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Abstract—Phonocardiograms (PCG) Phonocardiograms 

(PCG) are recordings of the acoustic waves produced by 

the mechanical action of the cardiac system. This makes 

PCG an effective method for tracking the progress of 

heart diseases. A PCG signal, in the healthy case, consists 

of two fundamental sounds s1 and s2. These two elements 

are derived from the mechanical functioning of the heart. 

A triple rhythm in diastole is called a gallop and results 

from the presence of a heart sound s3, s4 or both. An 

Extra Heart Sound  (EHS) may not be a sign of disease. 

However, in some situations it is an important sign of 

disease, which, if detected early, could save lives. The 

major aim of this study is to propose cyclostationary and 

Gabor kernel based mathematical model for extra heart 

sounds. The ambition behind it is to present a framework, 

making use of cyclic statistics for robustness to low SNR 

conditions, which allow the detection of EHS s3 and s4 

and hence the early identification of some heart diseases. 

For this reason, the proposed model is compared with the 

one of normal PCG signal [17] in order to set up the 

differences allowing the early detection of EHS. Lastly, 

this research is proved on experimental data sets. 

 

Index Terms—Extra heart sound, phonocardiogram 

modeling, cyclostationarity, cyclic statistics, Gabor 

kernel, diseases of heart. 

 

I.  INTRODUCTION 

The analysis of cardiac signals by auscultation, based 

solely on human hearing, remains insufficient for a 

reliable diagnosis of heart diseases and for a clinician to 

obtain all qualitative and quantitative information about 

cardiac activity. This information such as the temporal 

location of the heart signals, the number of their internal 

components, their frequency content, the importance of 

diastolic breaths and systolic devices can be studied 

directly on the Phonocardiogram (PCG) signal by the use 

of signal processing techniques. PCG is an effective 

method for tracking the progress of the patient’s diseases. 

Auscultation has long been important for the heart 

diagnosis. Heart sounds heard by a stethoscope can be 

seen as mechanical instructions that indicate the 

functioning of the cardiac system. A PCG signal, in the 

healthy case, consists of two fundamental sounds s1 and 

s2 as shown in Fig. 1 which are derived from the 

mechanical functioning of the heart. The heartsounds1, 

corresponding to the beginning of the ventricular systole, 

is due to the closure of the atrio-ventricular valves. 

Where the heart sound s2, marking the end of the 

ventricular systole and signifying the onset of the diastole, 

corresponds to the closure of the aortic valve and the 

pulmonary valve. It is well known that s1 and s2 are 

defined as non-stationary signals, and are located in the 

low frequency range, approximately between 30 Hz and 

75 Hz [5, 10, 14, 15, 17, 18]. A triple rhythm in diastole 

is called a gallop and results from the presence of a heart 

sound s3, s4 or both. In particular, the third heart sound s3 

appears in early diastole, 120 to 180 ms after s2, whereas, 

the fourth heart sound s4 appears in presystolic portion of 

diastole. The frequency of s3 is between 30 and 50 Hz. s4 

is low frequency with respect to s3 with frequency 

between 20 and 30 Hz. The frequencies can occur only 

under very precise conditions (Childhood or old age as 

signs of any pathology) [2, 11]. It should be noted that s3 

and s4 have significantly smaller amplitudes and low 

frequencies with respect to the normal signals. An Extra 

Heart Sound (EHS) may not be a sign of disease. 

However, in some situations it is an important sign of 

disease, which, if detected early, could save lives. 

