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Abstract—We present a new technique for content based 

image retrieval by deriving a Local motif pattern (LMP) 

code co-occurrence matrix (LMP-CM). This paper 

divides the image into 2 x 2 grids. On each 2 x 2 grid two 

different Peano scan motif (PSM) indexes are derived, 

one is initiated from top left most pixel and the other is 

initiated from bottom right most pixel. From these two 

different PSM indexes, this paper derived a unique LMP 

code for each 2 x 2 grid, ranges from 0 to 35. Each PSM 

minimizes the local gradient while traversing the 2 x 2 

grid. A co-occurrence matrix is derived on LMP code and 

Grey level co-occurrence features are derived for 

efficient image retrieval. This paper is an extension of 

our previous MMCM approach [54]. Experimental 

results on popular databases reveal an improvement in 

retrieval rate than existing methods. 

 

Index Terms—Peano scan; Optimal scan; Co-occurrence 

matrix; Image query. 

 

I.  INTRODUCTION 

Digital images provide vital, huge amount of 

information and also give more clarity and understanding 

about the object. Today Powerful handy cameras with 

low price, high resolution and huge storage are available 

widely. Today human beings are mostly communicating 

with the help of images due to wide availability of 

internet with huge band width at low price. This has 

given lot of significance and challenges for accurate 

effective and efficient image retrieval. 

In the initial days of image retrieval (IR), images are 

retrieved based on text indexes attached to each image. 

These methods require lot of human interaction and that’s 

why they are not popular. To overcome this, around 

1990’s, IR methods, based on low level features, are 

proposed and named as “content-based image retrieval 

(CBIR)”. The goal of CBIR system is to retrieve set of 

most similar images from the database of images that 

matches closely or exactly with the query image, and this 

matching.The CBIR feature descriptors can be divided 

into three categories: global, regional and local. The local 

features and descriptors exhibit higher discriminative 

power than global features [1]. The global features are 

derived for the entire image and local features are derived 

on local neighborhood patches. The global image features 

are represented by color information by Chen et al. [2] by 

using the image color distributions. Color difference 

histogram (CDH) is designed for color image analysis [3]. 

Wang et al. [4] represented global image information 

effectively based on the texture, color, and shape features. 

The demerit of these global feature methods is, that they 

have not encoded the relationship among local 

neighboring structures and pixels. Region based 

approaches are also proposed for CBIR in the literature 

[5, 6]. Basically these methods divide the image into 

different blocks or regions of fixed size or of different 

sizes. The region based approach [5] requires human 

interaction in the middle of retrieval process. Region 

based CBIR methods also considered the image spatial 

and color arrangements for effective retrieval [6]. These 

region based approaches [5, 6] have shown excellent 

retrieval performance however with high computational 

time and with too many dimensional features. The 

methods based on local features are extensively used in 

various computer vision and image processing 

applications and achived excellent results [ 7-15] The 

local features of image are color, shape, texture, edge and 

etc.… Among these local features the color is the most 

significant and prominent feature and have profound 

impact on human perception. The color based methods 

[16, 17] are very popular in CBIR due to their 

effectiveness and low computational complexity. Texture 

represents prominent local information and texture 

feature represents randomness, coarseness, smoothness 

etc…The popular texture descriptors include gray level 

co-occurrence matrices, the Markov random field (MRF) 

model [18],Gobor filtering [19] and the local binary 

pattern (LBP) [20].In MPEG-7 standard, the texture 

features are derived using homogeneous texture 
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descriptor, texture browsing descriptor and the edge 

histogram descriptor [21]. 

Images are also represented by different types of 

structures or shapes present in the image [22, 23]. The 

popular classical shape descriptors are Fourier transforms 

coefficients [24], Moment invariants [25] and MPEG-7 

es[26]. Further, CBIR models based on local structures 

are very popular in the literature because they describe 

significant features of the image efficiently and precisely 

[ 27, 28, 29, 30, 31, 33]. The Texton co-occurrence 

matrix (TCM) [27] represents the spatial correlation of 

textons, and derives statistical features. The co-

occurrence matrix features are integrated with histogram 

features in Multi-texton histogram (MTH) [28].The color, 

texture, shape information of a micro structure are 

integrated with similar edge orientation in Micro-

structure descriptor (MSD) [29]. The color and texture 

features are extracted on a local basis in Structure 

elements’ descriptor (SED) [30].To compute the uniform 

color difference between two points under different 

backgrounds efficiently, Color difference histogram 

(CDH) [31] is proposed and it combines color features 

edge orientation. Hybrid information descriptors (HIDs) 

