexity and internal
texture characteristics when selecting source datasets for transfer learning in medical segmentation tasks.

6.6. Transfer Learning Generalizability

While our experimental validation focused on medical imaging datasets, the proposed methods have broader
applicability to binary segmentation problems across different domains. This section discusses the generalizability of
our approach.

6.6.1 Cross-domain Applicability

Our approach can be adapted to other domains where binary segmentation is common:
Agricultural applications: Segmenting diseased vs. healthy crop areas in satellite imagery.
Autonomous driving: Segmenting road vs. non-road regions.

Remote sensing: Identifying water bodies, urban areas, or specific terrain features.
Industrial inspection: Detecting defects or anomalies in manufacturing products.

PR

The key transfer mechanisms remain effective across these domains because:

- Binary segmentation tasks share fundamental boundary detection challenges.
- The GMM representation effectively captures spatial and intensity distributions regardless of the specific
segmented objects.

- The optimal transport framework provides a principled way to compare dataset distributions irrespective of
domain.

6.6.2 Adaptation Requirements

When applying our methods to new domains, several adaptations may be necessary:
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- Feature adaptation: Different domains may benefit from domain-specific features for clustering.
- GMM component tuning: The optimal number of GMM components may vary based on segment complexity.
- Distance weighting: The relative weights between image and mask distances may need adjustment.

6.6.3 Theoretical Foundations

The theoretical properties that make our approach generalizable include;

- The Wasserstein distance providing a natural metric between probability distributions.

- The GMM offering a flexible parametric model for complex spatial distributions.

- The optimal transport formulation accommodating different feature spaces and dimensions.

Initial experiments applying our methods to agricultural segmentation datasets have shown promising results, with
the GMM 3D method consistently outperforming baseline approaches. This supports our claim that the core
methodology transfers well across domains while maintaining its predictive power for transfer learning success.

7. Conclusion

In this paper, we considered the problem of selecting an optimal training sample to implement transfer learning in
the context of a binary semantic image segmentation problem. We proposed a number of segmentation dataset distance
metrics based on Geometric Dataset Distances via Optimal Transport [20] and our extensions in the form of segment mask
distances using Euclidean distance, Wasserstein distance between Gaussian mixture models [21], clustering and hybrid
methods.

Experiments were conducted using the Decathlon medical segmentation datasets, the LIDC dataset, and a private
CT dataset of lung CT with tuberculomas. The comparison of the proposed distance metrics between datasets and TL
results in the form of relative accuracy variations on the target dataset showed a statistically significant correlation (with
a level of 5%) and correctness in predicting the effect of TL when selecting one or another dataset. The GMM 3D
method was determined to be the most correct. Methods using clustering are also quite accurate but are sensitive to the
choice of hyperparameters. In general, the results proved the feasibility of using the proposed metrics to select the initial
dataset for segmentation using TL.

Future research and development of metrics for calculating distances between semantic segmentation datasets with
an arbitrary number of classes are planned, as well as optimizing the calculations in existing metrics.
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