Robust Face Detection integrating Novel Skin Color Matching under Variant Illumination Conditions

Full Text (PDF, 1300KB), PP.1-15

Views: 0 Downloads: 0


Asif Anjum Akash 1,* M. A. H. Akhand 1 N. Siddique 2

1. Dept. of CSE, Khulna University of Engineering & Technology, Khulna, Bangladesh

2. School of Computing, Engineering and Intelligent Systems, Ulster University, United Kingdom

* Corresponding author.


Received: 16 Jul. 2020 / Revised: 13 Aug. 2020 / Accepted: 11 Sep. 2020 / Published: 8 Apr. 2021

Index Terms

Face detection, Haar feature, skin color matching, illumination


Integration of skin color property in face detection algorithm is a recent trend to improve accuracy. The existing skin color matching techniques are illumination condition dependent, which directly impacts the face detection algorithm. In this study, a novel illumination condition invariant skin color matching method is proposed which is a composite of two rules to balance the high and low intensity facial images by individual rule. The proposed skin color matching method is incorporated into Haar Feature based Face Detection (HFFD) algorithm for face detection and is verified on a large set of images having variety of skin colors and also varying illumination intensities. Experimental results reveal the effectiveness and robustness of the proposed method outperforming other existing methods.

Cite This Paper

Asif Anjum Akash, M. A. H. Akhand, N. Siddique, " Robust Face Detection integrating Novel Skin Color Matching under Variant Illumination Conditions", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.13, No.2, pp. 1-15, 2021. DOI: 10.5815/ijigsp.2021.02.01


[1]A. M. Asif Anjum Akash, Abdus Salim Mollah and M. A. H, Akhand, “Improvement of Haar Feature Based Face Detection in OpenCV Incorporating Human Skin Color Characteristic,” J. Comput. Sci. Appl. Inf. Technol., vol. 1, no. 1, pp. 1–8, 2016, doi: 10.15226/2474-9257/1/1/00106.

[2]R. Ranjan et al., “A Fast and Accurate System for Face Detection, Identification, and Verification,” IEEE Trans. Biometrics, Behav. Identity Sci., vol. 1, no. 2, pp. 82–96, 2019, doi: 10.1109/tbiom.2019.2908436.

[3]S. S. Rajput and K. V. Arya, “Noise Robust Face Hallucination via Outlier Regularized Least Square and Neighbor Representation,” IEEE Trans. Biometrics, Behav. Identity Sci., vol. PP, no. XX, pp. 1–1, 2019, doi: 10.1109/tbiom.2019.2939808.

[4]Z. Zakaria, S. A. Suandi, and J. Mohamad-Saleh, “Hierarchical Skin-AdaBoost-Neural Network (H-SKANN) for multi-face detection,” Appl. Soft Comput., vol. 68, pp. 172–190, Jul. 2018, doi: 10.1016/j.asoc.2018.03.030.

[5]R. Féraud, O. J. Bernier, J. E. Viallet, and M. Collobert, “A fast and accurate face detector based on neural networks,” IEEE Trans. Pattern Anal. Mach. Intell., 2001, doi: 10.1109/34.899945.

[6]L.-L. Huang, A. Shimizu, Y. Hagihara, and H. Kobatake, “Face detection from cluttered images using a polynomial neural network,” Neurocomputing, vol. 51, pp. 197–211, Apr. 2003, doi: 10.1016/S0925-2312(02)00616-1.

[7]K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks,” IEEE Signal Process. Lett., vol. 23, no. 10, pp. 1499–1503, Oct. 2016, doi: 10.1109/LSP.2016.2603342.

[8]D. Triantafyllidou, P. Nousi, and A. Tefas, “Fast Deep Convolutional Face Detection in the Wild Exploiting Hard Sample Mining,” Big Data Res., vol. 11, pp. 65–76, Mar. 2018, doi: 10.1016/j.bdr.2017.06.002.

[9]W. T. Chu and W. W. Li, “Manga face detection based on deep neural networks fusing global and local information,” Pattern Recognit., 2019, doi: 10.1016/j.patcog.2018.08.008.