extract features among different image feature spaces 

with image structure and multi-scale analysis [32].The 

local directional information from local extrema pattern 

is extracted by using Local extrema co-occurrence 

pattern (LECoP) [33]. The color volume and edge 

information are integrated to notice bar-shaped structures 

for image representation by using saliency structure 

histogram (SSH) [3]. These structure based methods have 

shown promising results in image retrieval, but their 

performance degrades under rotation and scaling. In the 

image retrieval and image classification problems, it is 

not possible to encode the exact information contained by 

an image, using only one type of features such as color or 

texture or structure or shape. Therefore, it becomes 

highly desirable to merge these features in such a way 

that dimensionality should not increase too much. In this 

paper, a novel image feature description method, called 

multi-trend structure descriptor, is proposed for CBIR. 

The proposed method extracts image features from 

multiple perspectives and pays more attention to the local 

spatial structure information. 

The paper is summarized as follows: The related work 

is presented in Section 2. The proposed method is 

explained in Section 3. Experimental results and 

discussions are given in Section 4. Section 5 concludes 

the paper. 

 

II.  RELATED WORK 

The basic unit of any image is the grey level intensity 

of a pixel. And any image is treated as a two dimensional 

array of pixels. A pattern represents a connected 

component, i.e., a set of adjacent pixels with similar 

intensities or range of intensities or attributes. A pattern 

derived on a neighborhood represents a shape. 

Researchers established many methods that derive  

significant features from local neighborhoods especially 

on a 3 x 3 neighborhood [27, 28, 29, 30]. The space 

filling curves or Peano Scans also derive a shape. The 

Peano scans are connected points spanned over a 

boundary and known as space filling curves.  The 

connected points may belong to two or higher 

dimensions. Space curves are basically straight lines that 

pass through each and every point of the bounded sub 

space or grid exactly once in a connected manner. The 

Peano scans are more useful in pipelined computations 

where scalability is the main performance objective [34, 

35, 36] and other advantage of that is they provide an 

outline for handling higher dimensional data, which is 

not easily possible by the use of conventional methods 

[37].The methods based on space filling curves have 

been studied [38] in the literature for various applications 

like CBIR [39, 40, 41], data compression [42], texture 

analysis [43, 44] and computer graphics [45].  

Recently a set of six Peano scan motifs (PSM) over a 2 

x 2 grid is proposed in the literature [46]. The PSMs are 

derived based on the ability of space curves in capturing 

the low level information. The initial point of this PSM 

[47] is fixed and it usually starts from top left corner of 

the 2 x 2 grid. The PSM are given indexes from 0 to 5. 

Each of these six different motifs represents a distinct 

sequence of pixels on the 2 x 2 grid and shown in Fig 1. 

These motifs constructions is similar to a breadth first 

traversal of the Z-tree. A compound string is generated 

using the six motifs, by traversing the 2 x 2 grid based on 

the incremental value of contrast. In Motif co-occurrence 

Matrix (MCM) [47] approach, initially the image is 

transformed into Motif index image, where each pixel is 

assigned with a specific motif index ranging from 0 to 5. 

A co-occurrence matrix is built on motif indexed image 

and the features derived on MCM are used for efficient 

CBIR.   

 

 

Fig.1(a). Primitive motifs initiated from top left most pixel on a 2 x 

2grid. 

 

Fig.1(b). Primitive motifs initiated from top right most pixel on a 2 x 

2grid. 
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Fig.1(c). Primitive motifs initiated from bottom left most pixel on a 2 x 

2grid. 

 

Fig.1(d). Primitive motifs initiated from bottom right most pixel on a 2 

x 2grid. 

 

III.  METHODOLOGY 

To obtain the local features more efficiently than 

MCM, this paper has derived a Local motif pattern (LMP) 

code. The LMP code is derived by computing two 

different PSMs, initiated from two different positions of 

the 2 x 2 grid. The first PSM is computed by initiating 

from top left most corners (Fig. 1 (a)) and the second 

PSM (second type) initiates from bottom right most 

corner of the 2 x 2 grid (Fig. 1 (d)). The PSMs are 

computed by minimizing the variation of local intensities 

among the pixels in a local neighborhood. Each PSM 

generates a motif index ranging from 0 to 5. And based 

on these two different PSMs indexes, this paper 

computed “Local Motif Pattern” (LMP) code in base 6. A 

unique decimal code is derived for LMP, based on the 

two different PSMs on the 2 x 2 grid and the 2 x 2 grid is 

replaced with LMP code. The unique decimal code for 

LMP is generated by multiplying the PSM indexes with 

base 6 and summing them as given in equation 1.  

