
I.J. Information Engineering and Electronic Business, 2018, 6, 14-20
Published Online November 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2018.06.02

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 6, 14-20

Design of an Arbiter for Two Systems Accessing

a Single DDR3 Memory on a Reconfigurable

Platform

Arun S Tigadi
K.L.E Dr. M.S.S College of Engineering and Technolgy/E&C, Belagavi, 590008, India

Email: arun.tigadi@gmail.com

Dr. Hansraj Guhilot
K.C.College of Engineering And Management Studies And Research, Thane (E), India

Email: hansraj.g@gmail.com

Received: 01 August 2018; Accepted: 22 September 2018; Published: 08 November 2018

Abstract—The computer memory has been

revolutionized in the last 25-30 years, in terms of both

capacity and speed of execution. Along with this, even

the logic controlling the memory has also become more

and more complex and difficult to interface. Usually,

memory subsystems will be designed to interact with a

single system. Whenever we consider a two system is

sharing a common memory, there comes the need for an

Arbiter. The major difference between a memory arbiter

and a processor scheduler is that the memory arbiter

works at a much finer level of granularity. The time taken

for the task execution may range from micro to

milliseconds, while a RAM controller needs to serve the

request in a few nanoseconds. Because of this reason the

resource arbiters are usually designed and implemented in

hardware rather than in software.

Index Terms—Arbiter, memory controller, FPGA(Field

programmable gate Array), SDRAM(Synchronous

DRAM)

I. INTRODUCTION

The computer memory has been revolutionized in the

last 25-30 years, in terms of both capacity and speed of

execution. Along with this, even the logic controlling the

memory has also become more and more complex and

difficult to interface. Normally, memory subsystems are

designed to interact with a single system but when two or

more systems need to communicate; there rises the need

to share a common memory which will create conflicts

while accessing this shared memory. So to resolve these

conflicts arbiters are needed.

The major difference between a memory arbiter and a

processor scheduler is that the memory arbiter works at a

much finer level of granularity. The time taken for the

task execution may range from micro to milliseconds,

while a RAM controller needs to serve the request in a

few nanoseconds. Because of this reason the resource

arbiters are usually designed and implemented in

hardware rather than in software. The arbiters are the part

of scheduler design in which request and grant signals are

designed keeping the priority issue in mind so that

whenever it is required the priority state can be updated.

In most of the systems, it is required to access a common

resource by many requestors. The common resource

considered can be a networking switch, a special state

machine, shared memory, or a computational element.

Attention should be paid to various factors for the

design of an arbiter. The size and speed of the arbiter will

decide the design of even the interface design between

the requester and the arbiter. As the technology is

improving, we are moving in the era of multi-billion

transistor SoCs containing multiple processing elements

(PEs). The buses and the memory will act as the

communication between the PEs and the SoC. The fast

and powerful arbiter requirement will increase as the bus

master increase on a single chip. An arbiter is a

component which will be deciding how the resource is

being shared among many requests. Many standard

memory modules are designed for using them with the

single system.

The arbiter has to follow certain rules to choose which

system gets through to the memory controller. Usually,

the arbiter needs to follow certain rules to pass the

communication between the blocks. Arbiters find

multiple applications, but in this case, it will be

implemented on a FPGA between some systems and a

single memory module. To fairly share the resource, the

arbiter needs to take appropriate consideration. The

synthesis results will be affected by the coding style. The

three fundamental components on which arbiter works

are: Request, grant and accept. The DDR3 is one of the

newest and the fastest volatile memory available in the

market now. It is one of the different types of random

access memory available which will temporarily hold the

data for the sake of system to have quick access.

 Design of an Arbiter for Two Systems Accessing a Single DDR3 Memory on a Reconfigurable Platform 15

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 6, 14-20

II. RELATED WORK

In the year 2001 Author Matt Weber published the

paper " Arbiters: Design Ideas and Coding Styles." This

paper contains a few outline thoughts for adequately

interfacing with a referee and research coding styles for

some regular discretion plans. For different applications,

the framework fashioner must plan a controller to give

legitimate summons to SDRAM introduction,

read/compose gets to, and memory invigorate.