[10]X. Sun, P. Wu, and S. C. H. Hoi, “Face detection using deep learning: An improved faster RCNN approach,” Neurocomputing, vol. 299, pp. 42–50, Jul. 2018, doi: 10.1016/j.neucom.2018.03.030.

[11]B. Heisele, T. Serre, S. Prentice, and T. Poggio, “Hierarchical classification and feature reduction for fast face detection with support vector machines,” Pattern Recognit., vol. 36, no. 9, pp. 2007–2017, Sep. 2003, doi: 10.1016/S0031-3203(03)00062-1.

[12]H. Pan, Y. Zhu, and L. Xia, “Efficient and accurate face detection using heterogeneous feature descriptors and feature selection,” Comput. Vis. Image Underst., vol. 117, no. 1, pp. 12–28, Jan. 2013, doi: 10.1016/j.cviu.2012.09.003.

[13]Z. Jin, Z. Lou, J. Yang, and Q. Sun, “Face detection using template matching and skin-color information,” Neurocomputing, vol. 70, no. 4–6, pp. 794–800, Jan. 2007, doi: 10.1016/j.neucom.2006.10.043.

[14]J. Miao, B. Yin, K. Wang, L. Shen, and X. Chen, “A hierarchical multiscale and multiangle system for human face detection in a complex background using gravity-center template,” Pattern Recognit., vol. 32, no. 7, pp. 1237–1248, Jul. 1999, doi: 10.1016/S0031-3203(98)00156-3.

[15]M. R. Mahmoodi and S. M. Sayedi, “A face detection method based on kernel probability map,” Comput. Electr. Eng., vol. 46, pp. 205–216, Aug. 2015, doi: 10.1016/j.compeleceng. 2015.02.005.

[16]K. K. Sung and T. Poggio, “Example-based learning for view-based human face detection,” IEEE Trans. Pattern Anal. Mach. Intell., 1998, doi: 10.1109/34.655648.

[17]A. Atharifard and S. Ghofrani, “Robust Component-based Face Detection Using Color Feature,” Proc. World Congr. Eng., vol. 2, pp. 6–8, 2011.

[18]F. Jiang, M. Fischer, H. K. Ekenel, and B. E. Shi, “Combining texture and stereo disparity cues for real-time face detection,” Signal Process. Image Commun., vol. 28, no. 9, pp. 1100–1113, Oct. 2013, doi: 10.1016/j.image.2013.07.006.

[19]Y. H. Tsai, Y. C. Lee, J. J. Ding, R. Y. Chang, and M. C. Hsu, “Robust in-plane and out-of-plane face detection algorithm using frontal face detector and symmetry extension,” Image Vis. Comput., 2018, doi: 10.1016/j.imavis.2018.07.003.

[20]K. W. Wong, K. M. Lam, and W. C. Siu, “A robust scheme for live detection of human faces in color images,” Signal Process. Image Commun., 2003, doi: 10.1016/S0923-5965(02)00088-7.

[21]J. Yan, X. Zhang, Z. Lei, and S. Z. Li, “Face detection by structural models,” Image Vis. Comput., vol. 32, no. 10, pp. 790–799, Oct. 2014, doi: 10.1016/j.imavis.2013.12.004.

[22]P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I-511-I–518, doi: 10.1109/CVPR.2001.990517.

[23]M. Yang, J. Crenshaw, B. Augustine, R. Mareachen, and Y. Wu, “AdaBoost-based face detection for embedded systems,” Comput. Vis. Image Underst., vol. 114, no. 11, pp. 1116–1125, Nov. 2010, doi: 10.1016/j.cviu.2010.03.010.

[24]D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun, “Joint Cascade Face Detection and Alignment,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, pp. 109–122.

[25] F. Faux and F. Luthon, “Theory of evidence for face detection and tracking,” Int. J. Approx. Reason., vol. 53, no. 5, pp. 728–746, Jul. 2012, doi: 10.1016/j.ijar.2012.02.002.

