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Abstract—In synthetic aperture radar (SAR) imaging 

system speckle is modeled as a multiplicative noise 

which limits the performance of SAR image processing 

systems. In the literature, several SAR image despeckling 

algorithms have been presented, among them two simple, 

yet effective, approaches are using thresholding and 

Bayesian estimation in transform domains. In this article, 

we try to provide proper answer to this question: which 

one of these two despeckling methods works better? To 

this aim, we first introduce a new thresholding function 

with two thresholds, and show that when thresholds are 

determined through optimization procedures, an 

improved denoising performance in terms of joint speckle 

removal and edge saving efficiencies can be achieved. 

However, still a Bayesian LMMSE/MAP estimator can 

provide greater speckle removal efficiency in test images 

with high speckle power, and some thresholding methods 

produce better edge saving efficiency. Hence, aiming at 

joint exploitation of the superior edge saving ability of 

thresholding estimator and greater speckle removal 

efficiency of Bayesian estimator, we next propose the 

idea of using a combined despecking algorithm. The new 

denoising methods are applied for despeckling of true 

SAR images in the nonsubsampled contourlet transform 

domain and the situations they achieve superior 

performance have been highlighted.  

 

Index Terms—Synthetic aperture radar (SAR); 

despeckling; thresholding; Bayesian estimation; 

contourlet transform; optimization; edge detection. 

 

I. INTRODUCTION 

In synthetic aperture radar (SAR) imaging system high 

resolution images of stationary targets on the ground are 

produced by transmitting electromagnetic waves and 

coherent integration of received echoes. Since multiple 

backscattered echo pulses are coherently processed in this 

system, the random interference of electromagnetic waves 

causes the speckle noise [1]. Speckle is well modeled as a 

multiplicative noise which degrades the quality of SAR 

images, and therefore, despeckling is one of the important 

tasks in SAR imaging systems. The purpose of image 

despeckling is to remove noise while retaining the 

important image features. Classical despeckling 

algorithms such as Lee [2] and Frost [3] methods are 

based on priori statistical information of speckle noise and 

usually over-smooth the textures. In recent years, with the 

development of multi-resolution analysis theory, 

transform domain-based techniques such as wavelet and 

contourlet transforms (CT) are utilized for despeckling 

purposes [4-5]. The non-subsampled contourlet transform 

(NSCT) proposed in [6], is a shift-invariant directional 

multi-resolution image representation built upon non-

subsampled pyramids and directional filter banks. 

The two simple, yet efficient, methods for SAR 

despeckling are using (i) thresholding (or shrinkage) 

estimators [7], and (ii) Bayesian estimators such as linear 

minimum mean square error (LMMSE) estimator or 

maximum a posteriori (MAP) estimator [8]. The SAR 

image is first converted into the transform domain like the 

NSCT. In the thresholding method, a thresholding 

function is utilized to modify the transform coefficients. 

The common modification is based on rejecting those 

transform coefficients that are smaller than a given 

threshold and keeping the remaining coefficients. Clearly, 

a thresholding-based despeckling technique would be 

effective if signal coefficients in transform domain follow 

a near-sparse representation so that the signal energy can 

be approximately determined by using a small subset of 

the coefficients. Two well-known thresholding functions 

for noise reduction are hard and soft thresholding 

mappings [6][9]. On the other hand, in Bayesian 

estimation the aim is to estimate the noise-free transform 

coefficients from the observed ones and from the 

statistical knowledge of the signal and speckle 

distributions. At the last stage of both methods the 

despeckled SAR image is recovered using the inverse 

transform.  

Despite the fact that thresholding estimators can 

provide a better visual quality of image reconstruction in 

comparison with procedures that only use MMSE criteria 

[9], classical thresholding functions for image denoising 

suffer from specific drawbacks. A hard thresholding 

mapping is discontinuous (i.e., not differentiable) and 

when the noise power is significant it yields abrupt 

artifacts in the recovered images. Although the soft 

thresholding mapping is continuous and weakly 

differentiable (the first derivative exists), such mapping 

still creates a constant deviation shift between the true and 

estimated coefficients, which may reduce the quality of 
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the image and result in a blurred image. In addition to the 

shape of mapping function, finding the optimum value of 

the threshold is also of great importance. For 

multiresolution transform based analysis like NSCT, the 

threshold selection can be adaptive or non-adaptive per 

subband [7][10].  