In the paper titled "Hard IP Core of Memory Arbiter"

published in the year 2013 by the authors Kedar Trivedi,

Nandish Thaker at the “International Journal of Advanced

Research in Computer and Communication Engineering

“They explained the plan of 4X4 memory judge and it’s

outcomes.

III. MEMORY INTERFACE GENERATOR

The Xilinx Memory Interface Generator is located

within the CORE generator of XPS [3]. The memory

interface, or memory controller, is composed of many

modules which allow both communication with and

testing of the memory. The memory controller handles

communicating with the high-speed interface of the

DDR3 so that we don’t have to. Therefore, our user

design only needs to account for interfacing with the

memory controller.

A. Memory Controller Hierarchy

Fig.1. Design Block Diagram

Position, The memory controller, is contained within

the wrapper, example_top, shown in Figure 1 as example

design. Within example_top, there are four overarching

modules: memc_ui_top, infrastructure, m_traffic_gen,

and init_mem0 (init_mem_PatterCtr).

memc_top: this defines the top level module of the

memory controller. Its function is to convert the given

address into respective rows , columns and banks for

actual to and from data transfer towards the memory.

Infra: All the modules will get the clock through this.

m_traffic_generator: This module generates the

variety of commands and data patterns for the purpose of

memory testing .The expected and the actual read data

are compared to find the faults.

init_mem0: This module seeds m_traffic_gen’s fifos

with commands, addresses, and data.

IV. INTERFACING WITH MIG

Since it was my assigned task to create my own arbiter,

we eliminated the option of using the AXI4 interface.

Reordering of the data from the memory is required by

the native interface, which intern makes the arbitration

between two systems much more complicated one.

We can reorder the commands by the user interface

and create a simpler design; the user interface is created

for the interaction with the memory.

Figure 2 describes the user design (arbiter) and

memory (DDR3 SDRAM).The user interface provides

the immediate way to interact with the memory. As per

the design we need to consider only the signals between

the UI and the user design. Figure 2 the arbiter design

needs to account for.

Fig.2. User Interface between User Design and Memory

 Bursts

We chose to implement DDR3 utilizing the maximum

allowed burst length of 8. This ensures maximum data

throughput. The actual memory has a 64-bit interface. A

burst of eight (BL8) requires eight 64-bit packets of data

to be sent to memory in a row. Since the Xilinx user

interface is 256 bits wide, the arbiter sends to the memory

controller user interface about 256-bit packets. There will

be two 256-bit packets, or 512 bits in total, so it

constitutes around burst of 8. So for every 512 bits sent

there will be only one address and command.

 Command and Address

A address will be sent to a memory for every data

packet of 512 bits.

To send an address app_cmd, app_addr, and app_en

must be set for one clock cycle. Only when app_en is

asserted, are the values on app_cmd and app_addr sent. If

the app_rdy signal is de-asserted, the values will not be

sent to memory and must be held until app_rdy is high

16 Design of an Arbiter for Two Systems Accessing a Single DDR3 Memory on a Reconfigurable Platform

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 6, 14-20

again. Refer to Figure 3 which shows app_rdy low

avoidance.

app_cmd: Indicates current request (read/write).

app_addr: Address for current request.

app_en: Asserted to send a command and a address

(101).

app_rdy: It indicates whether the UI is ready for

accepting the commands (75).

Fig.3. Sending a Command and Address to the Memory Controller

Arbitration for Two systems to one DDR3 memory

In our case the most important specification is to allow

two unique systems to communicate with a single

memory. The Xilinx memory controller core allows for a

single system interaction with the DDR3 memory. The

Xilinx memory core acts as the interface between the

arbiter design and the DDR3 memory.

I/O synchronising for different clocked systems

Multiple systems working at different frequencies will

be connected to the memory controller and with one

another with the help of arbiter. FIFO (i.e. first in, first

out) blocks are the solution to synchronize the data flow

between the memory controller and the system.

