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Abstract—The computer memory has been 

revolutionized in the last 25-30 years, in terms of both 

capacity and speed of execution. Along with this, even 

the logic controlling the memory has also become more 

and more complex and difficult to interface. Usually, 

memory subsystems will be designed to interact with a 

single system. Whenever we consider a two system is 

sharing a common memory, there comes the need for an 

Arbiter. The major difference between a memory arbiter 

and a processor scheduler is that the memory arbiter 

works at a much finer level of granularity. The time taken 

for the task execution may range from micro to 

milliseconds, while a RAM controller needs to serve the 

request in a few nanoseconds. Because of this reason the 

resource arbiters are usually designed and implemented in 

hardware rather than in software. 

 

Index Terms—Arbiter, memory controller, FPGA(Field 

programmable gate Array), SDRAM(Synchronous 

DRAM)  

 

I. INTRODUCTION 

The computer memory has been revolutionized in the 

last 25-30 years, in terms of both capacity and speed of 

execution. Along with this, even the logic controlling the 

memory has also become more and more complex and 

difficult to interface. Normally, memory subsystems are 

designed to interact with a single system but when two or 

more systems need to communicate; there rises the need 

to share a common memory which will create conflicts 

while accessing this shared memory. So to resolve these 

conflicts arbiters are needed. 

The major difference between a memory arbiter and a 

processor scheduler is that the memory arbiter works at a 

much finer level of granularity. The time taken for the 

task execution may range from micro to milliseconds, 

while a RAM controller needs to serve the request in a 

few nanoseconds. Because of this reason the resource  

arbiters are usually designed and implemented in 

hardware rather than in software. The arbiters are the part 

of scheduler design in which request and grant signals are 

designed keeping the priority issue in mind so that 

whenever it is required the priority state can be updated. 

In most of the systems, it is required to access a common 

resource by many requestors. The common resource 

considered can be a networking switch, a special state 

machine, shared memory, or a computational element. 

Attention should be paid to various factors for the 

design of an arbiter. The size and speed of the arbiter will 

decide the design of even the interface design between 

the requester and the arbiter. As the technology is 

improving, we are moving in the era of multi-billion 

transistor SoCs containing multiple processing elements 

(PEs). The buses and the memory will act as the 

communication between the PEs and the SoC. The fast 

and powerful arbiter requirement will increase as the bus 

master increase on a single chip. An arbiter is a 

component which will be deciding how the resource is 

being shared among many requests. Many standard 

memory modules are designed for using them with the 

single system. 

The arbiter has to follow certain rules to choose which 

system gets through to the memory controller. Usually, 

the arbiter needs to follow certain rules to pass the 

communication between the blocks. Arbiters find 

multiple applications, but in this case, it will be 

implemented on a FPGA between some systems and a 

single memory module. To fairly share the resource, the 

arbiter needs to take appropriate consideration. The 

synthesis results will be affected by the coding style. The 

three fundamental components on which arbiter works 

are: Request, grant and accept. The DDR3 is one of the 

newest and the fastest volatile memory available in the 

market now. It is one of the different types of random 

access memory available which will temporarily hold the 

data for the sake of system to have quick access. 
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II. RELATED WORK 

In the year 2001 Author Matt Weber published the 

paper " Arbiters: Design Ideas and Coding Styles." This 

paper contains a few outline thoughts for adequately 

interfacing with a referee and research coding styles for 

some regular discretion plans. For different applications, 

the framework fashioner must plan a controller to give 

legitimate summons to SDRAM introduction, 

read/compose gets to, and memory invigorate. 

In the paper titled "Hard IP Core of Memory Arbiter" 

published in the year 2013 by the authors Kedar Trivedi, 

Nandish Thaker at the “International Journal of Advanced 

Research in Computer and Communication Engineering 

“They explained the plan of 4X4 memory judge and it’s 

outcomes. 

 

III. MEMORY INTERFACE GENERATOR 

The Xilinx Memory Interface Generator is located 

within the CORE generator of XPS [3]. The memory 

interface, or memory controller, is composed of many 

modules which allow both communication with and 

testing of the memory. The memory controller handles 

communicating with the high-speed interface of the 

DDR3 so that we don’t have to. Therefore, our user 

design only needs to account for interfacing with the 

memory controller. 

A. Memory Controller Hierarchy 

 

Fig.1. Design Block Diagram 

Position, The memory controller, is contained within 

the wrapper, example_top, shown in Figure 1  as example 

design. Within example_top, there are four overarching 

modules: memc_ui_top, infrastructure, m_traffic_gen, 

and init_mem0 (init_mem_PatterCtr). 

memc_top: this defines the top level module  of the 

memory controller. Its function is to convert the given 

address into respective rows , columns and banks for 

actual to and from data transfer towards the memory. 

