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Abstract: In the field of medical image analysis, supervised deep learning strategies have achieved significant 
development, while these methods rely on large labeled datasets. Self-Supervised learning (SSL) provides a new 
strategy to pre-train a neural network with unlabeled data. This is a new unsupervised learning paradigm that has 
achieved significant breakthroughs in recent years. So, more and more researchers are trying to utilize SSL methods for 
medical image analysis, to meet the challenge of assembling large medical datasets. To our knowledge, so far there still 
a shortage of reviews of self-supervised learning methods in the field of medical image analysis, our work of this article 
aims to fill this gap and comprehensively review the application of self-supervised learning in the medical field. This 
article provides the latest and most detailed overview of self-supervised learning in the medical field and promotes the 
development of unsupervised learning in the field of medical imaging. These methods are divided into three categories: 
context-based, generation-based, and contrast-based, and then show the pros and cons of each category and evaluates 
their performance in downstream tasks. Finally, we conclude with the limitations of the current methods and discussed 
the future direction.  
 
Index Terms: Medical image analysis, Self-Supervised learning, Unsupervised learning, Visual feature learning, 
Contrastive Learning. 
 
 

1. Introduction 

Self-supervised learning was first introduced in robotics, in which the training data was automatically labeled by 
utilizing the relationship between different sensor signals. Then, Deep learning borrowed this idea, Unsupervised 
Natural Language Processing tasks make significant development also benefited from this idea. Recent years, in 
Computer Vision tasks, new SSL frameworks have seen a blossoming phenomenon. The paradigm of SSL algorithms is 
conducive to medical image analysis tasks, there is a well-known phenomenon, labeled medical datasets are difficult to 
assemble, and the time cost and labor cost of manual labeling are enormous, while unlabeled medical data is numerous. 
SSL builds proxy tasks to perform representation learning from large-scale unlabeled data, through this process can 
improve downstream task performance. Therefore, the application of self-supervised learning methods in the field of 
medical image analysis is of great significance.  

However, there is a big difference between medical images and natural images. How to reasonably use the existing 
SSL framework to solve the task of medical image analysis is the main research problem. This article reviews the self-
supervised learning methods applied in the field of medical image analysis, and aims to evaluate existing methods, find 
new research directions, and provide help for subsequent researchers. Through the systematic analysis of the most 
cutting-edge articles, found that the application of self-supervised learning in the medical field still has great application 
potential. According to the characteristics of the proxy task of these self-supervised learning methods, we mainly divide 
them into three categories: context-based, generation-based, and contrast-based. These methods will be specifically 
introduced in Sections 2, 3, and 4. In Section 5, Integrate the experimental results of downstream tasks performed on 
medical image datasets. Comprehensive evaluation of these existing SSL methods.  

2. Context-based Self-supervised Learning 

In the self-supervised learning framework, the proxy tasks based on contextual semantics are usually geometric 
transformation prediction, flipping, rotation angle prediction [1], Jigsaw Puzzles [2], etc. Some related research 
demonstrated that these methods are more effective than transfer learning (from nature images domain) in specific 
medical image analysis tasks [30]. 
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2.1.  Predicting Rotation  

The pretext-task of predicting the rotation angle is to construct a pre-training dataset by randomly rotating the 
image of the raw data, through this way pre-train the network. This process enables the network to understand the 
relationship between spatial features within the image. A. Hatamizadeh.et al. used this method as a pretext-task to pre-
train the network architecture based on V-net [5] and Inception-ResNet V2 [4]. Then the pre-trained model is used for 
Lung lobe segmentation tasks and DR classification tasks [3]. Their experimental results suggest that their method is 
improved compared to the pre-trained model based on the ImageNet dataset. Imran, A. A. Z et al. proposed an SSL-
based multi-task learning model (S^4 MTL) [6], use geometric transformation function t(x) as a proxy task in the 
framework to generate pseudo-label as supervision signals. In general, the predicting rotation is a simple pretext-task, 
compared with the model trained from scratch, this pre-training model converges faster, but the model performance 
improvement is limited.  

 

 
Fig. 1. multi-task learning model (S^4 MTL) [6]. 

