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Abstract 

The paper presents an application of Interval Newton method to solve the inverse kinematics and redundancy 

resolution of a serial redundant manipulator. Such inverse problems are often encountered when the 

manipulator link lengths, joint angles and end-effector uncertainty bounds are given, which occurs due to 

because of inaccuracies in joint angle measurements, manufacturing tolerances, link geometries approximations, 

etc. The inverse kinematics of three degree of freedom planar redundant positioning manipulator without end-

effector has been evaluated using the manipulability of Jacobian matrix as performance metric. To solve the 

nonlinear equation of inverse kinematics, the multidimensional Newton method is used. The inverse kinematics 

is intended to produce solutions for joint variables in interval of tolerances for specified end effector accuracy 

range. As exemplar problem solving, a planar 3-degrees-of-freedom serial link redundant manipulators is 

considered. 

 

Index Terms: Interval Newton Method, Redundant Manipulator, Inverse Kinematics, Manipulability.  
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1. Introduction 

In robotics, a manipulator is called kinematically redundant if the number of degree of freedom (DOF) of the 

joint space is higher than the number of degree of freedom of task space coordinates. Inverse kinematics 

redundancy resolution for redundant serial manipulators remains a key topic in many robotics problems, where, 

presence of additional degrees of freedoms enhances manipulator's ability, and task versatility [1-4]. Secondary 

task of a redundant manipulator is defined by performance indices. These indices include, among many others, 

isotropic velocity behaviour, manipulability, dynamic manipulability, etc. Manipulability of the manipulator 

jacobian matrix is used by Yoshikawa [1] as performance metric for manipulating ability of robotic 
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mechanisms in positioning and orienting end-effectors. Similarly condition number of the manipulator jacobian 

matrix is used by Salisbury [3] as an optimization performance criterion to evaluate the dimensions for the 

fingers of the Stanford/JPL articulated hand. To design a manipulator, Klein [4] used the condition number of 

jacobian matrix of manipulator for isotropy at a working point for a fixed total arm length. One problem of 

using condition number of a Jacobian matrix is the mismatch of units of rectilinear and rotational velocities. To 

overcome this discrepancy a characteristic length of manipulator is proposed by Angeles [5] to normalize the 

manipulator jacobian. 

This article addresses the problem of inverse kinematics evaluation of redundant manipulator using an 

Interval Arithmetic based technique. This interval based technique is not much explored for redundant serial 

manipulator problem, can lead to design optimization of manipulators with dimensional/length uncertainties 

due to manufacturing tolerance, assembly variations and uncertainty inherent in behaviour of procured 

components, given that the uncertainty ranges are known. Some literatures are available, where, the researchers 

attempted to solve the inverse kinematics of non-redundant serial manipulator by the  interval methods [6-8]. 

Castellet et al. [7] solved the inverse kinematics by using the n-bar mechanism and form a closed single-loop 

mechanism and apply the interval Newton cut  approach. Roa et. al. [6] applied the interval Krawczyk method 

to solve the inverse kinematics equation of industrial robots. Pac et. al. [8] used the SIVIA algorithm (Set 

Inversion via Interval Analysis algorithm) to solved the solution to the inverse kinematics problem of the two-

link and three link manipulator.  This article attempts to solve the redundancy resolution and inverse kinematics 

of redundant manipulator by formulating the optimization problem as manipulability of Jacobian should be 

maximum. The maximization equality problem is converted in the form of General Fritz-John formulation and 

solved it using Interval Newton method.  

The organization of the paper contains the problem formulation for inverse kinematics of redundant 

manipulator and some basics of interval arithmetic in Section 2. Section 3 describing the procedure for inverse 

kinematics solution with 3-DOF manipulator example, and conclusions are delineated in Section 4.  