 

𝐿𝑀𝑃 =  ∑ 𝑚𝑗 ∗  6𝑗−1𝑠
𝑗=1                          (1) 

 

Where mj is the motif index (ranging from 0 to 5) for 

the PSM type j and j ranges from 1 to 2.  The LMP code 

ranges from 0 to 6j-1 and for two different PSMs i.e. j=2, 

the LMP code ranges from 0 to 35. This process is 

repeated on entire image in a non-overlapped manner and 

2 x 2 grid is replaced by the LMP code.  The Fig. 2 

shows the transformation process of the 2 x 2 grid into 

LMP code. The derivation of LMP coded image on a 8x8 

gray level image is shown in Fig.3. The Fig.3(a) displays 

the gray level image. The Fig.3(b) and 3(c) displays the 

two different transformed PSM indexed images. The Fig. 

3(d) displays the final PSM coded image derived from 

the Fig. 3(b) and 3(c), based on equation 1. 

The present paper computed co-occurrence matrix 

(CM) on the transformed LMP coded image. The LMP-

CM derives rich information about the local features of 

the texture.The LMP-CM is constructed using the 

transformed image whose (i, j, k) entry represents the 

probability of finding a LMP code i at a distance k from 

the LMP code j. The LMP-CM is also constructed on the 

query image Q. The main intuition behind this is, to find 

out the common objects i.e. LMP code corresponding to 

the same grid, in between query and database images. 

The spatial relationship between the corresponding LMP 

code with two different scans between query and data 

base images makes the proposed LMP-CM highly 

effective in image retrieval. The proposed LMP-CM is 

highly suitable for CBIR problem because the size of the 

feature vector of LMP-CM is only 36 X 36 irrespective 

of the image size and grey level range of the original 

image.  

The main contributions of this paper are given below: 

 

1. The existing MCM has derived motifs that are 

initiated from only one initial point i.e., top left 

most pixel of a 2 x 2 grid, whereas our proposed 

LMP derives motifs from two different initial 

points on the 2 x 2 grid i.e., top left and bottom 

right pixels. 

2. The existing MCM ranges from 6 x 6, which is 

not able to provide powerful texture 

discriminative information due to low range of 

index values and scanning in one 

direction,whereas the proposed system derives a 

smart unique LMP code ranges from 0 to 62-

1,based on the LMP indexes on each scan. 

3. Our earlier approach MMCM [46] derived co-

occurrence matrix based on two peano scan motifs, 

however MMCM is not derived a unique code. 

4. The derivation of a unique LMP code on a 2 x 2 

grid, made the proposed method equivalent or 

similar to LBP method, which derives a unique 

code on 3 x 3 neighborhoods. 

 
  46 53   

  64 34   

0 7   12 19 

18 12   30 0 

      

0 7   12 19 

18 12   30 0 

index   index 

 0   3  

 *   *  

 60 + 61 =18 

Fig.2. Generation of LMP code for j= 2 (LMPj=2) on a 2 x 2 grid.  
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2 52 36 45 12 52 14 56 

25 45 16 28 59 63 45 25 

42 51 26 35 85 69 42 85 

74 52 16 38 56 92 15 63 

19 63 98 65 78 45 62 36 

52 36 48 59 86 74 15 85 

45 56 58 92 96 36 97 48 

98 41 86 59 93 74 75 23 

(a) An 8x8 image. 

 
 

0 5 2 4 

3 2 5 4 

4 3 4 5 

(b) PSM indexed 

image initiated  

from top left corner 

 

1 5 2 5 

0 0 4 4 

3 1 5 4 

1 5 2 5 

(c) PSM indexed image 

initiated From bottom 

right corner 

 
 

6 35 14 34 

3 2 29 28 

22 9 34 29 

29 34 18 7 

(d) Local motif pattern 

coded image of (a) 

Fig.3.Formation of local motif pattern coded image. 

 

IV.  RESULTS AND DISCUSSIONS 

In this paper the proposed LMP-CM is tested on 

popular and bench mark databases, of CBIR namely, 

Corel 1k [48], Corel-10k [49], MIT-VisTex [50], Brodtaz 

[51] and CMU-PIE [52]. These five data bases are used 

in many image processing applications. The images of 

these data bases are captured under varying lighting 

conditions and with different back grounds. Out of these 

data bases the Brodtaz textures are in grey scale and rest 

of the data bases are in color. The CMU-PIE database 

contains facial images, captured under different varying 

conditions like: illuminations, pose, lighting and 

expression. The natural database that represents humans, 

sceneries, birds, animals, and etc., are part of Corel 

database. The above five sets of different data bases 

contain different number of total images, with different 

sizes, textures, image contents, classes where each class 

consists of different sets of similar kind of images. The 

Table 1 gives overall summary of these five data bases. 