When the tem sends the read and write commands in

chain of burst length 8 then the controller operates at its

peak performance. Two clock cycles are required to

complete each of the BL8 burst and it consists of two

256-bit data packets. Since the max operating frequency

at 200MHz, the data flow rate may reach up to the speed

of around 51.2Gb/s.

𝑀𝑎𝑥 𝑆𝑝𝑒𝑒𝑑 ≅
256 Bits

Cycle
∗ 𝐹𝑚𝑎𝑥 (1)

𝐹𝑚𝑎𝑥 = 200𝑀ℎ𝑧 =
200𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
 (2)

𝑀𝑎𝑥 𝑠𝑝𝑒𝑒𝑑 ≅
256 𝑏𝑖𝑡𝑠

𝐶𝑦𝑐𝑙𝑒
∗

200𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 51.2 𝐺𝐵

𝑠𝑒𝑐𝑜𝑛𝑑⁄

 (3)

This speed is confirmed by the ML605 Hardware User

Guide which states that the evaluation board’s DDR3

SDRAM has been tested to 800MT/s. As we split the

memory controller between two systems , so that each

system would be able to achieve a half the data flow rate

(i.e. 25.6 Gb/s). Here the BW of one working system will

affected by both the speed of the second system and the

speed of the memory controller.

V. DESIGN TOPOLOGY

The block diagram in Figure 5 shows the design

topology of the arbiter configured for two independent

systems sharing one memory. It displays how the two

independent systems are connected to the DDR3 memory,

with the arbiter and the shared memory controller. The

infrastructure module, which is not shown in the block

diagram, generates the clock for the DDR3 and memory

controller module.

 example_top wrapper

It will act as a wrapper design .The ports used will be

connected to the physical pins of the FPGA and to the

memory, the two systems.

 memory_controller

This module simplifies the communication to the

memory, because it takes care of the refresh cycle and

enables to use BL8 interface. In case of BL8 every

address is 512-bit data packets.

 arbiter_block

This module is used to buffer the read and write

commands between the system and memory controller.

The FIFO read and write controlling will happen with the

state-machine in the arbiter block.

Fig.4. Two arbiter_blocks set-up to connect the DDR3 memory to two

different systems

Determining the Arbiter’s Performance

The arbiter’s maximum performance is ultimately

capped by the frequency of the memory controller.

Typically this frequency runs between 100MHz and

200Mhz, and the memory controller is able to send and

receive 256 bits every clock cycle. Since the systems are

allowed to send the 64 bits of data at every clock cycle,

then the highest efficiency will be obtained at the four

times the clock speed of memory controller. If the

system is operating at a lower frequency then it will be

 Design of an Arbiter for Two Systems Accessing a Single DDR3 Memory on a Reconfigurable Platform 17

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 6, 14-20

the under utilization of the arbiter. If the system is

running at the four times the frequency of the memory

controller then arbiter will become overwhelmed and

dynamically it will try cutting down the system’s

effective BW. While the memory controller clock sets the

cap on the arbiter’s performance, the frequency of the

system also acts as the limiting factor on each others

effective BW. A mathematical model can be developed to

estimate the performance of the arbiter. The effective

frequency of a system is derived by the ratio of how

many cycles the arbiter per second gives a system control.

𝐹𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
𝑛1

𝑛1

𝑓1
+

𝑛2

𝑓2

=
𝑛1∗𝑓1∗𝑓2

𝑛1∗𝑓2+𝑛2∗𝑓1
 (4)

n1 and n2 represent number of cycles system 1 and

system 2 work together every time they are given with

the permission to send the commands. f1 and f2 are the

frequencies of the two systems. In the above derivation

the total time for an arbiter to complete a full cycle in its

state machine is expressed as n1/f1+n2/f2 . The effective

frequency of one of those systems may be evaluated by

taking the ratio of the number of cycles that system has

control for by the total time. The data flow may then be

evaluated by factoring the effective frequency by 64,

which is the number of bits that are sent and received by

each clock cycle(data bus width). The model for the data

rate would than equal:

𝐵𝑊 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
64∗𝑛1∗𝑓1∗𝑓2

𝑛1∗𝑓2+𝑛2∗𝑓1
 (5)

By default, the arbiter is balanced so that both systems

are given the same number of the clock cycle for sending

their commands. This simplifies the model further into:

𝐵𝑊 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
64∗𝑓1∗𝑓2

𝑓2+𝑓1
 (6)

The thing which can be noted from the above model is

that both the systems will be in harmony to have the same

BW even under different operating frequencies. This is

can be considered as one of the most useful

characteristics as it allows for the two systems,

irrespective of their individual speeds to have the same

speed to communicate with the memory.