2. Problem Formulation and Interval Method 

2.1 Inverse Kinematics Problem 

The forward kinematic equation of an n-DOF manipulator can be expressed as  

)(qfx                                                                                                                                                              (1) 

where, mRx  is the end effector pose in m-dimensional task space, nRq  is the joint space variable vector of 

dimension n and f is a nonlinear vector function obtained from the particular kinematic structure of the 

manipulator. Inverse kinematics requires to find   f 
-1

 in order to find one or more joint angle vectors for a given 

end-effector position and orientation, such that  

)(1 xfq                                                                                                                                                          (2) 

Solution of (1), for redundant manipulator, gives an infinite number of configurations. Although in principle 

(2) may exist, in practice it is not easy to obtain a closed form inverse kinematic function of (1) for spatial 

manipulators having more than three degrees of freedom in particular. In such a case, iterative and algorithmic 

techniques are generally employed. One such technique makes use of jacobian of the forward kinematic 

function in (1), this is defined in the differential motion relations   

qqJx  )(  or qqJx  )(                                                                                                                               (3)
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where, .,..,1,/ niqfJ i   Inverse kinematics is solved either using first of (3) and integrating the velocities 

for position with respect to an initial configuration, or, by an iterative method using increment  in second of 

(3) again with knowledge of an initial configuration. A specific inverse kinematic solution with minimum norm 

can be obtained by using the Moor-Penrose pseudo inverse [9] of J(q) but it does not guarantee avoidance of all 

occurrences of singularity. A more general solution of second of (3) is given by 

0
## )( qJJIxJq nxn                                                                                                                             (4) 

which is a non-minimum norm solution, where a homogeneous term is added to the minimum norm solution. In 

x n is an identity matrix of dimension n and Δq0 is an arbitrary vector, denoting null-space motion, which is 

added with the minimum-norm-term through a projection operator which is added with the minimum-norm-

term through a projection operator )( # JJInxn  . This non-minimum norm solution allows reaching a secondary 

objective and achieves Manipulability. In this article, Manipulability of Jacobian is taken as the performance 

metric. The redundancy resolution and inverse kinematics  is solved by prioritizing the tasks – the primary task 

being the reachability to the  goal point in the workspace  and the secondary task is maximize the 

manipulability of Jacobin matrix. Based on the primary and secondary task of manipulator formulate the 

optimization problems and solve them using interval Newton method. In this article, the inverse kinematic 

solution is attempted using optimization problem that is based on manipulability of Jacobian matrix, by 

incorporating interval technique to handle uncertainties in link dimensions and goal position. 

2.2 Interval Arithmetic 

Interval analysis is a relatively new mathematical branch of computational mathematics where computations 

are carried out on intervals instead of real numbers. Interval analysis is used to design interval algorithms for 

solving systems of linear and nonlinear equations and optimization problems [10-12]. Moore [13] among few 

firsts made important discussions with the basic interval operations.  

An interval X is defined as the closed bounded set of real numbers  denoted by ],[ XXX  , such that, 

xxx  where xx, , represent lower and upper bounds respectively. Four important elementary definitions 

based on unary operations are stated as: 

 

a Midpoint: 2/)()( xxXm   

b Width: )()( xxXw   

c Radius: 2/)()( xxXrad   

d Absolute value: |}|| ,max{||| xxX   

(Note that |||| Xx   for every Xx ) 

The basic interval arithmetic operations are defined on interval vector such that the interval result includes 

all possible real values. For a given interval ],[ XXX   and ],[ YYY   the elementary operations are defined as  

},:{ YyXxxopyXopY  where op denotes one of },,,{  . In case of division, .0 Y  

 

(a) Addition: ],[ yxyxYX   

(b) Subtraction: ],[ yxyxYX   
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(c) Multiplication: }],,,max{},,,,[min{ yxyxyxyxyxyxyxyxYX   

(d) Division: ]/1,/1[],[/ yyxxYX   if .0 Y  

(e) Intersection: }],min{,},,[max{ yxyxYX   

(f) Union: 




 


otherwiseundefined

YXifyxyx
YX

,

}],max{,},,[min{ 
 

 

An interval function is an interval valued function of one or more variables. For interval ),.....,1( XnXX  , 

an interval function ),.....,1( XnXF is said to be an interval extension of a real function ),.....,1( xnxF  if 

),.....,1( xnxF  ),.....,1( XnXF                                                                                                                          (5) 

ii Xx  for all .,....,1 ni   An interval function F,  is called inclusion monotonic if ii YX   implies 

),.....,1( XnXF   ),.....,1( YnYF . 