A. The Paper’s Contributions 

The main contribution of this paper is two-fold. We 

first propose a subband-adaptive thresholding estimator 

for SAR image despeckling in NSCT domain utilizing a 

new mapping function with two optimally determined 

threshold values. The new mapping function provides a 

mathematically continuous input-output relationship to 

overcome the drawback of hard thresholding mapping, 

and when input coefficients are larger than the second 

threshold, leads to a smaller deviation between the input 

and estimated output coefficients to overcome the 

drawback of the classic soft thresholding mapping. The 

performance of a typical denoising algorithm is commonly 

evaluated in terms of both the speckle removal ability and 

the edge saving efficiency. Experimental results illustrate 

that the new thresholding estimator improves the 

denoising performance in comparison with other existing 

thresholding methods. However, still a Bayesian 

LMMSE/MAP estimator can provide greater speckle 

removal efficiency in noisy images with high power 

speckle, and some thresholding methods produce higher 

edge saving efficiency. This motivates joint exploitation 

of the superior edge saving ability of thresholding 

estimators and the greater speckle removal efficiency of 

the Bayesian estimators, to develop a combined 

despeckling algorithm in the second part of the paper. To 

this aim, we utilize the edge information of the noisy 

image (extracted using a typical edge detection algorithm) 

to select the output of the combined despeckling algorithm 

at a multiplexing decision mode with two despeckled 

images as the input. In particular, when the position of a 

pixel is recognized as an edge location the corresponding 

output pixel of the thresholding estimator is selected and 

in other cases the output pixel of the Bayesian estimator is 

chosen as the final element of the despeckled image. 

Simulation results over real SAR images show that using a 

combined approach is more effective in test image 

scenarios with high power speckle. 

B. Related Works 

It is worthy to note that in the literature there exist 

several transform-based state-of-the-art denoising 

methods that are more sophisticated and complex 

compared to thresholding estimators (see, e.g., [11-12]). 

Although these methods provide better denoising 

performance, their computational complexity is 

significantly much higher and in case the speed and time 

are of great importance we may still prefer to use simple 

thresholding or Bayesian LMMSE/MAP estimators. As 

validated in [7], the actual Bayesian estimator for 

generalized Gaussian distributed data behaves similar to a 

piecewise linear thresholding (shrinkage) function. 

Therefore, it is of special interest to provide simple 

optimized shrinkage functions for SAR denoising 

purposes. In this direction, several studies focused on the 

design of shrinkage functions to overcome the limitations 

of hard and soft thresholding mappings [7][13-15]. For 

example, in [7] a parametric piecewise linear shrinkage 

function denoted by rigorous BayesShrink (R-

BayesShrink), is proposed and the optimum values of the 

shrinkage parameters are calculate by minimizing the least 

square error between the actual Bayes estimator and the 

piecewise linear shrinkage function. As illustrated in [16] 

and [17], when the transform coefficients of noise-free 

signal and speckle are modeled using generalized 

Gaussian distributions, closed form solutions for the MAP 

estimator can be obtained with a limited computational 

cost. Moreover, the LMMSE estimator is a first-order 

approximation filter that involves moments up to the 

second order of the noise-free signal and speckle NSCT 

coefficients and does not depend on the statistical 

distributions of the transform coefficients [8]. 

The rest of this paper is organized as follows. Section II 

presents the preliminaries including basic modeling and 

utilized tools. The new proposed thresholding function is 

introduced in Section III.  Section IV presents the idea of 

combined despeckling algorithm using the edge 

information of the SAR image. Section V provides 

performance evaluation over real SAR images, and finally, 

the concluding remarks are presented in Section VI. 

 

II. PRELIMINARIES 

In this section brief descriptions are presented for basic 

concepts and tools utilized in the paper. In particular, a 

statistical model for the speckle noise is described and, the 

NSCT and thresholding methods in the transform domain 

are introduced briefly. 

A. Speckle Noise and Image Statistics 

Assuming that a natural fairly regular surface seen by 

the radar, each SAR image pixel from this surface 

includes the effect of a large number of elementary 

scatterers, where backscattered echoes add to each other 

coherently. The total pixel response in amplitude and in 

phase is the result of these backscattered echoes 

contributions in the complex plane [1]. More precisely, 

when an electromagnetic wave scatters from position (x,y) 

on the target surface, both the phase, φ(x,y), and amplitude, 

A(x,y), of the wave experience some changes depending 

on the characteristics of the terrain. In this case, the local 

reflectivity at each pixel can be represented the number 

pair (Acos(φ), Asin(φ)) measured on the in-phase and 

quadrature channels of the SAR antenna receiver. When 

the local reflectivity at each pixel is represented by the 

complex number Aejφ = Acos(φ)+jAsin(φ), the SAR data is 

known as the complex image. In practice, it is easier to 

interpret the images of the amplitude A and the intensity u 

= A2. As described in [1], speckle is known as the noise 

like quality characteristic of the aforementioned types of 

SAR images. From the statistical perspective, the complex 

reflectivity Aejφ at each pixel may be modeled as the sum 
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of a large number of complex backscattered echoes as 

follows: 
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where kA  and k  are the amplitude and phase of the kth 

scatterer and N is the total number of scatters in pixel. To 

provide a simple speckle model the following assumptions 

are made: (i) the response of different scatterers are 

independent; (ii) for each scatterer the amplitude kA  and 

the phase k  are independent; (3) the variables kA  have 

the same probability density function (PDF); and (4) the 

phases k  are uniformly distributed between   and  . 