Therefore, some researchers will combine multiple pretest-tasks to improve SSL framework performance. For 
instance, a new SSL framework consists of the prediction of geometric transformations and the reconstruction of CT 
scans [7]. Through reconstruction, the network can identify abnormal information at the pixel level. By predicting the 
geometric transformation of the CT scans, the network can capture the semantic information of the global context. This 
new framework has made a significant improvement for anomaly detection in brain CT scans. Since the rotation 
prediction is performed on 2D images, some researchers try the 3D rotation prediction [9]. In the 3D rotation prediction 
pretext-task, the input 3D image is randomly rotated by different degree {0°, 90°, 180°, 270°} in the 3D coordinate 
system (𝑥𝑥,𝑦𝑦, 𝑧𝑧). In Fig.2. Each axis has four rotation angles, so there are a total of 12 possible rotations. Whatever 
which coordinate axis is rotated, when the rotation angle is zero, it is the same as the original image, so this is a 10-way 
classification problem. 

 

 
Fig. 2. Predict the 3D image rotation degree [9]. 

2.2  Jigsaw Puzzles 

The jigsaw puzzle is another pretext-task based on context spatial semantic. Usually, this method to recognize the 
order of the shuffled sequence of patches from the same image. Inspired by Jigsaw puzzles Y. Li, et al. [8] increased the 
complexity of the pretext-task, on the basis of shuffled the order of the patches, also randomly rotated each patch by {0°, 
90°, 180°, 270°}, as shown in Fig.3. These shuffled patches as the input of the network then trained to recognize the 
right order, through the process the network can capture high-level semantic information. 
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Fig. 3. Jigsaw puzzles for histopathological images 

In inspired by the 2D Jigsaw puzzle, Aiham et al. proposed 3D Jigsaw puzzle method as SSL proxy task [9].  
Similar to the 2D method, it is an n-way classification task, aims to find the right sequence index of the shuffled 

3D patches. 
 

 
Fig. 4. 3D Jigsaw puzzles [9] 

2.3． Rubik's Cube  

Rubik's Cube can be regarded as a derivative of the 3D Jigsaw puzzle. X. Zhuang et al. first proposed playing 
Rubik’s cube as a proxy task for volumetric medical data [10]. Divide the 3D medical image into a set (2×2×2) of cubes, 
and then randomly rotate cubes, the proxy task aims to recover the original 3D image, cubes rearrangement, and cubes 
rotation. Compared with 3D Jigsaw puzzles, this method adds Cube’s rotation operations. Basis on this idea, Rubik's 
Cube + [12] and Rubik's Cube ++ [11] methods have been developed. The pipeline of the Rubik's Cube is illustrated in 
Fig.5. This method is more conducive to the contextual feature extraction of 3D unlabeled medical images. 

 

 
Fig. 5. 3D Rubik's Cube [10] 

2.4  Specific Pretext-Tasks Based On The Context Of The Medical Image Domain 

Different from the previous context-based methods, Li Sun et al. [13] focuses on the context information of the 
anatomical region of medical images and proposed a two-level feature learning method, first learning local textural 
features from the regional anatomical level, and then learning global contextual features from the patient level. 
Furthermore, in Bai’s work use the characteristics of different Cardiac MR view planes to build anatomical position 
prediction pretext-task [14]. These ideas got rid of generic SSL methods and developed proxy tasks utilize the specific 
context information of medical images. 

3.  Generated-Based Self-supervised Learning 

In this section, we will introduce generation-based SSL methods in the medical image domain, including 
autoencoder models [19] and GANs [20]. 
3.1  Restore Based On The Autoencoder Model 
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The purpose of this SSL pretext-task is to recover the original sub-volume after its transformation (sub-volume, 
cropped from unlabeled CT images by random size and random location). The original sub-volume 𝑥𝑥𝑖𝑖  through the 
transformation function 𝑓𝑓(∙) obtain  𝑥𝑥�𝑖𝑖 =  𝑓𝑓(𝑥𝑥𝑖𝑖) . Take 𝑥𝑥𝚤𝚤�  as the input of the autoencoder to restore the original sub-
volume. The restoration pretext-tasks optimizer function is expressed as: 
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Where G and E are the encoder and decoder.  𝜃𝜃𝐸𝐸  𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝐺𝐺  are the parameters of the autoencoder. Here the 

transformations can be a non-linear transformation, local-shuffling, out-painting, in-painting. In the Models Genesis 
[15,18] SSL framework integrates a variety of transformations and shared the same autoencoder to restore the 𝑥𝑥𝑖𝑖. This 
allows the model to learn latent representations from multiple perspectives and then transfer them to specific 
downstream tasks. Inspired by Models Genesis, subsequent researchers proposed Semantic Genesis [16] and Universal 
Model [17]. Semantic Genesis further extends the framework of Models Genesis to add self-classification branch, using 
less computational overhead, actually a classification head is added at the end of the encoder in the autoencoder. 
Semantic Genesis framework extracts semantics representation from the consistent and recurrent anatomical patterns. 
The pipeline of the Models Genesis and Semantic Genesis are illustrated in Fig.6, 7. 