Interval extension of a mathematical function can be derived by partitioning its domain into monotonic 

regions. For example, the interval extension of sin(X) for 0 to 2 can be formulated as: 



























}22/3{}2/0{]1,1[

}22/3{}2/32/{))]sin(),max(sin(,1[

}2/32/{}2/0{]1)),sin(),[min(sin(

2/32/)]sin(),[sin(

}22/3{}2/0{)]sin(),[sin(

)sin(











xx

xxxx

xxxx

xxxx

xxxxxx

X  

Uniform subdivision of an interval vector ),.....,1( XnXX  can be defined as below [13]:  

Let N be a positive integer and define 

.,.....,2,1],/)(,/)()1([, NjNXjwXNXwjXX iiiiji                                                                     (6) 

Equation (6) is used for generating uniform subdivision of the angle vector for the given angle range in the 

inverse kinematics procedure. 

Intervals methods may be used in many ways to solve the nonlinear equations. Mostly these methods can be 

described in terms of contraction operators, or contractors [13]. Function of the contractors is either reducing 

the size of, or completely eliminates, the region in which solutions to the equation system of interest are being 

sought. The contraction strategies based methods are Krawczyk and interval-Newton methods that have been 

widely used in the solution of nonlinear equation systems. Here we next described the interval-Newton 

methods only which is used in this paper to solve the nonlinear equations. 

2.2.1. Newton Method 

Let us consider the nonlinear equations 0)( xf , such that we need a solution in vector x . Suppose that 

)(xf  has a continuous derivative in the region of interest. By the mean value theorem: 
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))(()()( ' yxfyfxf                                                                                                                                 (7) 

where   lies between x  and y . Now assume 0)( xf , and now (7) became 

)(/)( ' fyfyx                                                                                                                                            (8) 

Suppose ],[ baX  , be an interval containing x  and y , and )(' XF  be an inclusion monotonic interval 

extension of )(' Xf  hence interval Newton algorithm [13] can be written as 

,......2,1,0)( )()()1(  kXNXX kkk                                                                                                            (9) 

where 

)(/))(()()( ' XFXmfXmXN                                                                                                                        (10) 

and  

2/)()( baXm   

The above solution is for one dimensional variable. For multivariable case (7) can be written as 

)()()( xyAxfyf                                                                                                                                    (11) 

Where A is a matrix whose i
th

 row is given by 

))(.......,),........(()(
1

i
n

i
i

i
ii

T
i c

x

f
c

x

f
cfA








                                                                                                             (12) 

To solve the multidimensional interval Newton method set the equation as assume 0)( xf , then 

)(1 yfAyx                                                                                                                                                 (13) 

Here A is replaced with )(' XF . For simplicity it can be written as 

VyXNx  )(                                                                                                                                                 (14) 

Where V  bound the solution set to 

)()(' yFvXF                                                                                                                                                  (15) 

Using the Interval Gauss' elimination method solve (15). )(XN  in (14) is the multidimensional analog to 

(10). 
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3. Inverse Kinematics for Redundant Manipulator 

Here the inverse kinematic of the manipulator is obtained based on optimization method for the redundancy 

resolution. The inverse kinematics of the 3-DOF planar manipulator is being studied with maximize the 

Manipulability of Jacobian as objective function and reachability as constraints. 

The considered manipulator configuration of a 3-DOF planar redundant manipulator is shown in Fig. 1, 

which consists of three links of lengths l1 , l2 and l3. The inverse kinematics of the manipulator for a given task 

position ( ), gg yx is solved by formulating optimization problem as maximize the manipulability. 

The manipulability of a manipulator is defined as 

)det( TJJw   

where J  is Jacobian of the manipulator.  

Thus we formulate the problem as to find the value of angles 21,   and 3 that minimizes 

wP /1)(                                                                                                                                                       (16) 

In the bounded region of angles ranges, subject to the j (j = 1,2 ) equality constraints that satisfied the goal 

position i.e. 0)( jg , is given below 

Subject to: 0))cos()cos()cos(( 321321211   lllxg                                                         (17) 

                  0))sin()sin()sin(( 321321211   lllxg                                                           (18) 

where ( ), gg yx  is the goal position of the manipulator in the workspace. 

The equality constraint in (17) and (18) satisfies the reachability criterion (primary task), such that the vector 

function 0)()(  qfxqg gets satisfied for given task position. 