According to the central limit theorem, the real and 

imaginary parts of the complex reflectivity in (1), i.e. X 

and Y, are independent zero mean random Gaussian 

variables with variance / 2  for large N. Hence, the 

speckle amplitude A has the Rayleigh distribution and the 

PDF of the intensity 
2 2 2I A X Y    follows an 

exponential distribution ( ) 1/ exp( / ),   0p I I I     

with the average ( )E I   and the variance
2( )Var I  . 

In L-look SAR image processing, L independent 

observations of the same area are averaged and therefore 

the intensity I is modeled by a Gamma ( , )L L  

distribution as follows [1] (such averaging preserves the 

mean value of the total intensity while reducing its 

variance by a factor L): 
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with mean value ( )E I   and variance 
2( ) /Var I L . 

In this article, we consider the following model for 

SAR images corrupted by multiplicative speckle (see Eq. 

(4.15) from [1]): 
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where g(n) and f(n) are the observed noisy signal and the 

noise-free surface reflectance at pixel position n=[n1,n2], 

respectively, and I′(n) is the fading variable (speckle) 

which is a stationary random process independent of f, 

with unit mean value. The term  ( ) ( ). ( ) 1N n f n I n   

represents an additive zero-mean signal-dependent noise 

term, which is proportional to the signal to be estimated. 

Since f(n) in nonstationary in general, the additive noise 

N(n) will be nonstationary as well. 

B. NSCT and Thresholding Estimators 

The NSCT is a multiscale multiresolution transform 

which can be basically divided into two shift invariant 

parts: (i) a nonsubsampled Laplacian pyramid structure 

that ensures the multiscale property, and (ii) a 

nonsubsampled directional filter bank (DFB) structure for 

directional decomposition. Using such a structure, NSCT 

splits the two-dimensional frequency plane into several 

subbands [6]. Fig.1 (a) depicts the decomposition 

framework of NSCT using a filter bank structure that 

splits the frequency plane into subbands in two levels 

(scales) according to the frequency partitioning illustrated 

in Fig.1 (b). The input is first split into a low-pass subband 

and a high-pass subband using a nonsubsampled pyramid 

structure. The high-pass subband is then decomposed into 

several directional subbands using the DFB structure. By 

repeating the operation on the low-pass subband one may 

obtain an arbitrary number of decomposition levels. It 

should be noted that NSCT is a redundant and shift 

invariant image decomposition with efficient 

implementation that can provide a better frequency 

selectivity and regularity compared to the contourlet 

transform [5]. As is verified in [6], the NSCT leads to a 

better deniosing performance compared to competing 

transforms such as the nonsubsampled wavelet transform 

and curvelet transform. In fact, contourlet transform could 

represent edges and other singularities along contours 

more efficiently and therefore using NSCT the speckle 

noise can be separated from the original image more 

easily. 
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Fig.1. (a) The filter bank structure that implements the NSCT using the 

high-pass filter H1(z) and the low-pass filter H0(z) in two levels; (b) A 2-

D frequency partitioning with a low pass subband, four, and sixteen 

directional subbands at levels 1 and 2, respectively. 

Since the NSCT is linear transformation, transform 

coefficients of noisy image in Eq. (3) are divided into two 

parts: 

 
[ , ] [ , ] [ , ]( ) ( ) ( )j k j k j k

g f NW n W n W n                  (4) 

 

where [ , ]( )j k

gW n , [ , ]( )j k

fW n , and 
[ , ] ( )j k

NW n  denote NSCT 

coefficients of g(n), f(n) and N(n) at level number j and 

directional subband number k, respectively. The basic idea 

behind the thresholding-based deniosing method in 

transform domain is that when the coefficients of the 

original image, i.e., [ , ]( )j k

gW n , are large and concentrated, 
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and in contrast the noise coefficients, i.e., 
[ , ] ( )j k

NW n , are 

small and dispersive, then using an accurate threshold one 

can obtain a reasonable estimate of noise-free 

coefficients [ , ]( )j k

fW n . Here, we explain this simple idea 

using well-known hard- and soft-thresholding estimators. 