Unfortunately EHS cannot be correctly detected by 

ultrasound. Hence the need of EHS early detection 

approaches. Several studies have been interested in the 

analysis of PCG signals; however, most of them are 

based on the occurrence of time-frequency analysis or 

scale [6, 7, 8]. To the best of our knowledge, all these 

tools do not completely exploit the periodic behavior of 

PCG signals due to the functioning of the heart. As a 

matter of fact, the heartbeats are in the form of a series of 

repeated mechanical actions. The repetition is almost 

periodic. In other words, the vibration waves records are, 

in a sense, cyclostationary [1, 9, 12, 13, 16]. Hence, the 

need for mathematical models describing the functioning 

mechanism of the heart sounds is compulsory. This 

article aims to present a cyclostationary model for PCG 

signals with extra heart sounds. This model is extensively 

developed in order to evaluate to what extent it is 

adaptable to the heart functioning. The major motivation 

behind the new model is to introduce a framework for an 

accurate characterization of PCG signals with extra heart 

sounds and thereby an early detection of certain abnormal 

heart functions. For this reason, the EHS model and its 
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theoretical development are systematically compared 

with the one of healthy PCG signal [17] in order to 

recognize the feature allowing the early identification. 

The key idea is the fact that cyclic statistics are not 

influenced by stationary additive noise. The choice of 

cyclic statistics is justified by the wide-sense 

cyclostationarity property of the proposed model as it is 

shown in section 3. 

A stochastic signal ( )x t  of mean { ( )}x t  and time-

varying autocorrelation function 

 *( , ) ( / 2) ( / 2) ,xR t x t x t     where the 

superscript * denotes complex conjugation, is said to be 

wide-sense cyclostationary with T0-period if both 

{ ( )}x t  and ( , )xR t   are periodic over time t with T0-

period [3], i.e.  0{ ( )} ( )x t x t T   for all t

0( , ) ( , )x xR t R t T   for all t, τ. The time-varying 

autocorrelation function is, thus, periodic over t and can 

be expanded in Fourier series:  
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0/ ,n T n  are the cyclic frequencies. The Fourier 

transforms the cyclic autocorrelation function with 

respect to the cyclic frequency α and gives rise to the 

spectral correlation density function:  
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This article is organized as follows: Section 2,  

describes the modeling of PCG signals. Section 3 is 

concerned with the analytical study of the proposed 

model, some simulation results are also presented in this 

section in order to confirm the theoretical analysis. 

Section 4 focuses on the validation of the computed 

cyclic statistics on synthetic and experimental PCG 

signals. Finally, Section 5 is dedicated to conclusions. 

 

II.  MODELING OF PCG SIGNALS WITH EXTRA HEART 

SOUNDS 

As mentioned in our previous work [17], the Gauss 

kernel, which is actually a Gaussian-damped sinusoidal 

wave, offers the possibility, through five adjustable 

parameters ( , , , and )i i i i ia f   , to definitely recreate 

the shape of any heart beat. The model of (1) makes use 

of two Gauss kernels to represent each heart sound s1 and 

s2. Therefore, one normal heart beat of PCG signal can be 

modeled with four kernels as follows (Fig. 1): 
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Where 

 

 if and i  are respectively the frequency and the 

phase shift of the sinusoid terms. 

, ,i i ia and    are respectively the amplitude, the 

center and the width which represent the parameters 

of the Gaussian terms. 
  is a superscript indicating the two Gabor kernels 

which are used for modeling each heart sound, with 

1 2 1 1 2 2[ ; ] [ , ; , ]s s s s s s      . 

 

 
Fig.1.Example of healthy PCG signal for a single heart cycle of (1). 

As a matter of fact, the signal model of (1) can be 

extended to take into account the presence of an EHS s3, 

s4 or both (Fig. 2, (c, e, g)) as follows: 
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The binary parameter qi is introduced to control the 

presence of s3 and s4 so that 

3 3 3 4 4 4 .q q q and q q q         

Thus, 

 

 3 1q   (resp. 4 1q  ) implies the presence of s3 

(resp.s4). 

 3 0q   (resp. 4 0q  ) implies the absence of s3 

(resp.s4). 

 

Unfortunately, the model of (2), which represents a 

PCG signal with extra heart sounds for a single cardiac 

cycle, is not enough for a full characterization of the heart 

in a limited time. Thus, the idea of the modified model to 
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achieve a whole description is to jointly combine Gabor 

kernels, for modeling the shape of heart sounds and extra 

heart sounds, with some randomness to reproduce the 

fluctuations occurring in the heart functioning for every 

cardiac cycle. This combination leads to the model given 

by the following relationship: 
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(3) 
 

Where 

 

 the index n stands for the cardiac cycle. 