Infra: All the modules will get the clock through this. 

m_traffic_generator: This module generates the 

variety of commands and data patterns for the purpose of 

memory testing .The expected and the actual read data 

are compared to find the faults. 

init_mem0: This module seeds m_traffic_gen’s fifos 

with commands, addresses, and data. 

 

IV. INTERFACING WITH MIG 

Since it was my assigned task to create my own arbiter, 

we eliminated the option of using the AXI4 interface. 

Reordering of the data from the memory is required by 

the native interface, which intern makes the arbitration 

between two systems much more complicated one. 

We can reorder the commands by the user interface 

and create a simpler design; the user interface is created 

for the interaction with the memory. 

Figure 2 describes the user design (arbiter) and 

memory (DDR3 SDRAM).The user interface provides 

the immediate way to interact with the memory. As per 

the design we need to consider only the signals between 

the UI and the user design. Figure 2   the arbiter design 

needs to account for. 

 

 

Fig.2. User Interface between User Design and Memory 

 Bursts  

We chose to implement DDR3 utilizing the maximum 

allowed burst length of 8. This ensures maximum data 

throughput. The actual memory has a 64-bit interface. A 

burst of eight (BL8) requires eight 64-bit packets of data 

to be sent to memory in a row. Since the Xilinx user 

interface is 256 bits wide, the arbiter sends to the memory 

controller user interface about 256-bit packets. There will 

be two 256-bit packets, or 512 bits in total, so it 

constitutes around burst of 8. So for every 512 bits sent 

there will be only one address and command. 

 Command and Address  

A address will be sent to a memory for every data 

packet of 512 bits. 

To send an address app_cmd, app_addr, and app_en 

must be set for one clock cycle. Only when app_en is 

asserted, are the values on app_cmd and app_addr sent. If 

the app_rdy signal is de-asserted, the values will not be 

sent to memory and must be held until app_rdy is high 
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again. Refer to Figure 3 which shows app_rdy low 

avoidance.  

app_cmd: Indicates current request (read/write).  

app_addr: Address for current request.  

app_en: Asserted to send a command and a address 

(101). 

app_rdy: It indicates whether  the UI is ready for 

accepting the commands (75). 

 

 

Fig.3. Sending a Command and Address to the Memory Controller 

Arbitration for Two systems to one DDR3 memory 

In our case the most important specification is to allow 

two unique systems to communicate with a single 

memory. The Xilinx memory controller core allows for a 

single system interaction with the DDR3 memory. The 

Xilinx memory core acts as the interface between the 

arbiter design and the DDR3 memory. 

I/O synchronising for different clocked systems  

Multiple systems working at different frequencies will 

be connected to the memory controller and with one 

another with the help of arbiter. FIFO (i.e. first in, first 

out) blocks are the solution to synchronize the data flow 

between the memory controller and the system.  

When the tem sends the read and write commands in 

chain of burst length 8 then the controller operates at its 

peak performance. Two clock cycles are required to 

complete each of the BL8 burst and it consists of two 

256-bit data packets. Since the max operating frequency 

at 200MHz, the data flow rate may reach up to the speed 

of around 51.2Gb/s. 

 

𝑀𝑎𝑥 𝑆𝑝𝑒𝑒𝑑 ≅
256 Bits

Cycle
∗ 𝐹𝑚𝑎𝑥                   (1) 

 

𝐹𝑚𝑎𝑥 = 200𝑀ℎ𝑧 =
200𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
                (2) 

 

𝑀𝑎𝑥 𝑠𝑝𝑒𝑒𝑑 ≅
256 𝑏𝑖𝑡𝑠

𝐶𝑦𝑐𝑙𝑒
∗

200𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 51.2 𝐺𝐵

𝑠𝑒𝑐𝑜𝑛𝑑⁄   

                   (3) 

 

This speed is confirmed by the ML605 Hardware User 

Guide which states that the evaluation board’s DDR3 

SDRAM has been tested to 800MT/s. As we split the 

memory controller between two systems , so that each 

system would be able to achieve a half the data flow rate 

(i.e. 25.6 Gb/s). Here the BW of one working system will 

affected by both the speed of the second system and the 

speed of the memory controller. 