[26]S. Liao, A. K. Jain, and S. Z. Li, “A Fast and Accurate Unconstrained Face Detector,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 211–223, Feb. 2016, doi: 10.1109/TPAMI.2015.2448075.

[27]G. Hemalatha and C. P. Sumathi, “A Study of Techniques for Facial Detection and,” vol. 5, no. 2, pp. 27–37, 2014.

[28]V. Vezhnevets, V. Sazonov, and A. Andreeva, “A Survey on Pixel-Based Skin Color Detection Techniques,” Cybernetics, 2003, doi: R. Khan, A. Hanbury, J. Stöttinger, and A. Bais, “Color based skin classification,” Pattern Recognition Letters, vol. 33, no. 2, pp. 157-163, Jan. 2012.

[29]R. Belaroussi and M. Milgram, “A comparative study on face detection and tracking algorithms,” Expert Syst. Appl., vol. 39, no. 8, pp. 7158–7164, Jun. 2012, doi: 10.1016/j.eswa.2012.01.076.

[30]E. Hjelmås and B. K. Low, “Face detection: A survey,” Comput. Vis. Image Underst., vol. 83, no. 3, pp. 236–274, 2001, doi: 10.1006/cviu.2001.0921.

[31]H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1, pp. 23–38, 1998, doi: 10.1109/34.655647.

[32]S. Kang and S. Park, “A fusion neural network classifier for image classification,” Pattern Recognit. Lett., vol. 30, no. 9, pp. 789–793, Jul. 2009, doi: 10.1016/j.patrec.2008.06.009.

[33] M. Bianchini, M. Maggini, L. Sarti, and F. Scarselli, “Recursive neural networks learn to localize faces,” Pattern Recognit. Lett., vol. 26, no. 12, pp. 1885–1895, Sep. 2005, doi: 10.1016/j.patrec.2005.03.010.

[34]H. M. El-Bakry, “Face detection using fast neural networks and image decomposition,” Neurocomputing, vol. 48, no. 1–4, pp. 1039–1046, Oct. 2002, doi: 10.1016/S0925-2312(02)00608-2.

[35]H. C. V. Lakshmi and S. PatilKulakarni, “Segmentation Algorithm for Multiple Face Detection in Color Images with Skin Tone Regions using Color Spaces and Edge Detection Techniques,” Int. J. Comput. Theory Eng., pp. 552–558, 2010, doi: 10.7763/IJCTE.2010.V2.200.

[36] P. Kakumanu, S. Makrogiannis, and N. Bourbakis, “A survey of skin-color modeling and detection methods,” Pattern Recognit., vol. 40, no. 3, pp. 1106–1122, Mar. 2007, doi: 10.1016/j.patcog.2006.06.010.

[37]C. Lin, “Face detection in complicated backgrounds and different illumination conditions by using YCbCr color space and neural network,” Pattern Recognit. Lett., vol. 28, no. 16, pp. 2190–2200, Dec. 2007, doi: 10.1016/j.patrec.2007.07.003.

[38]Y. Ban, S.-K. Kim, S. Kim, K.-A. Toh, and S. Lee, “Face detection based on skin color likelihood,” Pattern Recognit., vol. 47, no. 4, pp. 1573–1585, Apr. 2014, doi: 10.1016/j.patcog.2013.11.005.

[39]F. Solina, P. Peer, B. Batagelj, S. Juvan, and J. Kovac, “Color-based Face Detection in the ‘ 15 Seconds of Fame’ Art Installation,” Art Install., 2003, doi: 10.1016/J.CATTOD.2013.08.026.

[40]Zhengming Li, Lijie Xue, and Fei Tan, “Face detection in complex background based on skin color features and improved AdaBoost algorithms,” in 2010 IEEE International Conference on Progress in Informatics and Computing, 2010, pp. 723–727, doi: 10.1109/PIC.2010.5687939.