 T is the cardiac cycle duration. 

 ( )hz t presents the healthy PCG signal. 

 ( )ez t presents extra heart sounds. 

 

The random behavior in ( )z t  comes simultaneously 

from the parameters
,i na and 

,i n . This means that the 

amplitude and the phase for each heart sound might 

change for any cardiac cycle. Where 
,i na is the amplitude 

of Gabor kernel, for the ith  heart sound and the nth

cardiac cycle, which follows a Gaussian law 
2( , )ai ai  whereas the phase 

,i n  follows a uniform 

law inside the interval 
,0 ,0[ , ]i i      with

[0, ]   and 
,0i the ith  initial phase. An example of 

the proposed model of (2) is given by Fig. 2 where the 

parameters are shown in Tab. 1.  

Moreover 1 , 100T s K     cardiac cycles and the 

sampling frequency sf is set to. 1000 HZ. 

Table 1. Mean values of the phonocardiogram (PCG) model parameters 

according to (2). 
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0.02 
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7 
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π
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6 
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− 0.8 

 

0.15 

 

0.0716 
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7 
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π
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5 
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+ 0.8 0.10 0.3836 0.014

3 
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2 
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3 
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9 

1.14 π
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7 
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5 

1.08 π
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35.9

1 

𝑠4
+ 0.25  0.01 0.9231 0.015

9 

1.01 π
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27.8

1 

𝑠4
− 0.35  0.06 0.9358 0.017

5 

1.05 π
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  (a)                            (b)  

 
           (c)                        (d)  
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Fig.2. Examples of a PCG signals with extra heart sounds and envelope of (3), for K = 100 cardiac cycles: (a, b) healthy PCG signal, (c, d) EHS PCG 

signal (s3), (e, f) EHS PCG signal (s4), (g, h) EHS PCG signal (s3 and s4). 

 

The objective of this study is to make use of signal 

processing tools to characterize PCG and EHS signals in 

order to correctly distinguish and identify them. The 

literature of signal processing offers several tools, but in 

our study, we will mainly be focusing on: the Root Mean 

Square, the envelope and the region (which is based on 

cyclic spectra as shown in section3. 

The first tool to be tested is Root Mean Square (RMS) 

in the time domain which is given as:  

 

2

0

1
lim | ( ) | .xrms x t td


   

 

Applying the RMS to the signals of Fig. 2 gives the 

following values 

 

3

4 3 4

( )

( ) ( )

(rms 0.147, rms 0.181,

rms 0.165, rms 0.185).

healthy EHS s

EHS s EHS s s

   
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Of course, the signals have different RMS values even 

close. This last point presents the main drawback of the 

RMS; actually additive noise can increase the RMS and 

then make the comparison senseless. It should be noted 

that the RMS presents another limitation which concerns 

its dependency on the person’s subject of measure, as 

different persons with or without heart abnormality can 

have almost the same value. In order to make the RMS 

robust we need to follow its evolution for the same 

person. Consequently, this makes the RMS a relative and 

not a standard method. Another signal processing tool to 

test is the envelope. The envelopes of PCG and EHS 

signals are reported in Fig. 2. It is clear, from Fig. 2, that 

the four signals have different envelopes. Hence, we 

come to the conclusion that the envelope is better than the 

RMS, since it is an appropriate tool to differentiate 

between healthy PCG and each EHS. The major 

advantage of the envelope is the fact that it presents a 

unique and independent signature for a given EHS for 

any person. Hence, this makes the envelope a standard 

and independent tool. 

 

III.  CYCLOSTATIONARY ANALYSIS OF THE PROPOSED PCG 

MODELS WITH EXTRA HEART SOUNDS 

A.  1st-Order and 2sd-Order Moments of t he Proposed 

Model 

Let’s examine the wide-sense cyclostationarity for the 

proposed model of (3) from the previous definitions.  