 

 

V. DESIGN TOPOLOGY 

The block diagram in Figure 5 shows the design 

topology of the arbiter configured for two independent 

systems sharing one memory. It displays how the two 

independent systems are connected to the DDR3 memory, 

with the arbiter and the shared memory controller. The 

infrastructure module, which is not shown in the block 

diagram, generates the clock for the DDR3 and memory 

controller module. 

 example_top wrapper  

It will act as a wrapper design .The ports used will be 

connected to the physical pins of the FPGA and to the 

memory, the two systems. 

  memory_controller  

This module simplifies the communication to the 

memory, because it takes care of the refresh cycle and 

enables to use BL8 interface. In case of BL8 every 

address is 512-bit data packets. 

 arbiter_block  

This module is used to buffer the read and write 

commands between the system and memory controller. 

The FIFO read and write controlling will happen with the 

state-machine in the arbiter block. 

 

 

Fig.4. Two arbiter_blocks set-up to connect the DDR3 memory to two 

different systems 

Determining the Arbiter’s Performance  

The arbiter’s maximum performance is ultimately 

capped by the frequency of the memory controller. 

Typically this frequency runs between 100MHz and 

200Mhz, and the memory controller is able to send and 

receive 256 bits every clock cycle. Since the systems are 

allowed to send the 64 bits of data at every clock cycle, 

then the highest efficiency will be obtained at the four 

times the clock speed of  memory controller. If the 

system is operating at a lower frequency  then it will be  
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the under utilization of the arbiter. If the system is 

running at the four times the frequency of the memory 

controller then arbiter will become overwhelmed and 

dynamically it will try cutting down the system’s 

effective BW. While the memory controller clock sets the 

cap on the arbiter’s performance, the frequency of the 

system also acts as the limiting factor on each others 

effective BW. A mathematical model can be developed to 

estimate the performance of the arbiter. The effective 

frequency of a system is derived by the ratio of how 

many cycles the arbiter per second gives a system control. 

 

𝐹𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
𝑛1

𝑛1

𝑓1
+

𝑛2

𝑓2

=
𝑛1∗𝑓1∗𝑓2

𝑛1∗𝑓2+𝑛2∗𝑓1
                 (4) 

 

n1 and n2  represent number of cycles system 1 and 

system 2 work together every time they are given with 

the permission to send the commands. f1 and f2 are the 

frequencies of the two systems. In the above derivation 

the total time for an arbiter to complete a full cycle in its 

state machine is expressed as n1/f1+n2/f2 . The effective 

frequency of one of those systems may be evaluated by 

taking the ratio of the number of cycles that system has 

control for by the total time. The data flow may then be 

evaluated by factoring the effective frequency by 64, 

which is the number of bits that are sent and received by 

each clock cycle(data bus width). The model for the data 

rate would than equal: 

 

𝐵𝑊 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
64∗𝑛1∗𝑓1∗𝑓2

𝑛1∗𝑓2+𝑛2∗𝑓1
              (5) 

 

By default, the arbiter is balanced so that both systems 

are given the same number of the clock cycle for sending 

their commands. This simplifies the model further into: 

 

𝐵𝑊 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
64∗𝑓1∗𝑓2

𝑓2+𝑓1
                    (6) 

 

The thing which can be noted from the above model is 

that both the systems will be in harmony to have the same 

BW even under different operating frequencies. This is 

can be considered as one of the most useful 

characteristics as it allows for the two systems, 

irrespective of their individual speeds to have the same 

speed to communicate with the memory. 

 

VI. EMULATING SYSTEMS 

The behavior of the expected system will be modeled 

to validate the arbiter. To mimic the interaction between 

the system and the arbiter a stimulus model will be 

created. These virtual systems will be triggered to send 

the set of reads and writes by asserting a signal. The 

model used for stimulus will follow the arbiter’s protocol. 

It will be having trigger to  enable both read and write 

chains of 32 data packets with addresses 0-31.Usually the 

write chain will be initiated first then the read chain. 

Because the read chains read from the same address 

which the write chain had previously written to, the 

resulting read-back data is expected to match the write 

data. 

A. Switching branches 

Figure 5 shows one of the systems switching into the 

system-to-arbiter branch where the system, sys1, can now 

send either read or write commands to the arbiter. The 

sys1 will enter into S8 state of the state diagram only 

when the sys1 enters the system-to-arbiter branch.By 

asserting the sys_rdy and sys_wdf_rdy signals it notifies 

the sys1 that it is ready to access new read and write 

commands. Along with this, the register will keep track 

of clock cycles that the system has utilized. Once the 

Sys1 finishes it communication with the arbiter then the 

Sys2 which is in state 10, which is waiting for the Sys1 to 

finish its interaction will simply continue with its other 

tasks. 