 

 
Fig. 6. The pipeline of the Models Genesis[15]. 

 
Fig. 7. The pipeline of the Semantic Genesis[16]. 

Universal Model adds Modality Invariant Representation Learning tasks and Multi-level Feature Learning 
classification tasks compare to the pipeline of the Models Genesis. Therefore, this method is dedicated to solving the 
generalization problem of multi-task and multi-modality in the medical image analysis domain. The pipeline of the 
Universal Model is illustrated in Fig.8. 

 

3.2  Based on GANs 
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As the most successful generative model in recent years, GAN is widely employed in computer vision tasks. Ross 
et al. proposed a re-colorization proxy task that utilizes GAN to recolor medical images (endoscopic video data) [21]. 
First, the raw data is transformed into the CIELAB Color space, in CIELAB Color space the L-channel as input, train 
the GAN to generate the a-channels and b-channels. Then transfer the generator network, which has the ability to 
extract the low-level semantic information, to the target segmentation task. According to the variants of GAN, many 
proxy tasks can be constructed, for instance the reconstruction of patches using Wasserstein GAN [22], use conditional 
GAN [23] for image colorization [3], and self-supervised CycleGAN framework for ultrasound image super-resolution 
[24]. Compared with previous pretext-tasks, the framework of GANs-based is more complicated, the self-supervised 
CycleGAN framework is illustrated in Fig.9. it also means longer training time costs[58]. 

 

 
Fig. 8. The pipeline of the Universal Model [17]. 

 
Fig. 9. The self-supervised CycleGAN framework 

4.  Contrast-Based Self-supervised Learning 

Contrast learning as a form of self-supervised learning has been the front-runner in the unsupervised natural image 
domain, and these frameworks based on comparative learning constantly narrow the gap between unsupervised and 
supervised learning, for instance, CPC [32], SimCLR [25], MoCo [26], BYOL [27], SimSiam [28], Twins [29]. The 
basic idea of comparative learning is that different transformations of a sample image have similar representations and 
these representations should be different from the different sample images, then, use unlabeled data to train the neural 
network by minimizing the contrast loss [31]. However, its application in the medical imaging domain is still in infancy. 
This section will introduce the application in the field of medical image analysis based on different contrastive learning 
methods, here we divide those CL methods into 2 types: global-local contrast and context-context contrast. 

4.1  Global-local Contrast 

Global-local Contrast is aims to modeling the relationship between local semantic representation and global 
semantic representation of an instance. This method focuses on the prediction of the encoder-decoder architectures at 
the pixel level and learns the global and local level representations while considering the local representation. For 
medical images, the data of different patients have inherent consistency, because the structure of human organs is 
consistent, such as MRI (magnetic resonance imaging) and CT (computed tomography). Therefore, encoding the same 
anatomical region of the medical images will get the similar embedding, leverage this characteristic to construct the 
global contrastive loss [33]. In contrast, Local representation aims to distinguishing pixel-level differences in 
neighboring regions. In [33,35], by constructing InfoNCE loss [34], the network determines whether the output comes 
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from the similar distribution or the dissimilar distribution to define the global contrastive loss and the local contrastive 
loss. InfoNCE loss is defined as: 
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Where 𝑥𝑥  is from a set 𝑋𝑋 = {𝑥𝑥1 …𝑥𝑥𝑛𝑛}, 𝑥𝑥+  are transformed sample. Minimizing the loss narrows the distance 

between the representations of  𝑥𝑥 and 𝑥𝑥+, while increasing the distance between the representation of x and other 
dissimilar images. 

The Global-local Contrast learning framework is illustrated in Fig.10. The input volumetric images divided into 
four partitions, leverage the similarity of the slices in different volumetric images defining positive samples and 
negative samples. Representations 𝑧𝑧 are extracted by encoder 𝑒𝑒(∙) and projection head 𝑔𝑔(∙). 