We first compute the 1st-order moment of ( )z t  and, 

then, the time-varying autocorrelation function. The mean 

{ ( )}z t is given by: 

 
           (e)                          (f)  

  
(g)                         (h) 
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Where: 

 

 ( )
hzm t is the 1st-order moment of the ( )hz t  

(healthy PCG signal). 

 ( )
ezm t is the 1st-order moment of the ( )ez t  (extra 

heart sounds). 

 

Hence ( )z t is 1st-order cyclostationary as ( )zm t is  

T-periodic. It should be noted that ( )zm t converges to 

0 when  moves toward π as [0, ]   . 

Besides, the computation of the time-varying 

autocorrelation function, of the PCG signal after 

removing the first order cyclostationarity, is given by the 

following relationship: 

 
2 2 2

,0 2 2
[ ; ]1 2

( , )
2 2

,0 2
[ ; ]3 4

( )sin(2 )
cos(2 ) cos(4 ( ) 2 ) exp exp( )

2 2 4

( )sin(2 )
cos(2 ) cos(4 ( ) 2 ) exp

2 2

z

ai i
i i i

i s s i i

R t

ai i
i i i i

i s s i

t nT
f f t nT

t nT
q f f t nT



  
   

  

 
   

 

 



 

    
          

   

   
  








  

  

2

2

( , ) ( , )

exp( )
4

h e

n

z z

i

R t R t 





 

 
 
  

 
 

  
  

                        (4) 

 

( , )zR t  is T-periodic as well as { ( )}x t Therefore, 

we come to the conclusion that the signal of the proposed 

model of (3) is well wide-sense cyclostationary. The 

additive term ( , )
ezR t  in (4) could be used to identify 

extra heart abnormalities as it has a different signature of 

the autocorrelation function of healthy PCG signal as is 

shown in Fig. 3which reports numerical estimation of

( , )zR t  , for 0s   of the synthetic signals of Fig. 2. 

 

 
 

 
(a)                         (b) 

 
(c)                                          (d) 

Fig.3. Numerical estimate of the time-varying autocorrelation function ( , )zR t  , for τ = 0 s, of the synthetic signals of Fig. 2: (a) ( , )zR t  of 

healthy PCG signal, (b) ( , )zR t  of PCG signal with s3, (c) ( , )zR t  of PCG signal with s4, (d) ( , )zR t  of PCG signal with s3 and s4. 
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B.  Cyclic Autocorrelation FunctionModel ( )zR   

Based on the work of Gardner [3], the cyclic 

autocorrelation function can be defined by performing the 

Fourier transform of ( , )zR t  with respect to t. The 

Fourier transform of ( , )zR t  of (4) leads to: 
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With (.) denotes the Dirac’s delta. The most 

important aspect to be observed for ( )zR  is the fact that 

it is α-discrete and nonzero only for the harmonics of
1T 

. 

This result confirms the second order cyclostationarity of 

the model of (3). It should be noted that, the term 
2

2

ii a

T

  increases when
ia increases too, this will 

lead to an increase of second order cyclostationarity. 

However, sin(2 )

2








decreases when  goes toπ which 

leads to a decrease of cyclostationarity. The additive term 

( )zR  in (5) corresponds to the cyclic autocorrelation function 

for EHS which is cyclostationary as the same as cyclic 

frequencies ( )zR  cyclic autocorrelation function for 

healthy PCG signal. This will result in an increase of

( )zR  across the α-axis as it is shown in Fig. 4. This last 

point might be also used to identify extra heart 

abnormalities. Fig. 4 reports numerical estimation of

( )zR  of the synthetic signals of Fig. 2. As expected, it 

shows that the cyclic autocorrelation is nonzero only for 

the harmonics of
1T 

i.e 1 Hz which justifies the previous 

theoretical results. 
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Fig.4. Numerical estimation of the cyclic autocorrelation function ( )zR  of the synthetic signals of Fig. 2. The first column represents the

( )zR  and the second column represents an up-scaled of ( )zR  in the α-plan for τ = 0 s: 1st range- healthy PCG signal, 2nd range- PCG signal 

with s3, 3
rdrange- PCG signal with s4, 4

thrange- PCG signal with s3 and s4. 