VI. EMULATING SYSTEMS

The behavior of the expected system will be modeled

to validate the arbiter. To mimic the interaction between

the system and the arbiter a stimulus model will be

created. These virtual systems will be triggered to send

the set of reads and writes by asserting a signal. The

model used for stimulus will follow the arbiter’s protocol.

It will be having trigger to enable both read and write

chains of 32 data packets with addresses 0-31.Usually the

write chain will be initiated first then the read chain.

Because the read chains read from the same address

which the write chain had previously written to, the

resulting read-back data is expected to match the write

data.

A. Switching branches

Figure 5 shows one of the systems switching into the

system-to-arbiter branch where the system, sys1, can now

send either read or write commands to the arbiter. The

sys1 will enter into S8 state of the state diagram only

when the sys1 enters the system-to-arbiter branch.By

asserting the sys_rdy and sys_wdf_rdy signals it notifies

the sys1 that it is ready to access new read and write

commands. Along with this, the register will keep track

of clock cycles that the system has utilized. Once the

Sys1 finishes it communication with the arbiter then the

Sys2 which is in state 10, which is waiting for the Sys1 to

finish its interaction will simply continue with its other

tasks.

Fig.5. Switching Branches

B. System-to-Arbiter Write

As shown in below figure 6 Sys1 starts sending write

commands.At the start of each new write commands,

Fill_wr_cmd signal will be asserted summing it to four

times assertion of Fill_wr_cmd signal. By having a

glance at the sys1_addredd waveform, we can notice that

four writes right from address zero to address three. Each

data transfer is of 64 bits, where each of the 0th bit in

each of the 64 bits will make an 8-bit value

corresponding to the address[15]. The binary value 00 at

address zero, is apparent because of sys_wdf_data[0] and

binary 11 at address three. Once the timer register reaches

a value of 63, it will halt the sys1 , now the sys2 may

enter the arbiter block.

Fig.6 System-to-Arbiter Write

C. Arbiter executing buffered Writes.

The buffered write commands will get executed

through the memory controller once the arbiter switches

branches.As per the Figure 7, it takes around four times

18 Design of an Arbiter for Two Systems Accessing a Single DDR3 Memory on a Reconfigurable Platform

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 6, 14-20

less clock cycles to execute write commands then it takes

to buffer them.

The arbiter sends write commands to the memory

controller between state 1 and state 2. During state 1 the

arbiter sends the first half of each 512-bit data packet, and

during state 2 it sends the second half of the packet. The

address is sent during state 2, with the second part of the

data packet.

Fig.7. Arbiter-to-System Write

Fig.8. Arbiter successfuly avoiding app_rdy low

For example in Figure 8 above, the waveforms

demonstrate additional coverage of the case where the

memory controller might de-assert its app_rdy signal in

the middle of the arbiter attempting to write. It is

important for the arbiter to be able to avoid this hazard,

and as can be seen, by the waveforms it does so by

extending its state 1 until app_rdy is high again. It is

really important to assure that the arbiter design avoids

these kinds of circumstances early in the design process

so as to minimize the amount of bugs we may get at the

end.

D. System-to-Arbiter Read commands

After the write commands are sent to addresses 0-31,

the stimulus module is then also triggered to send read

commands to the same addresses. Figure 9 above displays

the waveforms that are generated when the system

attempts to read. After its first read command when the

timer is at 21, the arbiter’s state changes from state 8 to

state 9. At state 9 the system continues to send read

commands, as it is permitted to do so because of the

asserted sys_rdy signal. However, sys_wdf_rdy goes

down in state 9, which means that the system is not

allowed to send any write commands. During this branch,

the system sends read commands to addresses 0 to 18(1e),

which are all buffered in the read address fifo, ra_fifo.