 

 
Fig. 10. Global-local Contrast learning framework 

Compared with [33], SAM [35] utilize global embedding and local embedding to construct InfoNCE loss in the 
embedding space. This framework is more general, suitable for various tasks and has a relatively simple structure. The 
pipeline of SAM is illustrated in Fig.11. First, the volumetric image 𝑥𝑥 and random transform sample 𝑥𝑥′ as the input. 
Then, generate global and local embedding information through the network. Finally, the global and the local InfoNCE 
loss to encourage positive pairs to have similar embeddings, while pushing negative samples apart. 

 

 
Fig. 11. The pipeline of SAM 

 

 

4.2  Context-Context Contrast 
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Context-context contrastive learning directly utilizes the relationships between the global representations of 
different samples as what metric learning does, essentially, leveraging instance discrimination as a pretext task. 
Recently, CPC[32], SimCLR[25], MoCo[26], BYOL[27] based on Context-context contrast methods achieved great 
performance in the nature image domain,. These methods have inspired researchers in the medical domain, next we will 
introduce the practical applications of these methods in the field of medical domain. 

4.2.1 CPC 

Contrastive Predictive Coding (CPC) is a contrastive method that can be applied to any form of data such as text, 
voice, video, image, etc. For image data, a sample can be seen as a sequence of pixels or image blocks, then CPC learns 
the feature representation of spatial information. Inspired by CPC, TCPC [36] was proposed, which first uses Simple 
Linear Iterative Clustering (SLIC) [37] to locate the potential lesion area, and then modified CPC to learn 3D feature 
representation from the sub-volumes containing the lesion areas. TCPC framework as shown in the Fig.12. 

TCPC adopts a u-shaped path and there are fewer differences in the content of medical images compared with 
natural images, so it uses a larger cube size than 2D CPC and 3D CPC. 

 

 
Fig. 12. TCPC framework [36] 

4.2.2 MOCO 

In MoCo [26], the idea of using instance discrimination through momentum contrast was further developed, which 
greatly increased the number of negative samples. Benefiting from the successful performance of MoCo, then 
researchers proposed MoCo-CXR [38] framework on unlabeled chest X-ray’s dataset, and [39] further research was 
conducted on the basis of MoCo-CXR. 

The medical image has the characteristics of small pixel area where the abnormality’s part is located, gray-scale 
image, a large amount of unlabeled data [53], etc. So, some general data augmentations algorithms in MOCO are not 
suitable for medical images. MoCo-CXR modified the data augmentation strategy used to generate views suitable for 
the chest X-ray, such as horizontal flipping and random rotation. Experimental results show that MoCo-CXR-pretrained 
model outperformance than ImageNet-pretrained model, further verify the availability of MoCo in chest X-rays. 
following MoCo-CXR, MedAug [40] was proposed, which uses multiple images as a way to increase the number of 
positive pair choices, in this process, patient metadata is introduced to assist in constructing positive pairs. The process 
illustrated in Fig13. Their experiments proved that the performance of the model can be improved by using positive 
pairs selected by patient metadata. 

 

 
Fig. 13. Self-Supervised Pretraining using Momentum Contrast Learning 

The medical image has the characteristics of small pixel area where the abnormality’s part is located, gray-scale 
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image, a large amount of unlabeled data, etc. So, some general data augmentations algorithms in MOCO are not 
suitable for medical images. MoCo-CXR modified the data augmentation strategy used to generate views suitable for 
the chest X-ray, such as horizontal flipping and random rotation. Experimental results show that MoCo-CXR-pretrained 
model outperformance than ImageNet-pretrained model, further verify the availability of MoCo in chest X-rays. 
following MoCo-CXR, MedAug [40] was proposed, which uses multiple images as a way to increase the number of 
positive pair choices, in this process, patient metadata is introduced to assist in constructing positive pairs. The process 
illustrated in Fig13. Their experiments proved that the performance of the model can be improved by using positive 
pairs selected by patient metadata. 

In [39], a self-supervised learning algorithm for COVID-19 prediction is proposed, which actually borrows from 
the overall framework of MoCo and adds some data augmentation strategy, such as, random Gaussian noise, random 
cropping, interpolation. Then, this self-supervised pretraining achieved the highest AUC scores on Single Image 
Prediction tasks of interest. 