 

C.  Cyclic spectral autocorrelation function ( )zS f  

The cyclic spectral autocorrelation function ( )zS f

sets the bases for another important second-order cyclic 

statistic allowing the characterization in the (f, α)-plan. 

As defined by Gardner [4], the cyclic spectral correlation 

of a cyclostationary random process in the wide sense is 

the Fourier transform of its cyclic correlation function 

with respect to τ. The Fourier transform of ( )zR  of (5) 

leads to: 

 

 

2 2 2 2 2 2 2 2 24 ( ) 4 ( ) 2
2 2

2 2 2 2 2 2 2 2 22 24 ( 2 ) 2 ( 2 ) ( 2 ) 2 ( 2 )[ ; ] ,0 ,01 2

( )

?
2 sin 2

2
z

f fi f fi ji i i i

i ai

j jf f j f f j fi s s i ii i i i i i i i i

S f

e e e e

T
e e e e e e e



        

            

 






     

          



 
  

 
  

 

 
 
 




     

 

1

2 2 2 2 2 2 2 2 24 ( ) 4 ( ) 2
2 2

2 2 2 2 2 2 2 2 22 24 ( 2 ) 2 ( 2 ) ( 2 ) 2 ( 2 )[ ; ] ,0 ,03 4

)

2 sin 2

2

f fi f fi ji i i i

i ai
i

j jf f j f f j fi s s i ii i i i i i i i i

nT

e e e e

q
T

e e e e e e e

        

            



 







     

          



  
 

 



  
   

  
  

 
 

1

( ) ( )

(6)

( )

h e

n

z zS f S f

nT

 

  

 

 
 
 
 
 
 

 
 
 

 
 
  

 

It should be noted that for the zero cyclic frequency i.e. 0  , the later relationship is reduced to the power 

spectrum density: 
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 
0

2 2
2 2 2 2 2 2 2 2 2 2 2 24 ( ) 4 ( ) 4 ( ) 4 4,0 ,0

[ ; ]1 2
( )

2 2
2 2 2 2 2 24 ( ) 4 ( )

[ ; ]3 4

sin(2 )

2 2

sin(2 )

2 2

z

j ji a f fi f fi f f j f j fi ii i i i i i i i i

i s s

S f

a i f fi f fii i i
i

i s s

e e e e e e e
T

q e e e
T

          

   

  



  



       

 



    

 

 
     

 












 
0 0

2 2 2 2 2 24 ( ) 4 4,0 ,0

( ) ( )
h e

n

z z

j jf f j f j fi ii i i i i i

S f S f

e e e e
        

 

 
 
  

 
  

  
   

As it is revealed by the formula (6), the cyclic spectral 

correlation ( )zS f is α-discrete and is nonzero only for 

1nT   with resonances around 2 if . Furthermore, 

( )zS f is f-continuous and presents peaks in the 

frequencies if , with 
1 2 3 4[ ; ] [ ; ]i s s s s     , where if  

represents the characteristic frequencies. Fig. 5 reports 

numerical estimation of ( )zS f of the synthetic signals 

of Fig. 2 which confirms the effectiveness of the 

theoretical results mentioned previously. 
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Fig.5. Numerical estimation of the spectral correlation density ( )zS f of the synthetic signal, of Fig. 2. The first column represents the ( )zS f for f 

= 0 Hz and α-region, the second column represents an up-scaled of ( )zS f in the α-plan for f = 55.21 Hz: 1st range- healthy signal, 2nd range- PCG 

signal with s3, 3
rd range- PCG signal with s4, 4

th range- PCG signal with s4 and s3. 