The image samples of these databases are shown from 

Fig. 4 to Fig. 8.  

 

 

Fig.4. Corel-1K database sample images. 

 

Fig.5. Corel-10K database sample images. 

 

Fig.6. The sample textures from Brodtaz database. 
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Fig.7. The sample textures from MIT-VisTex texture. 

The retrieval of images is carried out in the following 

way. The query image is denoted as ‘Q’. After the feature 

extraction from LMP-CM of query image, the n-feature 

vectors of ‘Q’ are represented as VQ = (VQ1, VQ2,..., 

VQ(n-1), VQn ). The extracted n-feature vectors, of LMP-

CM, of each image in the database is represented as 

VDBi = (VDBi1 ,VDBi2 ,...,VDBin ); i = 1, 2,...,   DB. The 

aim of any CBIR method is, to select ‘n’ best images 

from the database image that look similar to query image. 

To accomplish this, distance between the corresponding 

feature vectors of the query and image in the database 

DB is computed. From this, the top ‘n’ images whose 

distance measure is least are selected. This paper used 

Euclidean distance (ED) on the proposed method as 

given below in equation 2.  

ED: 

 

𝐷(𝑄, 𝐽𝑎) =  ∑ |
𝑓𝐷𝐵𝑖𝑗 − 𝑓𝑄𝑗

1+ 𝑓𝐷𝐵𝑖𝑗 + 𝑓𝑄𝑗

|𝑛
𝑗=1                   (2) 

Table 1. Summary of the image databases. 

No.  Name of the 

Database 

Type of database Size of the 

image 

Number of categories/ 

classes/subsections 

Number of 

images per 

category 

Total 

number of 

images 

1 Corel-1k 

[48] 

Natural database: vary 

from humans to 

animals to sceneries 
384x256 10 100 1000 

2 Corel-10k 

[49] 

Natural database: vary 

from humans to 

animals to sceneries 
120x80 80 Vary 10800 

3 MIT-VisTex[50] Texture database 
128x128 40 16 640 

4 Brodtaz640 

[51] 

Texture database:  
128x128 40 16 640 

5 CMU-PIE 

[52] 

Facial images captured 

under varying pose, 

illuminations, 

expression and lighting. 640x486 15 Vary 702 

 

 

Fig.8. The sample facial images from CMU-PIE database. 

Where 𝑓𝐷𝐵𝑖𝑗
 is jth feature of ith image in the database 

|DB|. 

To measure the retrieval performance of the proposed 

LMP-CM, this paper computed the two mostly used 

quality measures, average precision/average retrieval 

precision (ARP) rate and average recall/average retrieval 

rate (ARR) as shown below: For the query image Iq, the 

precision is defined as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∶ 𝑃(𝐼𝑞 ) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 
  

(3) 

 

𝐴𝑅𝑃 =  
1

|𝐷𝐵|
∑ 𝑃(𝐼𝑖)

|𝐷𝐵|
𝑗=1  |                    (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 ∶ 𝑅(𝐼𝑞) = 

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 
 

                     (5) 

 

𝐴𝑅𝑅 =  
1

|𝐷𝐵|
∑ 𝑅(𝐼𝑖)

|𝐷𝐵|
𝑖=1                           (6) 
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(a) ARP for Corel 1k database. 

 

 
(b) ARR for Corel 1k database. 

Fig.9. Comparison of proposed LMP-CM descriptor with SLBP, LBP, 

LDP, LTP, LTrP and MMCM over Corel-1k database using (a) ARP (b) 

ARR. 

 
(a) ARP for Corel 10k. 

 

 
(b) ARR for Corel 10k database.  

Fig.10. Comparison of proposed LMP-CM descriptor with SLBP, LBP, 

LDP, LTP, LTrP and MMCM over Corel-10k database using (a) ARP 

(b) ARR. 

 
(a) ARP for MIT-VisTex texture database.  

 

 
(b) ARR for MIT-VisTex texture database.  

Fig.11. Comparison of proposed LMP-CM descriptor with SLBP, LBP, 

LDP, LTP, LTrP and MMCM over MIT-VisTex texture database using 

(a) ARP (b) ARR.
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(a) ARP for Brodtaz texture database. 

 

 
(b) ARR for Brodtaz texture database. 

Fig.12. Comparison of proposed LMP-CM descriptor with SLBP, LBP, 

LDP, LTP, LTrP and MMCM over Brodtaz texture database using (a) 

ARP (b) ARR. 

 
(a) ARP for CMU-PIE database. 

