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Abstract: A wafer map depicts the location of each die on the wafer and indicates whether it is a Product, Secondary 

Silicon, or Reject. Detecting defects in Wafer Maps is crucial in order to ensure the integrity of the chips processed in 

the wafer, as any defect can cause anomalies thus decreasing the overall yield. With the current advances in anomaly 

detection using various Computer Vision Techniques, Transformer Architecture based Vision models are a prime 

candidate for identifying wafer defects. In this paper, the performance of Four such Transformer based models – BEiT 

(BERT Pre-Training of Image Transformers), FNet (Fourier Network), ViT (Vision Transformer) and Swin 

Transformer (Shifted Window based Transformer) in wafer map defect classification are discussed. Each of these 

models were individually trained, tested and evaluated with the “MixedWM38” dataset obtained from the online 

platform, Kaggle. During evaluation, it has been observed that the overall accuracy of the Swin Transformer Network 

algorithm is the highest, at 97.47%, followed closely by Vision Transformer at 96.77%. The average Recall of Swin 

Transformer is also 97.54%, which indicates an extremely low encounter of false negatives (24600 ppm) in contrast to 

true positives, making it less likely to expose defective products in the market. 

 

Index Terms: Wafer defects; Transformer models; Machine learning; Swin transformer model. 

 

 

1. Introduction 

In semiconductor manufacturing, a wafer is a fundamental unit. A single wafer can accommodate hundreds or 

thousands of integrated circuits (ICs) [1]. The typical defect patterns (e.g., ring, scratch, semicircle, repeat, cluster) on 

wafer maps generally connect the possible causes of failure or process variations. As a result, major efforts in the 

semiconductor industry and academics have been made in recent decades to build high-performance fault detection and 

classification (FDC) models that can detect wafer defects early in the semiconductor fabrication process [2]. Various 

machine learning algorithms, which may be split into unsupervised and supervised learning categories, have been 

successfully applied in the detection and recognition of wafer map defects in recent years. Until recently, approaches 

involving supervised learning mostly included architectures with convolutional neural networks (CNN). CNNs are 

useful for automatic extraction of features from images. This is achieved by using a combination of kernels of varied 

dimensions and different kinds of pooling layers (Avg. pooling, Max pooling etc.). The kernels are responsible for 

extracting features in different regions or sub-sections of the image and for finding multiple distinct features even in the  
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same location of an image. Feature summarization or localizing the most prominent features is performed by the 

pooling layers. 

Although CNN architectures perform well in feature extraction, it becomes more computationally expensive to 

capture long-range dependencies in images with them. This is because filter size needs to be increased drastically to 

cover larger sections of an image. This also, in turn, decreases the statistical efficiency of the model. Transformers excel 

in this regard because of the presence of self-attention blocks in them. Transformers capture the interactions among the 

elements of a sequence for structured prediction problems. To update each component of a sequence, a self-attention 

layer accumulates global information from the entire input sequence [3]. Since the information from the entire image 

sequence is used for each component, the feature maps contain data even on very distant sub-segments of the image. As 

multiple attention heads are used, the aspect of capturing different features from the same region of the image is also 

preserved.  

In recent times, several state-of-the-art transformer models have been presented in the field of computer vision. 

Transfer learning methods are highly recommended as they can compensate for the lack of a large training dataset as 

transfer learning seeks to transfer previously learned relevant knowledge from the source dataset to the target dataset [4]. 

Moreover, on top of a pre-existing model a transfer learned model can provide more accurate and precise detection 

mechanism [5]. In this paper, we compared the performances of four of these prominent models in detecting and 

classifying wafer defects namely BERT Image Transformer (BEiT), FNet, Vision Transformer (ViT) & Swin 

Transformer. The metrics used for this comparison are Precision, Recall, F1-Score, and Accuracy. 