 

The cyclic spectra of healthy and extra heart sounds are 

valuable source of information allowing the 

discrimination of its abnormality. One way to achieve this 

goal is to design a cyclic frequency region, for a given 

frequency, for each PCG or EHS signal. And any 

difference in the region width Tab. 2, even small, may 

help to identify the extra heart abnormality. This is 

possible since the heart sounds s1, s2, s3 and s4 have 

different frequencies. To design this region, we need to 

previously set a threshold for the cyclic frequencies 

where the cyclic spectrum is greater than the threshold 

which belongs to the region. Fig. 5 displays the cyclic 

spectra with characteristic region. Hence, the cyclic 

spectral autocorrelation function presents a very efficient 

characterization tool allowing the identification of 

different EHS.  

Table 2.Band width of the cyclic frequency regions of ( )zS f for 

healthy PCG and EHS signals. 

Signals  interval (Hz) band width (Hz) 

Healthy PCG [80 150] 70 

PCG with s3 [50 70] [80 150] 90 

PCG with s4 [40 60] [80 150] 90 

PCG with s3 and s4 [80 150] 110 

 

IV.  TESTS ON SYNTHETIC AND REAL PCG SIGNALS WITH 

EXTRA HEART SOUNDS 

A.  Realistic Synthetic PCG Signal with Extra Heart 

Sounds 

Normal or abnormal hearts cannot be identical in terms 

of parameters (3). To understand the impact of these 

parameters on the PCG model and to evaluate how much 

cyclic statistics represent a systematic signature and 

characteristic even for different parameters within the 

hearts, additional digital compilations have been done. As 

mentioned in section 
,0, , , , ,ai ai i i i i iand f           

might vary from beat to beat for each person and from 

one heart to another i.e. these parameters are a 

demonstration of the functioning of the heart, and hence a 

relevant mechanism to detect either healthy or abnormal 

hearts. The parameters for the digital compilations are 

summarized in Tab. 3. 

Furthermore, an additive Gaussian noise is added so 

that the SNR is set to the desired values. The sampling 

frequency for the three signals is set to 1 KHz. 

 

 

 

Table 3. Parameters to generate three sets of realistic PCG signals according to (2). 

 𝜇𝑎𝑖 
(mv) 

𝜎𝑎𝑖 
(mv) 

𝜇𝑖 
(s) 

𝜎𝑖 
(s) 

𝜑𝑖,0 

(rad) 

∆𝜑𝑖 
(rad) 

𝑓𝑖 
(Hz) 

𝑇 
(s) 

𝑆𝑁𝑅 
(dB) 

𝐾 

2
n

d
 d

at
a 

se
t 

    

s1
+ 

0.45 0.20 0.0446 0. 0143 2.83 
π

6
 67.86 

0.78 25 100 

s1
− 

 
0.93 0.10   0.0748 0.0111 3.14 

π

6
 76.59 

s2
+ 

 
0.70 0.09 0.3676 0.0111 3.14 

π

6
 69.12 

s2
− 0.51 0.09 0.3915 0.0111 0.00 

π

6
 62.83 

s3
+ 

 
0.48 0.05 0.4791 0.0095 0.14 

π

6
 36.92 

s3
− 

 
0.42 0.02 0.5013 0.0127 2.08 

π

6
 43.27 
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3
rd

 d
at

a 
se

t 

 

s1
+ 0.33 0.09 0.0366 0.0127 2.00 

π

4
 63.21 

0.73 20 100 

s1
− 0.80 0.08 0.0700 0.0111 3.14 

π

4
 68.05 

s2
+ 
 

0.53 0.02 0.3804 0.0127 0.18 
π

4
 62.27 

s2
− 0.52 0.07 0.3756 0.0127 3.14 

π

4
 66.98 

s4
+ 0.32 0.05 0.6907 0.0111 1.09 

π

4
 27.10 

s4
− 0.31 0.06 0.6971 0.0127 1.00 

π

4
 29.19 

4
th
 d

at
a 

se
t 

 