To simplify the notation, in the following we use the short 

notation [ , ] [ , ] [ , ]θ ( ),  ( ),  ( )j k j k j k

f g NW n x W n v W n    for 

estimation purposes in the NSCT domain. The hard-

threshold function (also called the shrinkage function) 

provides an estimate of the noise-free NSCT coefficient θ 

using the following mapping: 
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where λ is a threshold. On the other hand, the soft-

threshold function for the estimation of θ is:  
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III. A NEW THRESHOLDING ESTIMATOR 

Classical shrinkage functions such as hard- and soft-

thresholding suffer from specific drawbacks in image 

denoising applications. To overcome these drawbacks in 

this section, we propose a new mapping function with two 

optimized thresholds. As mentioned before, in the design 

of thresholding estimators finding the optimum value of 

the threshold is an important task. For example, the 

threshold in the SureShrink method derived by minimizing 

Stein’s unbiased risk estimate in a subband-adaptive 

manner [18]. One other distinguished threshold is the 

BayesShrink, derived from minimizing a Bayesian risk at 

each decomposition level and for every subband 

separately [10]. Here we first describe the BayesShrink 

threshold in brief, originally developed in the wavelet 

domain. 

A. BayesShrink Threshold Selection 

As verified in [10], given that the signal and noise 

wavelet transform coefficients are distributed according to 

generalized Gaussian and Gaussian PDFs, respectively, 

using numerical calculation a nearly optimal threshold 

(called BayesShrink threshold) can be found as: 

 
2

θ
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where θ  is the standard deviation of the noise-free image 

transform coefficients and 
2

  is the variance of noise 

transform coefficients. It is demonstrated that the 

threshold in (7) yields a risk within 5% of the minimal risk 

over a wide range of parameters of assumed prior 

distributions [10]. 

In NSCT domain, the threshold in (7) is calculated 

individually for each pair (j,k) where the indices j and k 

indicate the level and the directional subband numbers, 

respectively. The main difference between wavelet and 

contourlet domains is that the former is an orthogonal 

transform, and therefore it would be enough to estimate 

the noise variance at the highest frequency subband [7]. 

However, since NSCT is not an orthogonal transform, in 

this case we need to estimate the variance of noise in 

different levels and directional subbands individually. To 

make the threshold (7) data-driven, the parameters θ  and 

2

  are estimated from the observed data as follows. The 

noise variance 
2

  is estimated using the median absolute 

deviation (MAD) estimator as: 
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Since the speckle and the image signals are independent 

and the NSCT is a linear transformation, the variance of 

the noisy data can be expressed as [19]: 
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Moreover, the variance of the noisy data 
2

x  can be 

estimated as follows: 
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where M N  is the image size, and 

( ) / ( )x

n

m x n M N   is the estimation of the mean 

value [ ]E x . From (9) and using (8) and (10), the standard 

deviation of the noise-free NSCT coefficients can be 

estimated as: 
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Fig.2. The graph of the thresholding function in Eq. (12). The horizontal 

axis depicts the range of NSCT coefficients in a sample NSCT subband. 

The thresholding functions in Eqs. (5) and (6) are also depicted.
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B. New Threshold Function 

The new mapping function is mathematically 

continuous and creates asymptotically a zero deviation 

between the input and estimated output coefficients when 

input coefficients are large. The proposed mapping 

function is given by: 

 

3

3
2

1

1 1 2

| |

1 2

0,                                    | |

ˆ( ) ( )(| | ),         | |

( )(| | ),        | |

x

x

x sign x x x

sign x x x




   

 


 


   



 

          (12) 

 

Fig.2 depicts a typical graph of the function (12). In 

each subband two threshold values 1λ  and 2λ  are utilized. 

In the interval 1| | λx   all input coefficients shrink to zero 

in accordance with common hard- and soft-thresholding 

estimators. In the interval 1 2λ | | λx  , a mapping similar 

to that of soft-thresholding method is utilized (see Eq. (6)). 

For the interval 2| | λx  , a nonlinear mapping which 

asymptotically converges to ( ).sign x | x |  for large x , is 

employed (note that in all practical situations the condition 

2λ 1  should be held) which is in agreement with zero-

deviation property of hard-thresholding mapping (see Eq. 