The arbiter ends the branch when the ra_fifo fills up as

can be observed at timer 52 where the ra_fifo_full signal

is asserted. In its next branch, the arbiter will empty out

the ra_fifo and send the buffered read commands through

the memory controller.

Fig.9. System-to-Arbiter read requests

E. Arbiter-to-System Read execute

Fig.10. Arbiter-to-Memory read execution

Fig.11. Arbiter-to-Memory read-back

 Design of an Arbiter for Two Systems Accessing a Single DDR3 Memory on a Reconfigurable Platform 19

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 6, 14-20

Figure 10 shows the behavior of the arbiter block

during its arbiter-to-memory branch where it empties out

its ra_address FIFO and sends read commands to the

memory controller. All the read commands are combined

together and are transferred at the rate allowed by the

memory controller. For every clock cycle a read request

is allowed by the memory controller ,but after this the

memory controller starts to periodically de-assert its

app_rdy signal, and as a result arbiter only sends new

read commands every two clock cycles.

F. System-to-Arbiter Read-back

After entering the System-to-arbiter branch the arbiter

block, it will see that it has data being buffered in its

rd_fifo, so it enters state 7. After elapse of 8 clock cycles

the rd_fifo will release the data packets of size 512 bits

during this state. A series of eight 64 bit packets will be

formed out of 512-bit data packets and are sent back to

the system.The 0th bit of these 64-bit data packets are

identified by the Sys_read_data[0] and the eight-bit

representation of 512-bit data packets are shown by the

readback_data_reg as they are being released from the

rd_fifo. The 64th bit of 512-bit data packet is formed by

these bits. The read-back and the write data of the system

match with each other validating the arbiter design.[15]

Fig.12. System-to-Arbiter Read-back

VII. CONCLUSION

Designing the arbiter was challenging because the

design specifications constantly changed as we became

more familiar with the technology, and tools that were

available to us. Specifications were affected when we

found better ways to do thing, when we noticed flaws in

the design, or when the design simply wasn’t working.

Overall, learning how to communicate with the memory

controller and designing arbiter fostered knowledge about

memory, debugging, performance, and many logic design

concepts.

REFERENCES

[1] Elpida Memory, Inc., "New Features of DDR3 SDRAM,"

March 2009. [Online]. Available:

http://www.elpida.com/pdfs/E1503E10.pdf. [Accessed 15

December 2011].

[2] Hewlett-Packard Development Company, LP., "Memory

technology evolution: an overview of system memory

technologies," December 2010. [Online]. Available:

http://h20000.www2.hp.com/bc/docs/support/SupportMan

ual/c00256987/c00256987.pdf. [Accessed 12 December

2011].

[3] "Virtex-6 FPGA Memory Interface Solutions User

Guide," 1 March 2011. [Online]. Available:

http://www.xilinx.com/support/documentation/ip_docume

ntation/ug406.pdf. [Accessed 20 September 2011].

[4] B. Matas and C. de Suberbasaux, "DRAM Technology,"

1997. [Online]. Available:

http://smithsonianchips.si.edu/ice/cd/MEMORY97/SEC0

7.PDF. [Accessed 5 January 2012].

[5] B. Matas and C. de Suberbasaux, "SRAM Technology,"

1997. [Online]. Available:

http://smithsonianchips.si.edu/ice/cd/MEMORY97/SEC0

8.PDF. [Accessed 10 January 2012].

[6] M. Barr, "Embedded Systems Memory Types," Netrino,

May 2001. [Online]. Available:

http://www.netrino.com/Embedded-Systems/How-

To/Memory-Types-RAM-ROM-Flash. [Accessed 11

February 2012].

[7] V. Cuppu, B. Davis, B. Jacob and T. Mudge, "High-

Performance DRAMs in Workstation Environments,"

IEEE Transactions on Computers, vol. 50, no. 11, pp.

1133-1153, 2001.