 
(b) ARR for CMU-PIE database.   

Fig.13. Comparison of proposed LMP-CM descriptor with SLBP, LBP, 

LDP, LTP, LTrP and MMCM  over CMU-PIE  database using (a) ARP 

(b) ARR. 

The proposed LMP-CM, descriptor is compared with 

the retrieval results of the popular descriptors such as our 

earlier approach MMCM [46] and other popular local 

based  approaches like: local binary pattern (LBP) [22], 

local ternary pattern (LTP)[53], semi-structure local 

binary pattern (SLBP)[54], local derivative pattern (LDP) 

[55], local tetra pattern (LTrP) [56] and the results plotted 

from Fig.9 to 13 using ARP and ARR on each individual 

database. The following points are noted down. 

 

1. Out of the considered five databases, the Corel 1k, 

MIT-Vistex and Brodtaz databases has shown high ARP 

and ARR further these databases exhibited more or less 

similar retrieval rates. The main reason for this is the 

Corel 1k, MIT-Vistex and Brodtaz databases contains 

more images per category which is very high and also 

these database contains only few categories of images.  

2. The Corel 10K database exhibited a low ARP and 

ARR on all existing methods. The reason for this, the 

complex set of images, more number of categories and 

few numbers of images per category.  

3. The proposed LMP-CM exhibited a high retrieval 

rate than other existing methods. The proposed method 

has shown high precession rate, when compared to SLBP, 

LBP and LDP approaches on all databases. 

4. An increase of 4% and 8 % in precession rate is 

recorded on proposed method when compared to LTrP 

and LTP methods respectively.  

5. The performance of our method is clearly better than 

the SLBP, LBP, and LDP descriptors over all the 

databases considered (both natural and human faces) 

using both ARP and ARR quality metrics. 

 

 

 

 

 

 



 Image Retrieval based Local Motif Patterns Code 75 

Copyright © 2018 MECS                                                        I.J. Image, Graphics and Signal Processing, 2018, 6, 68-78 

6. The proposed LMP-CM has exhibited a higher APR 

and ARR when compared to our earlier MMCM method. 

On average the proposed LMP-CM has shown 

approximately 2 to 6% higher retrieval rate than MMCM.  

7. The main reason for high performance of the 

proposed LMP-CM method is due to the derivation of 

LMP code from two different MCMs starting from the 

two different positions of the 2x2 grid.  
 

 
(a) Corel 1k. 

 

 
(b) Corel 10k. 

 

 
(c) MIT-VisTex texture database . 

 

 

 
(d) Brodtaz texture database. 

 

 
(e) CMU-PIE database. 

Fig.14. Top 20 retrieved images of considered databases.  

Fig.14 shows the top 20 retrieved images for one query 

image from each database by the proposed LMP-CM 

descriptor and the following are noted down.  

The precision obtained by the proposed LMP-CM for 

Fig.14 is 89.96%, 44.20%, 89.63% , 88.66%,and 94.62% 

over Corel-1k, Corel-10k, MIT-VisTex, Brodtaz and 

CMU-PIE databases respectively. The performance of the 

proposed descriptor is far better than other descriptors 

over the natural and textural databases. 

Table 2. The dimensions of each descriptor. 

 
 

 

 

S.No Descriptors  Dimensions 

1 SLBP[62] 256 

2 LBP [31] 256 

3 LTP[63] 2x256 

4 LDP [61] 4x256 

5 LTrP [64] 13x256 

6 MMCM [54] 24 x 24 

7 Proposed 

LMP-CM 

36 x 36 
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The dimension of each descriptor considered and the 

proposed LMP-CM is summarized in Table 2. The 

dimension of LMP-CM is lower than all the recent and 

state-of-the-art descriptors and the retrieval rate of LMP-

CM is better.  

 

V.  CONCLUSIONS 

We have presented an extended version of MCM and 

our earlier approach MMCM for image retrieval. The 

proposed LMP-CM captured more discriminative texture 

information by deriving a unique PSM code based on two 

different directions of PSM. The range of LMP code will 

be 36 only (0 to 35), thus it is easy to compute GLCM 

features on this and the dimension of LMP-CM will be 36 

x 36. The LMP-CM is easy to understand, implement and 

are efficient in terms of storage requirement and 

computational time. Thus the proposed LMP-CM 

features reduce the computation time of the similarity 

measure and are least to any other descriptor (Table 2). 

The LMP-CM method is invariant to any monotonic 

mapping of individual color planes, such as gain 

adjustment, contrast stretching, and histogram 

equalization. The experimental results reveals the 

superiority of the proposed method over the existing 

methods.  
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