(5)). The first threshold 1λ  is selected as the BayesShrink 

threshold in Eq. (7). The second threshold could be in the 

interval  2 min maxλ λ ,λ , where min 1λ λ  and 

max maxλ | | ( 1)x   is the maximum value of NSCT 

cofficients in the considered subband. Clearly, for 

2 maxλ λ , the mapping function in (12) acts as the soft-

thresholding function. Moreover, for 2 minλ λ  the 

mapping function in (12) leads to estimation results which 

is very close to that of the hard-thresholding function. To 

attain the best despeckling performance, the optimum 2λ  

is calculated by solving the following optimization 

problem: 

 

2

2 2

ˆ2 2 θθ
λ

λ̂ arg min σ (λ ) σ                        (13) 

 

where 
2

θ  is the variance of the noise-free NSCT 

coefficients estimated by (11), and 2

θ̂
  is the variance of 

the NSCT coefficients after despeckling. The variance 2

θ̂
  

can be estimated using an equation similar to (10) from 

NSCT coefficients θ̂ . Figs.3 (a) and (b) depict the 

estimation of 2

θ̂
  and the difference 2 2

ˆ 2 θθ
σ (λ ) σ  with 

respect to the treshold 2λ  for a sample subband, 

respectively. Our observations verify that the curve of 2

θ̂
  

versus 2λ  is always decreasing when the threshold 2λ  

increases. Moreover, there is an optimum threshold value 

2λ  which satisfies the condition 2 2

ˆ 2 θθ
σ (λ ) σ ε   for a 

predefined small tolerance ε  (see Fig.3 (b)). Since the 

parameter estimation is data-driven, in practice we have to 

solve the problem (13) numerically. To this aim, the 

following bisection-like algorithm is developed to find the 

optimum threshold 2λ  in a target NSCT subband. 

Algorithm 1: 

Input: 
2

min max θλ , λ , , tolerance ε  

Output: opt λ  

1- Set 
2,1 min 2,2 max

ˆ ˆλ λ ,λ λ  . 

2- Calculate the new threshold value
2,1 2,2

2,new

ˆ ˆλ λ
λ̂

2


 . 

3- Use Eq. (12) to despeckle the target subband and 

calculate 2

ˆ 2,newθ

ˆσ (λ ) . 

4- If 2 2

ˆ 2,new θθ

ˆσ (λ ) σ ε   STOP. The solution is 

opt 2,new
ˆλ λ . 

5- If 2 2

ˆ 2,new θθ

ˆσ (λ ) σ  replace 
2,1 2,new

ˆ ˆλ λ  and if 

2 2

ˆ 2,new θθ

ˆσ (λ ) σ  replace 
2,2 2,new

ˆ ˆλ λ . 

Repeat step 2 to step 5. 

 

IV. A COMBINED THRESHOLDING/BAYESIAN DESPECKLING 

ALGORITHM 

In a thresholding method like hard thresholding, it is 

assumed that the small coefficients bellow a given 

threshold are dominated by noise, and therefore such 

coefficients are set to zero. Since edge locations at an 

image are related to large transform coefficient amplitudes, 

the output despeckled image of a hard thresholding 

method still contains a large percent of the original edge 

information as at the noisy image. However, since 

coefficients above the given threshold remains as they 

were, residual noise still presents in the resulted 

despeckled image. On the other hand, although Bayesian 

LMMSE/MAP estimators have great speckle removal 

efficiency they provides a relatively poor edge preserving 

performance especially at high levels of the speckle power 

[20] (our results in rows 1 and 2 in Table 2 
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Fig.3. (a) Variance of the NSCT despeckled coefficients 2

θ̂
 , and (b) the 

difference between the variance of NSCT despeckled coefficients and the 

estimated variance of noise-free NSCT coefficients, 2 2

ˆ 2 θθ
σ (λ ) σ , 

versus 2λ  for a sample subband. 

also confirm this claim). In this section, we aim at joint 

exploiting of the good edge preserving performance of 

thresholding methods and great speckle removal 

efficiency of Bayesian estimators, to design a more 

powerful despeckling algorithm. 

A. Low-Complexity Bayesian LMMSE/MAP Estimators 

Since the noise-free image signal and speckle are 

uncorrelated from Eq. (1) the LMMSE estimation of the 

noise-free image denoted by [ , ]ˆ ˆ ( )j k

fθ W n  can be 

expressed by [8]: 

 

 
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2

2 2

cov( , )ˆ [ ] [ ]
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x
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

                   (14) 

 

where [ , ]( )j k

gx W n  and
[ , ] ( )j k

NW n  . In [19] it is 

demonstrated that for the noise component we have 

[ ] 0E  , and therefore from (4) we obtain [ ] [ ]E E x  . 

As evident from (14), the LMMSE estimation only 

depends on the first and second order moments of the 

image and noise signals. In subsection 3.1 the procedures 

to estimate the statistical moments 
2[ ],E x  , and 

2

 , 

have been discussed. 