[41]J. M. Chaves-González, M. A. Vega-Rodríguez, J. A. Gómez-Pulido, and J. M. Sánchez-Pérez, “Detecting skin in face recognition systems: A colour spaces study,” Digit. Signal Process. A Rev. J., vol. 20, no. 3, pp. 806–823, May 2010, doi: 10.1016/j.dsp.2009.10.008.

[42]N. A. bin Abdul Rahman, K. C. Wei, and J. See, “RGB-H-CbCr Skin Colour Model for Human Face Detection,” Proc. MMU Int. Symp. Inf. Commun. Technol. (M2USIC 2006), 2006.

[43] H. M. Z. Hewa Majeed Zangana, “A New Algorithm for Human Face Detection Using Skin Color Tone,” IOSR J. Comput. Eng., vol. 11, no. 6, pp. 31–38, 2013, doi: 10.9790/0661-1163138.

[44]A. Mohamed, Y. Weng, J. Jiang, and S. Ipson, “Face detection based neural networks using robust skin color segmentation,” in 2008 5th International Multi-Conference on Systems, Signals and Devices, 2008, pp. 1–5, doi: 10.1109/SSD.2008.4632827.

[45]A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “A skin tone detection algorithm for an adaptive approach to steganography,” Signal Processing, vol. 89, no. 12, pp. 2465–2478, Dec. 2009, doi: 10.1016/j.sigpro.2009.04.022.

[46]D. Ghimire and J. Lee, “A Robust Face Detection Method Based on Skin Color and Edges,” J. Inf. Process. Syst., vol. 9, no. 1, pp. 141–156, Mar. 2013, doi: 10.3745/JIPS.2013.9.1.141.

[47]Y. J. Fu and J. W. Li, “Rotation invariant multi-view color face detection based on skin color and Adaboost algorithm,” in 2010 International Conference on Biomedical Engineering and Computer Science, ICBECS 2010, 2010, doi: 10.1109/ICBECS.2010.5462517.

[48]M. A. A. Akash, M. A. H. Akhand, and N. Siddique, “Robust Face Detection Using Hybrid Skin Color Matching under Different Illuminations,” in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2019, pp. 1–6, doi: 10.1109/ECACE.2019.8679481.

[49]J. Kova??, P. Peer, and F. Solina, “Human skin colour clustering for face detection,” in IEEE Region 8 EUROCON 2003: Computer as a Tool - Proceedings, 2003, doi: 10.1109/EURCON.2003.1248169.

[50]G. Gomez and E. F. Morales, “Automatic Feature Construction and a Simple Rule Induction Algorithm for Skin Detection,” Work. Mach. Learn. Comput. Vis., no. May, pp. 31–38, 2002.

[51]G. Kukharev and A. Nowosielski, “Visitor Identification - Elaborating Real Time Face Recognition System,” WSCG (Short Pap., no. January 2004, pp. 157–164, 2004.

[52]M. A. Berbar, “Skin colour correction and faces detection techniques based on HSL and R colour components,” Int. J. Signal Imaging Syst. Eng., vol. 7, no. 2, pp. 104–115, 2014, doi: 10.1504/IJSISE.2014.060056.

[53]S. Yadav and N. Nain, “A novel approach for face detection using hybrid skin color model,” J. Reliab. Intell. Environ., vol. 2, no. 3, pp. 145–158, 2016, doi: 10.1007/s40860-016-0024-8.

[54]V. S. Bhat and J. D. Pujari, “A Hybrid Skin Color Model for Face Detection,” Int. J. Eng. Res. Gen. Sci., vol. 2, no. 2, pp. 68–75, 2014.

[55]“Illumination Intensity Calculation Formula,” 2019. [Online]. Available:

[56]“Accuracy calculation formula.” [Online]. Available: [Accessed: 29-Oct-2019].

[57]“Caltech dataset,” 2019. [Online]. Available: [Accessed: 29-Oct-2019].

[58]“Put face database,” 2019. [Online]. Available: [Accessed: 29-Oct-2019].

[59]“Bao database.” [Online]. Available: [Accessed: 29-Oct-2019].

[60]“Muct database available:” [Online]. Available: [Accessed: 29-Oct-2019].