 

 
Fig. 14. The process selecting positive pairs used patient metadata for contrastive learning 

4.2.3 SimCLR 

SimCLR follows the end-to-end framework and is different from MoCo, which uses momentum contrast, and in 
order to deal with the large-scale negative sample problem, SimCLR chooses a larger batch. In [41] work, employ 
SimCLR framework applies to histopathological image analysis. The author conducted different downstream tasks to 
demonstrate that the feature extraction method based on comparative learning is significantly better than the baseline 
based on ImageNet. Furthermore, Inspired by SimCLR, Multi-Instance Contrastive Learning (MICLe) [42] was 
proposed. This method utilizes multiple images per patient to construct positive pairs, not only different augmentations 
of the same image but also different images of the same medical pathology, the construct process are shown in the 
Fig.15.  

In MICLe, only use N pair of minibatch and lightweight data augmentation. Experiments show that MICLe 
significantly improves the accuracy and achieve the state-of-the-art result on the dermatology condition classification 
task. 

 

 
Fig.15. Multi-Instance Contrastive Learning (MICLe) framework. 

4.2.4 BYOL 

BYOL is a more radical approach, first discards negative sampling in contrastive learning but achieves an even 
better result, the model learns image representations using the online-target framework. The online network on an 
augmented view of an image to predict the representation of another augmented view of the same image produced by 
the target network. Based on the framework of BYOL, Prior-Guided Local (PGL) [43] focuses on Local consistency 
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loss and minimizes Local consistency loss based on the spatial and regional location relationship of the two augmented 
views. Fig.16 illustrated the difference between global consistency loss and local consistency loss. 

 

 
Fig. 16. Global consistency loss (BYOL) and local consistency loss (PGL) 

PGL model framework including a data augmentation module 𝜏𝜏 and a prior dual-path module, as the Fig.17 shows. 
First, the unlabeled training data is augmented by module 𝜏𝜏 to obtain 𝑥𝑥1, 𝑥𝑥2, and then fed to the prior dual-path for 
feature extraction and alignment. The goal of the prior-guided aligner is to construct the spatial relation between  𝑓𝑓1  and  
𝑓𝑓2  on the prior information of augmentation transformation and align the features. 

 

 
Fig. 17. PGL model framework. 

5.  Performance Comparison 

For specific downstream tasks or target tasks in the field of medical imaging, they are mainly divided into two 
categories: classification and segmentation. This section integrates the performance of SSL methods on different 
datasets. 

5.1  LUNA 2016 

LUNA 2016 [46] dataset comes from the 2016 LUNA Nodule Analysis competition. Table 1. Shows the 
classification task results of the self-supervised learning methods on the LUNA 2016 dataset, all of the results, 
including the mean and standard deviation across ten trials. From the results, the self-supervised methods are conducive 
to the improvement of the performance of the target task, even performance is better than supervised learning, as 
illustrated in fig.18. 
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Fig. 18. The result of SSL methods performed on the LUNA 2016 and BraTS-2018, the first line of result data is the supervised method. 

Table 1. Performance on LUNA 2016 

Method Supervised AUC%(mean±s.d.) 
MedicalNet [45]  95.80±0.49 

Autoencoder  88.43±10.25 
In-painting [48]  91.46±2.97 
Patch shuffling  91.93±2.32 
De-noising [49]  95.92±1.83 

Jigsaw  95.47±1.24 
Rubik’s Cube  96.24±1.27 

DeepCluster [50]  97.22±0.55 
Self-restoration  98.07±0.59 

3D Rotation  97.13±0.81 
Semantic Genesis 3D  98.47±0.32 

3D Jigsaw  96.12±0.63 
3D CPC  92.88±1.56 
TCPC  96.55±0.97 

Model Genesis  98.34±0.44 
Universal Model  99.04±0.23 

5.2  BraTS-2018 

BraTS 2018 [47] dataset comes from Multimodal Brain Tumor Segmentation Challenge. The results of these 
experiments on the BraTS 2018 dataset are shown in Table 2. 

Through these experimental results, it seems that whether segmentation tasks or classification tasks, the self-
supervised learning methods redesigned based on medical image characteristics has higher performance. 