As in [17], to limit the computational cost and also to 

attain a closed-form solution for the Bayesian MAP 

estimation, we utilize the Laplacian and Gaussian 

distributions for the NSCT coefficients of the noise-free 

image and noise signals, respectively, as follows: 
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          (15) 

 

where [ ] [ ]E E x   . Using (15), the MAP estimator 

for the noise-free component θ is given by [17]: 
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            (16) 

B. Despeckling Algorithm 

In the proposed despeckling algorithm depicted in Fig.4, 

the LMMSE/MAP and thresholding estimators are first 

separately utilized to produce two despeckled images 

denoted by 1x̂  and 2x̂ , respectively. Then, based on the 

edge information of the pixel positions, these two images 

are combined and the despeckled output image is 

constructed. For the edge detection, we use of the Canny 

method [21]. The algorithm consists of the following basic 

steps: 

Algorithm 2: 

Input: Noisy Image (X) 

Output: Denoised Image (Y) 

1. Extract the edge information at the noisy input image 

(it is denoted by EdgeX ). 

2. Apply NSCT to decompose the input noisy image 

into sub-bands. 

3. Estimate the statistical required parameters and 

calculate the optimum threshold. 

4. Implement the LMMSE/MAP Bayesian and 

thresholding estimators separately over the NSCT 

coefficients. 

5. Apply inverse NSCT to obtain the output pixel-

domain images from the LMMSE/MAP estimator 

(
1X̂ ) and the hard thresholding estimator (

2X̂ ). 

6. At pixel position n=[n1,n2], decide based on the edge 

information Edge ( )X n  as follows: 

 If position n is an edge pixel, set 
2

ˆ( ) ( )Y n X n . 

 If position n is a pixel in smooth region, set 

1
ˆ( ) ( )Y n X n . 
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Fig.4. Flowchart of the proposed combined despeckling algorithm. Here, 

the edge information of the pixel positions in the original noisy image is 

utilized to select the final pixel element of the despeckled image from the 

outputs of thresholding and Bayesian estimators. 

 

V. EXPERIMENTAL RESULTS 

In this section, experimental results are provided and 

compared with other depeckling methods with 

approximately the same computational burden. The 

performance assessment results are presented for real SAR 

images with natural speckle noise. In NSCT 

implementation we use four scales and 4, 4, 8, 8 directions 

in the scales from coarser to finer, respectively. Moreover, 

in applying a thresholding method in the NSCT domain 

the denoising operation is performed over coefficients of 

high-frequency subbands. For the LMMSE and MAP 

estimators, we use a local window with dimension 11×11 

to calculate the local variance of the noisy data as in [22]. 

A. Quality Assessment Criteria for Despeckled Images 

In the literature, several metrics for image quality 

evaluation are proposed that can be utilized to 

quantitatively assess filtered images. These metrics cover 

various aspects of denoising algorithms such as noise 

reduction, edges and feature preservation [23]. The 

equivalent number of looks (ENL) is defined as follows: 

 

 
2

ˆmean( )

ˆvar( )

H

H

f
ENL

f
                          (17) 

 

where ˆ
Hf  refers to the despeckled image at the selected 

homogeneous region. The ENL of the filtered SAR image 

is compared with respect to the ENL of the original noisy 

image. The ENL is a measure of speckle removal ability 

of the applied algorithm such that a higher ENL indicates 

a better despeckling efficiency. 

In addition to speckle removal capability, another 

metric which is utilized to represent the edge preservation 

capability of the despeckling technique is the edge save 

index (ESI) [24]. ESI indicates the ratio between the 

gradient of the filtered image and the original (noisy) 

image edges and its range is [0,1]. This metric can be 

computed in both horizontal (ESIh) and vertical (ESIv) 

directions of the despecking algorithm as follows: 
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where f̂  is the denoised image and of  refers to the 

original (noisy) image. A larger ESI indicates that the 

original image’s edges have been preserved better after 

speckle removal. 

B. Results for true SAR images 

For experiments, we consider three SAR images in 

amplitude format taken with different number of looks: (i) 

KOMPSAT-5 one-look image of Sydney [25], (ii) original 

COSMO-SkyMed 4-look StripMap image [23], and (iii) 

original 5-look ERS-2 image [23] (see Fig.5). Since the 

speckle power in a SAR image is conversely proportional 

with the number of looks, naturally a one-look image is 

contaminated with a more powerful speckle. For all 

images, the ENL and ESI parameters are computed as 

follows. To calculate the ENL, for each test image a 

homogeneous region in the image is selected, indicated in 

the red box in Fig.5. The ESI parameters are calculated 

over the whole image. The despeckling results for 

thresholding algorithms are reported in Table 1. For the 

performance evaluation purposes, the results are also 

reported for several existing thresholding estimators 

previously presented in the literature. Since the 

performance of the Hashmi’s thresholding function [7] 

depends on the internal parameter β, we depict its results 

for three different β.  