 

 

Fig.5. Switching Branches 

B. System-to-Arbiter Write 

As shown in below figure 6 Sys1 starts sending write 

commands.At the start of each new write commands, 

Fill_wr_cmd signal will be asserted summing it to four 

times assertion of Fill_wr_cmd signal. By having a 

glance at the sys1_addredd waveform, we can notice that 

four writes right from address zero to address three. Each 

data transfer is of 64 bits, where each of the 0th bit in 

each of the 64 bits will make an 8-bit value 

corresponding to the address[15]. The binary value 00 at 

address zero, is apparent because of sys_wdf_data[0] and 

binary 11 at address three. Once the timer register reaches 

a value of 63, it will halt the sys1 , now the sys2 may 

enter the arbiter block. 

 

 

Fig.6 System-to-Arbiter Write 

C. Arbiter executing buffered Writes. 

The buffered write commands will get executed 

through the memory controller once the arbiter switches 

branches.As per the Figure 7, it takes around four times 



18 Design of an Arbiter for Two Systems Accessing a Single DDR3 Memory on a Reconfigurable Platform  

Copyright © 2018 MECS                                        I.J. Information Engineering and Electronic Business, 2018, 6, 14-20 

less clock cycles to execute write commands then it takes 

to buffer them. 

The arbiter sends write commands to the memory 

controller between state 1 and state 2. During state 1 the 

arbiter sends the first half of each 512-bit data packet, and 

during state 2 it sends the second half of the packet. The 

address is sent during state 2, with the second part of the 

data packet. 

 

 

Fig.7. Arbiter-to-System Write 

 

Fig.8. Arbiter successfuly avoiding app_rdy low 

For example in Figure 8 above, the waveforms 

demonstrate additional coverage of the case where the 

memory controller might de-assert its app_rdy signal in 

the middle of the arbiter attempting to write. It is 

important for the arbiter to be able to avoid this hazard, 

and as can be seen, by the waveforms it does so by 

extending its state 1 until app_rdy is high again. It is 

really important to assure that the arbiter design avoids 

these kinds of circumstances early in the design process 

so as to minimize the amount of bugs we may get at the 

end. 

D. System-to-Arbiter Read commands 

After the write commands are sent to addresses 0-31, 

the stimulus module is then also triggered to send read 

commands to the same addresses. Figure 9 above displays 

the waveforms that are generated when the system 

attempts to read. After its first read command when the 

timer is at 21, the arbiter’s state changes from state 8 to 

state 9. At state 9 the system continues to send read 

commands, as it is permitted to do so because of the 

asserted sys_rdy signal. However, sys_wdf_rdy goes 

down in state 9, which means that the system is not 

allowed to send any write commands. During this branch, 

the system sends read commands to addresses 0 to 18(1e), 

which are all buffered in the read address fifo, ra_fifo. 

The arbiter ends the branch when the ra_fifo fills up as 

can be observed at timer 52 where the ra_fifo_full signal 

is asserted. In its next branch, the arbiter will empty out 

the ra_fifo and send the buffered read commands through 

the memory controller. 

 

 

Fig.9. System-to-Arbiter read requests 

E. Arbiter-to-System Read execute  

 

Fig.10. Arbiter-to-Memory read execution 

 

Fig.11. Arbiter-to-Memory read-back
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Figure 10 shows the behavior of the arbiter block 

during its arbiter-to-memory branch where it empties out 

its ra_address FIFO and sends read commands to the 

memory controller. All the read commands are combined 

together and are transferred at the rate allowed by the 

memory controller. For every clock cycle a read request 

is allowed by the memory controller ,but after this the 

memory controller starts to periodically de-assert its 

app_rdy signal, and as a result arbiter only sends new 

read commands every two clock cycles. 

F. System-to-Arbiter Read-back 

After entering the System-to-arbiter branch the arbiter 

block, it will see that it has data being buffered in its 

rd_fifo, so it enters state 7. After elapse of 8 clock cycles 

the rd_fifo will release the data packets of size 512 bits 

during this state. A series of eight 64 bit packets will be 

formed out of 512-bit data packets and are sent back to 

the system.The 0th bit of these 64-bit data packets are 

identified by the Sys_read_data[0] and the eight-bit 

representation of 512-bit data packets are shown by the 

readback_data_reg as they are being released from the 

rd_fifo. The 64th bit of 512-bit data packet is formed by 

these bits. The read-back and the write data of the system 

match with each other validating the arbiter design.[15] 

 

 

Fig.12. System-to-Arbiter Read-back 

 

VII. CONCLUSION 

Designing the arbiter was challenging because the 

design specifications constantly changed as we became 

more familiar with the technology, and tools that were 

available to us. Specifications were affected when we 

found better ways to do thing, when we noticed flaws in 

the design, or when the design simply wasn’t working. 

Overall, learning how to communicate with the memory 

controller and designing arbiter fostered knowledge about 

memory, debugging, performance, and many logic design 

concepts. 
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