General Fritz-John method [11] is applied to solve above equality optimization problem using interval 

method. The normalized Fritz-John condition for above can be written as below 






2

1

0 0)()(

j

jj gvPu                                                                                                                            (19) 

0)( jg                                                                                                                                                         (20) 






2

1

2
0 1

j

jvu                                                                                                                                                (21) 

The initial bounds for multipliers are 10 0  u  and 11  iv . 

The interval Newton method is applied to the Fritz John conditions. The algorithm developed here works on 
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boxes, each box being a set of intervals of angles. We assume the initial box X(0) is given in which the solution 

is sought. The algorithm is described below as: 

Algorithm: 

To solve the (19), (20), and (21) simultaneously ( 0)( xf  ) using interval Newton method the following 

steps are followed.  

 

(i) Initial interval vector X(0) (i.e., range of angles based on requirement) is given which forms a box.  

(ii) Angle ranges are divided into several sub-boxes using the uniform interval subdivision strategy by 

applying  (6) and  form Stack, L1.  

(iii) Take one by one a sub box from Stack L1 and repeat through step (x) until the Stack is empty.  

(iv) Take one box X to be processed, find the value of F(X). 

(v) Check, if )(0 XF , means it do not have root. go to step (x) 

(vi) Using (14) multidimensional interval Newton method, find )(XN  

if  XXN )( , then go to step (x) 

(vii) If XXXN )( , output X go to step (x) 

(viii) Now bisect X  such that )2()1( XXX   

]2/)(,[)1( XXXX   

],2/)[()2( XXXX   

(ix) Push 
)2(1, XX  into the Stack 

(x) Set X = top of Stack 

3.1 Example: 3-DOF Planar Manipulator 

The considered revolute type 3 DOF planar manipulator configuration is shown in Fig. 1, which consists of 

three links of lengths l1, l2 and l3. The inverse kinematics of the manipulator for a given task position is solved 

using the above interval mentioned method. Interval calculations are carried out by using MATLAB and a 

toolbox called INTLAB developed by S. M. Rump [14]. 

The considered 3-DOF planar manipulators has a reach of 1.2 m along with links length as ml 6.01  , 

ml 3.02   and ml 3.03  , with manufacturing tolerances 10
-4 

m and desired goal point is chosen to be mxg 8.0 , 

myg 8.0  with precision considered in the range of 0.001m. The angle ranges of the joints considered are 

2/1 q  to , 2/2 q  to  and 2/3 q  to 2/ . 

The link lengths can be represented in interval form as follows: 

]6001.0,5999.0[1 l  

]3001.0,2999.0[2 l  

]3001.0,2999.0[3 l
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Similarly the goal point can be represented in interval form as follows 

]801.0,799.0[gx , ]801.0,799.0[gy  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. 3-DOF Planar Manipulator 

The output angles are as follows 

]3990.0,3989.0[3

]4191.0,4187.0[2

]4791.0,4783.0[1







q

q

q

 

The algorithm output is plotted in Fig. 2, in which the outer box represent the goal position and the inner box 

represent the manipulator end effector position (manipulator tip position).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. The Output Result – The End-Effector Position Lies Within The Goal Position Precision Range.
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From Fig. 2, it is clear that the manipulator end effector (manipulator tip point) position which is plotted 

corresponding to the output angles is lie within the goal position. 

4. Conclusion 

Inverse kinematics is an important step in performance metric based design optimization of redundant 

manipulators. Handling manufacturing tolerances, complex geometry of links, etc. is a concern in design of a 

manipulator for desired performance accuracy. Interval arithmetic method is a viable technique in dealing with 

these tolerances, where, point solution is not sought, rather a solution interval is found. This paper attempts to 

evaluate the inverse kinematics of 3-DOF planar redundant manipulator arm using the interval Newton method. 

Given a tolerance range and acceptable goal point precision range, this paper develops a procedure to find 

inverse kinematics solution in intervals for redundant 3-DOF planar manipulator. The inverse kinematics 

solution simultaneously finds a posture, where, a performance metric is optimized. The performance criterion 

considered here is the so called manipulability of  Jacobian of the manipulator. MATLAB© function from the 

INTLAB toolbox, developed by S.M. Rump, have been utilized in performing the interval numerical 

computations. 
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