As evident from Table 1, there is a basic tradeoff 

between the performance metrics ENL and ESIs for 

different thresholding functions. This means that an 

estimator that increases the ENL in comparison with the 

reference estimators such as soft-thresholding (ST) and 

hard-thresholding (HT), it essentially decreases the ESI 

parameter. For instance, both Zhang [13] and Nasri [14] 

estimators provide better ESI parameters w.r.t the HT 

estimator, however the latter produces a higher ENL  
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metric. In comparison with other existing thresholding 

estimators, in general our estimator provides a better 

tradeoff between the performance metrics ENL and ESI. 

For example: (i) The ENL of the proposed thresholding 

function and ST are approximately the same for different 

test images, however the former estimator leads to higher 

values of ESIs; (ii) Both the ENL and ESIs metrics of the 

proposed estimator are better than that of the Hashemi’s 

estimator with β=1.5; (iii) The proposed estimator acts 

better when compared with Chuia’s estimator for both 4 

and 5-look SAR images, however in case of 1-look image, 

it only provides a better ENL parameter. 

In Table 2 we report the despeckling results of the 

proposed combined algorithm in Fig.4 in addition to the 

results of pure LMMSE and MAP estimators. The 

combined schemes are specified by the two part names. 

For example, the name HT–LMMSE refers to the 

combination of the HT and the LMMSE estimators, and 

the name Pro–LMMSE (MAP) refers to the combination 

of the proposed thresholding method and the LMMSE 

(MAP) estimator in Fig.4. By comparing the results of 

pure LMMSE and MAP estimators in Table 2 with those 

reported in Table 1, one can observe that when the speckle 

power is higher in the test image (i.e., the one-look image), 

the pure LMMSE and MAP estimators produce larger 

ENL values w.r.t. all thresholding estimators. Of course, 

for the test images with lower speckle power (e.g., the 5-

look image), still the proposed thresholding estimator 

provides a higher ENL value w.r.t. the Bayesian 

estimators. We should also note that the best edge 

efficiency (higher ESI values) is always produced by the 

HT estimator in Table 1. 

Moreover, from the results in Table 2 it is evident that: 

(i) the combined HT–LMMSE scheme produces the best 

ESI results in all cases of the test image. This is quite 

expected because the HT estimator has the best edge 

preserving efficiency (higher ESI values) among all other 

thresholding estimators (see Table 1); (ii) when the 

speckle power is high  

 

           
   (a)                                                                       (b)                                                                        (c) 

Fig.5. (a) KOMPSAT-5 one-look image taken over Sydney. (b) Original COSMO-SkyMed 4-look StripMap image. (c) Original 5-look ERS-2 image 

of Florence. 

Table 1. Speckle noise reduction results for three different real SAR images using different thresholding estimators. 

Image Under Test one-look KOMPSAT-5  4-look COSMO-SkyMed 5-look ERS-2 

 ENL ESIh ESIv ENL ESIh ESIv ENL ESIh ESIv 

Original Image 2.6 1 1 15.06 1 1 25.37 1 1 

Hard Thresholding (HT) 31.59 0.864 0.862 86.94 0.502 0.607 50.30 0.458 0.471 

Soft Thresholding (ST) 45.91 0.495 0.491 90.54 0.311 0.342 63.52 0.267 0.245 

Zhang-HT [13] 31.72 0.855 0.851 86.98 0.502 0.607 50.71 0.458 0.471 

Zhang-ST [13] 42.00 0.506 0.504 90.06 0.316 0.348 62.74 0.273 0.253 

Nasri [14] 38.34 0.764 0.761 89.09 0.424 0.506 55.25 0.379 0.381 

Chuia [15] 44.45 0.671 0.665 90.40 0.356 0.406 60.11 0.310 0.298 

Hashemi [7]: β=0.5 46.86 0.377 0.374 90.91 0.292 0.306 65.40 0.250 0.223 

Hashemi [7]: β=1.5  43.40 0.561 0.559 90.50 0.320 0.361 62.51 0.275 0.256 

Hashemi [7]: β=2 40 0.601 0.601 90.36 0.324 0.372 61.64 0.278 0.261 

Proposed Thresholding:  45.90 0.587 0.579 90.53 0.389 0.430 63.47 0.336 0.321 
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Table 2. Speckle noise reduction results for three different real SAR images using different combined estimators. 

