On Fuzzy Soft Matrix Based on Reference Function

Full Text (PDF, 511KB), PP.52-59

Views: 0 Downloads: 0


Said Broumi 1,* Florentin Smarandache 2 Mamoni Dhar 3

1. Faculty of Arts and Humanities, Hay El Baraka Ben M'sik Casablanca B.P. 7951, HassanII University Mohammedia-Casablanca, Morocco

2. Department of Mathematics, University of New Mexico, 705 Gurley Avenue, Gallup, NM 87301, USA

3. Department of Mathematics, Science College, Kokrajhar-783370, Assam, India

* Corresponding author.

DOI: https://doi.org/10.5815/ijieeb.2013.02.08

Received: 14 May 2013 / Revised: 3 Jun. 2013 / Accepted: 4 Jul. 2013 / Published: 8 Aug. 2013

Index Terms

Soft set, fuzzy soft set, fuzzy soft set based on reference function, fuzzy soft matrix based on reference function


In this paper we study fuzzy soft matrix based on reference function.Firstly, we define some new operations such as fuzzy soft complement matrix and trace of fuzzy soft matrix based on reference function.Then, we introduced some related properties, and some examples are given. Lastly, we define a new fuzzy soft matrix decision method based on reference function.

Cite This Paper

SaidBroumi, Florentin Smarandache, Mamoni Dhar, "On Fuzzy Soft Matrix Based on Reference Function", International Journal of Information Engineering and Electronic Business(IJIEEB), vol.5, no.2, pp.52-59, 2013. DOI:10.5815/ijieeb.2013.02.08


[1]ZadehLotfiAhmed. Fuzzy Sets, Information and Control, 8 (1965), pp. 338-353.

[2]KrassimirAtanassov. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, (1986), pp.87-96.

[3]KrassimirAtanassov. Intuitionistic fuzzy sets, Theory and Applications, Physica-Verlag, Wyrzburg, 1999.

[4]Michael G. Thomason.Convergence of powers of a fuzzy matrix, J. Math Anal.Appl. 57 (1977), pp.476-480.

[5]I.BurhanTurksen. Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 20 (1968), pp.191–210.

[6]ZdzislawPawlak, Rough sets, International Journal of Information and ComputerSciences, 11 (1982), pp.341-356.

[7]Molodtsov Dmitri. Soft Set Theory - First Result, Computers and Mathematics with Applications, Vol. 37 (1999), pp. 19-31.

[8]NeogTridivJyoti, SutDusmantaKumar. An Application of Fuzzy Soft Sets in Decision Making Problems Using Fuzzy SoftMatrices, International Journal of Mathematical Archive, Vol. 2(11), pp. 2258-2263.

[9]MajiPabitraKumar, BiswasRanjit. andRoy AkhilRanjan. Fuzzy Soft Sets, Journal of Fuzzy Mathematics, Vol. 9, no.3 (2001), pp. 589-602.

[10]MajiPabitra. Kumar.and Roy AkhilRanjan. Soft Set Theory, Computers and Mathematics with Applications 45 (2003), pp. 555–562.

[11]PinakiMajumdar, S. K. Samanta.Generalised fuzzy soft sets, Computers andMathematics with Applications, 59 (2010), pp.1425-1432.

[12]FengFeng, C. Li, BijanDavvaz, MuhammadIrfan Ali. Soft sets combined with fuzzy setsand rough sets: a tentative approach, Soft Computing 14 (2010), pp.899–911.

[13]NaimÇağman, SerdarEnginoğlu. Soft matrix theory and its decision making,Journal Computers& Mathematics with Applications, Volume 59 Issue10 (2010), pp. 3308-3314.

[14]S. Ruban Raj, M. Saradha.Properties of Fuzzy Soft Set, International Journal for BasicSciences and Social Sciences (IJBSS), ISSN:2319-2968, 2(1) (2013), pp.112-118. [15] 

[15]Jin Bai Kim, A. Baartmans. Determinant Theory for Fuzzy Matrices, Fuzzy Sets and Systems, 29(1989), pp.349-356.

[16]JinBai Kim. Determinant theory for Fuzzy and Boolean Matices, CongressusNumerantium UtilitusMathematicaPub ,(1978), pp.273-276.

[17]Ki Hong Kim and Fred W. Roush. Generalized fuzzy matrices, Fuzzy Sets and Systems, 4 (1980), pp.293-315.

[18]M.Z. Ragab and E.G. Emam The determinant and adjoint of a square fuzzy matrix, Fuzzy Setsand Systems, 61 (1994), pp.297-307.

[19]M.Z. Ragab and E.G. Emam, On the min-max composition of fuzzy matrices, Fuzzy Sets and Systems, 75 (1995), pp.83-92.

[20]Hiroshi Hashimoto. Convergence of powers of a fuzzy transitive matrix, Fuzzy Sets and Systems, 9 (1983), pp.153-160.

[21]Jin Bai Kim.Inverses of Boolean Matrices, Bull.Inst.Math.Acod, Science 12 (2)(1984), 125-1

[22]Young Yang, Chenli Ji. Fuzzy Soft Matrices and their Applications, Artificial Intelligence and Computational IntelligenceLecture Notes in Computer ScienceVolume 7002 (2011), pp. 618-627.

[23]BaruahHemanta Kumar. The Theory of Fuzzy Sets: Beliefs and Realities, International Journal of Energy, Information and Communications, Vol. 2, Issue 2, (2011), pp. 1-22.

[24]BaruahHemanta Kumar. Towards Forming A Field Of Fuzzy Sets, International Journal of Energy, Information and Communications, Vol. 2, Issue 1 (2011), pp. 16-20.

[25]BaruahHemanta Kumar. Fuzzy Membership with respect to a Reference Function, Journal of the Assam Science Society, 40(3)(1999), pp.65-73.

[26]MamoniDhar. Representation of Fuzzy Matrices Based on Reference Function, I.J. Intelligent Systems and Applications,02(2013), pp.84-90 , DOI: 10.5815/ijisa.2013.02.10.

[27]MamoniDhar.A Note on Determinant and Adjoint of Fuzzy Square Matrix, I.J. Intelligent Systems and Applications, 05(2013), pp.58-67 ,DOI: 10.5815/ijisa.2013.05.07.

[28]NeogTridivJyoti,SutDusmantaKumar. Fuzzy Soft Sets from a New PerspectiveInt. J Latest Trends Computing, Vol-2 No 3 ( 2011) , pp.439-450.

[29]NeogTridivJyoti,SutDusmantaKumar,M. Bora.on Fuzzy Soft Matrix Theory, International Journal of Mathematical Archive ISSN 2229-5046, 3(2)v(2012),pp.491-500.

[30]P. Rajarajeswari, P. Dhanalakshmi, “Intuitionistic Fuzzy Soft Matrix Theory And Its Application In Decision Making,International Journal of Engineering Research & Technology (IJERT), ISSN:2278-0181,Vol. 2 Issue 4 ( 2013), pp.1100-1111.