s1
+ 

 
0.43 0.04 0.25 0.0175 2.23 

π

3
 65.97 

0.79 15 100 

s1
− 0.76 0.15 0.50 0.0127 3.14 

π

3
 71.94 

s2
+ 
 

0.43 0.03 2.36 0.0064 3.14 
π

3
 67.36 

s2
− 0.33 0.08 2.45 0.0271 3.14 

π

3
 66.98 

s3
+ 

 
0.40 0.05 0.5077 0.0207 1.11 

π

3
 38.92 

s3
− 

 
0.26 0.02 0.5093 0.0143 1.20 

π

3
 46.92 

s4
+ 0.19 0.02 0.7448 0.0239 1.09 

π

3
 27.10 

s4
− 0.18 0.01 0.7512 0.0143 1.00 

π

3
 28.19 

 

2nd data set       3rd data set         4th data set 

 

 

Fig.6. 1st range- realistic PCG signals, 2nd range- envelope of PCG signal and 3rd range- time-varying autocorrelation functions. 
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Fig.7. A numerical estimate of the cyclic autocorrelation functions ( )zR  : 1st range- ( )zR  in the α-plan for τ = 0 s and 2nd range- up-scaled of 

( )zR  in axis α for τ = 0 s, of each   synthetic PCG signal. 

2nd data set                          3rd data set                              4th data set 

 

 
Fig.8. A numerical estimate of the spectral correlation density ( )zS f

: 1st range- ( )zS f
in the α-plan, for f = 0 Hz and 2nd range- up-scaled in 

axis α forf = 66.56 Hz; f = 59.57 Hz; f = 43.94 Hz), of each synthetic PCG signal. 

Second order statistics reported in Fig. (6, 7 and 8), 

confirm the cyclic behavior of the three PCG signals even 

if the cyclic periods are different. It should be noted that 

the cyclic statistics are not sensitive to noise since the 

noise is supposed to be stationary. The results  

of the envelope and the second order statistics applied 

to 2nd, 3rd and 4th data sets are similar to the ones of 1st 

data set, we come to the conclusion that the envelope and 

the second order statistics give an effective framework 

for detecting and identifying EHS. 

B.  Real PCG Signals with Extra Heart Sounds 

The second order statistics for real PCG signals 

(healthy and EHS) will indicate the matching of the 

 

2nd data set                         3rd data set          4th data set 
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proposed model of (3). To do this, we make use of data 

sets provided from [21] which have been gathered from a 

clinic trial in hospitals using the digital stethoscope 

DigiScope. 

The second order statistics reported in Fig. (9, 10 and 

11) show that the three real PCG signals (healthy and 

EHS) are well wide-sense cyclostationary. Furthermore, 

the 2nd and 3rd real data sets corresponds respectively to 

the EHS s3 and s4; and have similar time representation, 

envelope, cyclic frequency region and second order 

statistics to the corresponding synthetic signals of (3) 

shown respectively in Fig. (2-c) and Fig. (2-e). In 

addition, the time representation and the envelope of each 

heart beat has Gauss-like shapes which approve the 

validness of the proposed model of (3). These results 

prove the matching of the proposed model of (3) with 

reality. 

 
        2nd data set        3rd data set        4th data set 

 

 

 

Fig.9.1st range- realistic PCG signals, 2nd range- envelope of PCG signal and 3rd range- time-varying autocorrelation functions. 
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V.  CONCLUSION 

In this study, we have developed an explicit analytical 

model to better describe PCG signals with extra heart 

sounds over several cardiac cycles. Actually any trouble 

in the heart functioning, namely extra heart sounds, will 

directly influence second order cyclic statistics since 

cyclic statistics are not sensitive to stationary additive 

noise and, thus, allow the detection and the identification 

of extra heart sounds. The findings of this study suggest 

that the tested signal processing tools, evaluated over the 

developed analytical model, are reliable to be used as 

alarms to alert cardiologists to the presence of extra heart 

sounds or even to suspect early heart abnormalities. 
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