The main aim of this paper is to find the most suitable method for identifying wafer defects in wafer map using 

some prominent Transformer Architecture based vision models. Four transformer based models namely BEiT (BERT 

Pre-Training of Image Transformers), FNet (Fourier Network), ViT (Vision Transformer) and Swin Transformer 

(Shifted Window based Transformer) are deployed on “MixedWM38” wafer dataset to propose the model with best 

accuracy for wafer defect detection. 

The remainder of this paper is organized as follows:  

The second section comprises Literature Review, third section discusses about data collection and methodology, 

the fourth section explains the experimental results and finally fifth section comprises the conclusion. 

2. Literature Review 

Over the years, semiconductor industry made significant improvements for developing high performance fault 

detection and classification machine learning models to detect wafer faults in semiconductor fabrication process.  

Hoyeop Lee, Youngju Kim, Chang Ouk Kim [6] used a deep learning algorithm called stacked denoising 

autoencoder (SdA) for fault detection and classification of wafer faults. The dataset collected from work-site 

photolithography tool was used in the experiment and compared with twelve other models along with the proposed 

SdA’s classification method. The accuracy was 14% higher than the other compared models for wafer fault detection. In 

[7] authors classified surface defects that were visible in semiconductor wafers using vision-based machine learning 

method where four types of surface defects namely center, random, scrape and local were identified using convolutional 

neural networks. The experiment avoided using any refinement yet reached 98% to 99% accuracy and showed superior 

performance in contrast to the other implemented machine learning methods. Po-Chou Shih, Chun-Chin Hsu and Fang-

Chih Tien [8] proposed deep learning neural network methods to determine the defects in wafer. Three powerful neural 

networks namely multilayer perceptron (MLP), convolutional neural network (CNN) and Residual neural network 

(ResNet) were implemented on wafer dataset and then compared for classification. The applied networks identified the 

categories of defects as well as if the reclaimed wafers were suitable for re-polishing. Experiment results showed that 

the applied CNN network system outperformed the other two applied networks. Jianbo Yu [9] implemented enhanced 

stacked denoising autoencoder (ESDAE) on wafer dataset (WM-811K) for wafer map pattern recognition. The 

proposed method was compared with commonly used recognizers like SVM, BPN and DPN. Experimental results 

showed that the proposed scheme brought significant effectiveness for wafer map defect detection and recognition. 

Seokho Kang [10] used joint modelling for classification of faulty wafers. This proposed scheme incorporates both 

classification and regression task building a combined output for final prediction. The proposed model in contrast to 

other baseline models like NN, NNC, NNR, SVR, LOGR and LINR ensured superior performance.  

Authors in [11] proposed MVGG-19 an improved network model of VGG-19 that allows higher prediction 

accuracy for wafer defects. The model was optimized with ADAM and SGDM optimizers to achieve better results for 

evaluating and comparing ML-Si wafer quality. The improvised model helped to reduce the prediction error by 63% 

proving good stability and high prediction accuracy for wafer defect detection. 

Mohamed Baker Alawieh, Duane Boning and David Z. Pan [12] implemented a new data augmentation framework 

to identify wafer defects on WM-811k dataset. The framework was built around a convolutional auto-encoder model 

which helped in synthetic sample generation. The proposed model achieved 94% accuracy and was able to detect new 

wafer defect types successfully. 
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3. Methodology 

3.1 Dataset 

The dataset that is used for this research is “MixedWM38” which has in total 38015 labeled wafer bin map images. 

Labels are all one-hot encoded. All of the images are shaped 52x52 pixel size. In these bin maps 0, 1 and 2 represents 

respectively blank spot, normal die that passed the electrical test and broken die that failed the electrical test. All these 

pictures are divided into 38 classes (C1-C38) according to the types of defects, which include 1 normal type (No Defect) 

and 8 single defect type (C1-C9) denoted as “Single Type”, and 29 other “Mixed Type” defects. All of these “Mixed 

Type” have 3 divisions which are denoted as “Two Mixed Type” (C10-C22), “Three Mixed Type” (C23-C34) and 

“Four Mixed Type” (C35-C38). 