[8] J. F. Wakerly, "Memory, CPLDs, and FPGAs," in Digital

Design Principles and Practices, Upper Saddle River,

Pearson Prentice Hall, 2006, pp. 822-840.

[9] J. L. Hennessy and D. A. Patterson, in Computer

Architecture A Quantitative Approach, Waltham, Elsevier,

2012, pp. 97-101.

[10] J. H. Davies, in MSP430 Microcontroller Basics,

Burlington, Elsevier, 2008, p. 12.

[11] P. Singer, "Dynamic random access memory (DRAM),"

Semiconductor International, vol. 26, no. 2, p. 84, 2003.

[12] Xilinx, "AXI Reference Guide," 18 January 2012.

[Online]. Available:

http://www.xilinx.com/support/documentation/ip_docume

ntation/axi_ref_guide/v13_4/ug761_axi_reference_guide.

pdf . [Accessed 10 October 2011].

[13] Xilinx, "PlanAhead User Guide," 18 January 2012.

[Online]. Available:

http://www.xilinx.com/support/documentation/sw_manual

s/xilinx13_4/PlanAhead_UserGuide.pdf. [Accessed 7

March 2012].

[14] Xilinx, "ML605 Hardware User Guide," 18 July 2011.

[Online]. Available:

http://www.xilinx.com/support/documentation/boards_an

d_kits/ug534.pdf. [Accessed 3 March 2012].

[15] Xilinx, "ISE Help," 2008. [Online]. Available:

http://www.xilinx.com/itp/xilinx10/isehelp/isehelp_start.h

tm. [Accessed 28 February 2012].

[16] Xilinx, "Virtex-6 Family Overview," 9 January 2012.

[Online]. Available:

http://www.xilinx.com/support/documentation/data_sheet

s/ds150.pdf. [Accessed 1 March 2012].

20 Design of an Arbiter for Two Systems Accessing a Single DDR3 Memory on a Reconfigurable Platform

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 6, 14-20

Authors’ Profiles

Arun S. Tigadi, Assistant professor

Department of E and C ,K.L.E DR.

M.S.Sheshgiri College of Engineering and

Technology. Have a working experience of

9 years in the department of E and C.

Received my U.G Degree in E&C from

S.D.M CET Dharwad in the year 2006 and

P.G Degree in VLSI Design and Embedded

systems from K.L.E CET Belagavi in the year 2008.

Fields of interest are Low power VLSI design, FPGA Design,

Memory controllers, arbiters, multiport memory design, Real-

time system design and Operating systems. Published seven

international journal papers and presented three papers in

international conferences.

Dr. Hansraj Guhilot, held many academic

and R&D positions over a career span of 30

years, currently working as the Principal, K.

C. College of engineering and management

studies and research. He worked as Dean

(R&D) and Professor of EC at KLE Dr. M.

S.Sheshgiri College of Engineering and

Technology, Belgaum, Karnataka.

He has teaching experience spanning 28 years with a Ph.D. in

Electronics, having thesis titled “Design and Development of

CMOS Mixed-Mode Integrated circuit for Chloroplast

Measurement” and Research work published in IEEE Sensors

Journal. He is an IEEE Technical Paper Reviewer at IEEE

International Conference on Recent Trends in Information,

Telecommunication, and Computing (ITC), 2010. He is a

member of Entrepreneur Development Cell (EDC) in

Visveswaraya Technological University (VTU), Belgaum. He is

a subject expert in CMOS VLSI, Edusat Program, VTU, and

Belgaum. He has published 36 papers, delivered ten invited

technical talks and is awarded with one US Patent and nine

international patents. Worked as Director (R&D), Paradigm

Industries Inc. USA and Consultant for N&N Allied Energy

Services Inc. USA.

How to cite this paper: Arun S Tigadi, Hansraj Guhilot," Design of an Arbiter for Two Systems Accessing a Single

DDR3 Memory on a Reconfigurable Platform", International Journal of Information Engineering and Electronic

Business(IJIEEB), Vol.10, No.6, pp. 14-20, 2018. DOI: 10.5815/ijieeb.2018.06.02