Image Under Test one-look KOMPSAT-5  4-look COSMO-SkyMed 5-look ERS-2 

 ENL ESIh ESIv ENL ESIh ESIv ENL ESIh ESIv 

Original Image 2.6 1 1 15.06 1 1 25.37 1 1 

LMMSE 47.57 0.577 0.573 89.87 0.445 0.473 56.12 0.411 0.400 

MAP 46.95 0.478 0.476 90.35 0.377 0.402 59.45 0.336 0.318 

Hashemi–LMMSE 

(β=1.5) 
47.57 0.573 0.569 90.23 0.428 0.457 58.02 0.391 0.376 

Hashemi–MAP (β=1.5) 46.91 0.502 0.500 90.46 0.368 0.395 60.37 0.326 0.307 

Chuia–LMMSE 47.57 0.625 0.602 90.26 0.431 0.465 57.79 0.395 0.382 

Chuia–MAP 46.93 0.538 0.536 90.48 0.374 0.405 60.13 0.331 0.314 

Nasri–LMMSE 47.51 0.633 0.630 90.39 0.443 0.481 57.04 0.406 0.397 

Nasri–MAP 46.93 0.568 0.567 90.62 0.394 0.425 59.31 0.345 0.331 

ST–LMMSE 47.54 0.556 0.551 90.20 0.427 0.454 58.11 0.391 0.375 

ST–MAP 46.91 0.484 0.481 90.43 0.367 0.392 60.47 0.326 0.305 

Zhang-HT–LMMSE 47.49 0.558 0.554 90.17 0.428 0.454 58.03 0.391 0.376 

Zhang-ST–MAP 46.90 0.486 0.484 90.40 0.368 0.393 60.38 0.326 0.307 

HT–LMMSE 47.58 0.665 0.662 90.56 0.461 0.503 58.02 0.442 0.456 

HT–MAP 46.97 0.601 0.600 90.79 0.415 0.451 59.74 0.366 0.354 

Pro–LMMSE 47.57 0.576 0.572 90.19 0.436 0.463 57.83 0.381 0.373 

Pro–MAP 46.91 0.505 0.503 90.42 0.378 0.404 59.61 0.336 0.320 

 

(i.e., the one-look image), the combined HT–LMMSE 

scheme also provides the best ENL result w.r.t. other 

combined schemes. This is also quite expected because in 

high speckle power the pure LMMSE estimator creates 

the best ENL result. As a result, in high speckle power 

scenarios the best ENL and ESIs results are provided by 

the H–LMMSE scheme; (iii) When the speckle power is 

low (e.g., 4 and 5-look images), the best ENL result is 

provided by the ST–MAP scheme (60.47) which is 

smaller than that of the proposed thresholding estimator in 

Table 1 (63.47). Hence, in such cases our proposed 

thresholding estimator is the best despeckling algorithm 

among all discussed schemes; (iv) As the final note, we 

observe that the HT-MAP and HT-LMMSE schemes 

produce better ENL and ESI performance w.r.t the pure 

LMMSE/MAP estimators, which in fact confirms the 

efficiency of the combining idea in Fig.4. 

In Fig.6, a visual comparison between the output 

images of the proposed and benchmarking estimators is 

presented for a rectangular selected green area from the 

KOMPSAT-5 one-look image (see Fig.5 (a)). From this 

figure, one can see that the proposed HT-LMMSE scheme 

provides better despeckling results than other despeckling 

methods in terms of visual quality, i.e., it produces a 

smoother image and preserves the edge information more 

efficiently. Moreover, it does not make additional artifacts 

in the despeckled image. 

 

 
(a)                                                             (b)                                                             (c)
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(d)                                                             (e)                                                             (f) 

 

 
(g)                                                             (h)                                                             (i) 

 

 
(j)                                                             (k)                                                             (l) 

Fig.6. Despeckling results for KOMPSAT-5 one-look image: (a) selected green rectangular area from original noisy image (see Fig.5. (a)), (b) hard 

thresholding, (c) soft thresholding, (d) Nasri, (e) Zhang-HT, (f) Zhang-ST, (g) Chuia, (h) Hashemi (β=1.5), (i) proposed thresholding, (j) LMMSE, (k) 

MAP, (l) HT-LMMSE. 

VI. CONCLUSIONS 

In this paper, we have investigated the SAR 

despeckling performance of two classes of low-

complexity denoising algorithms including the 

thresholding and Bayesian LMMSE/MAP estimators. 

Specifically, two efficient denoising algorithms based on 

pure thresholding and combined thresholding/Bayesian 

estimation in the NSCT domain are proposed. In the 

design of the proposed thresholding function, an 

optimization-based threshold selection approach is 

utilized at an adaptive manner. In the proposed combined 

thresholding/Bayesian scheme a multiplexing decision 

mode is devised which decides based on the edge 

information of the image pixels, to select the final pixel 

elements of the despeckled image. The results 

demonstrate that compared to other recent existing 

despeckling estimators with approximately the same 

computational complexity, the proposed thresholding 

estimator provides a better despeckling performance in 

terms of speckle removal (higher ENL) and edge saving 

(larger ESI) efficiencies in test images with low speckle 

power. On the other hand, for the test images with high 

speckle power the proposed combined 

thresholding/Bayesian scheme produces better 

despeckling results. 
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