Table 2. Performance on BraTS 2018 

Method Supervised IoU%(mean±s.d.) 
MedicalNet  66.09±1.35 
Autoencoder  56.36±5.32 
In-painting  61.38±3.84 

Patch shuffling  52.95±6.92 
De-noising  57.83±1.57 

Jigsaw  63.33±1.11 
Rubik’s Cube  62.75±1.93 
DeepCluster  65.96±0.85 

Self-restoration  67.96±1.29 
3D Rotation  56.48±1.78 

Semantic Genesis 3D  68.80±0.30 
3D Jigsaw  59.65±0.81 

Model Genesis  67.96±1.29 
Universal Model  72.10±0.67 

5.3  Performance of Contrastive Learning 

Contrastive learning methods achieve The-state-of-the-art in self-supervised learning methods of natural images. 
The experimental results in Table 3 show that in the medical image analysis domain, the contrast-based methods also 
achieved The-state-of-the-art. The performance of the modified comparative learning method is more prominent and 
those methods more suitable for medical image analysis. 
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Table 3. Performance of Contrastive Learning methods 

Method Dataset Dice % Iou % 
Random Init KiTS [51] 81.57 74.63 

Models Genesis KiTS 82.32 75.51 
BYOL KiTS 84.06 77.56 
PGL KiTS 84.29 78.27 

Random Init Liver dataset[52] 73.97 66.79 
Models Genesis Liver dataset 74.74 67.68 

BYOL Liver dataset 74.82 68.09 
PGL Liver dataset 76.05 69.06 

Random Init Spleen dataset [52] 93.23 88.08 
Models Genesis Spleen dataset 94.20 89.44 

BYOL Spleen dataset 94.56 89.83 
PGL Spleen dataset 95.60 91.61 

6.  Discussions and Future Directions 

The application of self-supervised learning methods in the medical field has achieved great success, and obtaining 
good performance that exceeds the supervised pre-training model on certain medical image tasks. However, directly 
applying existing self-supervised learning methods is not necessarily suitable for medical image tasks [57].  

6.1  Selection of Data Augmentation and Pretext Tasks 

In medical images, human organs are consistent, and only a small part of the lesions are different [55]. So, some 
data augmentation methods and some pretext-tasks will destroy the main information of the raw data. Therefore, it is 
necessary to construct suitable pretext-tasks and data augmentation strategies according to the characteristics of medical 
image data. By designing effective pretexts, using the information other than the part to be predicted to predict a certain 
subset of information, mining the potential laws of large-scale unsupervised data. Learn data representations and 
inductive biases that help improve downstream task performance. These data representations cover good semantics or 
structural meanings. 

6.2  Extract features with Multiple Pretext Tasks 

Most existing self-supervised learning methods in the medical domain learn data features by training a pretext-task. 
Different pretext-tasks mean different supervision signals, which can help the network learn more data features. The 
existing methods construct pre-tasks from both local and global perspectives [33], so that the model not only learns 
global features, but also focuses on fine-grained features, and has achieved good experimental results on medical image 
segmentation tasks. Whether it is through the experimental results of the literature or the perspective of algorithm proof, 
multiple Pretext Tasks are helpful to extract the potential law of data distribution. 

6.3  Dataset Imbalance 

The bias of the dataset is a normal phenomenon, but this phenomenon is more prominent in medical images. In a 
large amount of unlabeled medical data, the data of the disease is actually much smaller than the data of the normal 
person. Use self-supervision to overcome the inherent "data bias" and learn better initialization feature information that 
is not related to labels from unbalanced datasets [44]. The problem of data imbalance needs to be considered in the 
construction of the self-supervised framework in the medical domain. 

6.4  Redesign Contrastive Learning 

In the field of medical imaging, directly applying the existing Contrastive Learning framework has limited 
improvement in experimental results. According to the characteristics of medical images, suitable negative samples can 
be constructed, then extract more useful data features [56,58]. In order to improve the performance of self-supervised 
learning methods in the field of medical image analysis, we need to further explore how to construct negative examples 
and how to better adapt self-supervised learning methods to downstream tasks. 

7.  Conclusions 

This article has extensively reviewed the latest applications of self-supervised methods in the field of medical 
image analysis. Self-supervised learning can use unlabeled data or even unbalanced data to extract latent features. This 
unsupervised learning paradigm naturally adapts to the problems of medical image data. We have clearly categorized 
recent methods and introduced the pipelines of these methods separately, introduces background knowledge and 
important frameworks. Finally, discussed the future research directions, and puts forward the issues that need to be paid 
attention to when designing new methods and paradigms. In short, our work fills the gap of review papers in the 
medical image analysis based on self-supervised learning and researchers can easily grasp the cutting-edge ideas of this 
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domain. 
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