This dataset is mostly balanced because almost all the classes have the same number of samples. In Fig 1 it can be 

clearly seen that 35 out of 38 classes contain 1000 samples each. Only C24, C07 and C09 classes have different sample 

counts which are respectively 2000, 866 and 149. 

 

 

Fig.1. Samples in each class. 

3.1.1 Single Type 

In “Single Type” there are 9 classes or wafer images which can be found in Fig 2.  Here C1 class is the Normal 

type which has no defect. From class C2 to class C9 there are 8 basic defect types. All the classes with their 

corresponding defect pattern name can be seen within Fig 2. 

 

 

Fig.2. Single Type classes. 

3.1.2 Mixed Type 

“Mixed Type” is created when those 8 basic types of defects are mixed within a single wafer. 

3.1.3 Two Mixed Type 

This division contains classes of wafers that have mixing of two single defect types which can be seen in Fig 3. 

From C10 to C22 there are 13 classes in this division. In Fig 3 short forms of each defect type that made into the 

corresponding wafer are also given at the top of each class image. For example, C12 class has both Center and Loc in 

the wafer so it is denoted as C12: C+L. 
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Fig 3. Two Mixed Type classes. 

3.1.4 Three Mixed Type 

This division consists of images having three single type defects can be seen in Fig 4. It has a total 12 classes from 

class C23 to class C34. 

 

Fig.4. Three Mixed Type classes. 

3.1.5 Four Mixed Type 

As the name suggests this division contains classes that have four single defects each in Fig 5. There are only four 

classes there, which are C35, C36, C37 and C38. 

 

Fig.5. Four Mixed Type classes. 

3.2.  Data Pre-processing 

Data preprocessing is one of the most important steps in machine learning and deep learning as the models used in 

this research are directly affected by the data that is gathered from preprocessing, which controls how much and how 

easily these models learn. In many cases preprocessing steps need to be different for different models because they 

require different types of preprocessing. In case of this research as researchers used 4 transformer models these data 

were preprocessed according to the corresponding model’s demand. At first all of the images were saved to the folders 

that were named after their classes of which they belong. In this part the images were also divided in train, validation 

and test sets. The sample distribution can be found from Table 1 and the proportion of train, validation and test set is 

around 70:15:15 for each of the classes. 

Table 1. Distributions of samples in train, valid and test set 

Classes Total Sample Train Set Validation Set Test Set 

C24 2000 1400 (70%) 300 (15%) 300 (15%) 

C07 866 607 (≈70%) 130 (≈15%) 129 (≈15%) 

C09 149 105 (≈70%) 22 (≈15%) 22 (≈15%) 

Rest of the classes 

(each) 
1000 700 (70%) 150 (15%) 150 (15%) 



High Accuracy Swin Transformers for Image-based Wafer Map Defect Detection 

14                                                                                                                                                                       Volume 12 (2022), Issue 5 

As the models in this research were “pretrained models”, images had to be resized according to the requirements of 

the model they were fed into.  

Table 2. Image size and padding for different models 

Models Image Size Padding 

Vision Transformer (ViT) 224x224 86 

Swin Transformer 224x224 0 

BERT Image Transformer (BEiT) 224x224 86 

FNet 52x52 0 

 

For the vision transformer 86 pixels of padding were added to every side of the image to change the image height 

and width from 52 to 224 (Table 2). Same steps were followed for the BEiT model also. But for the Swin Transformer 

we added no padding. Instead, we simply changed the size of the image to 224x224 pixels. Although for FNet image 

size was kept as it is. 

3.3. Transformer Models 

3.3.1 Vision Transformer Model 

Although in recent years, the Transformer Architecture has been widely used in the field of NLP (Natural 

Language Processing), its applications in Computer Vision were limited. Convolutional Neural Networks were mostly 

dominant in Computer Vision [11,13] and architectures involving self-attention were being experimented with natural 

language understanding and end to end object detection [14, 15]. Vision Transformers were designed with the aim of 

utilizing the standard Transformer architecture in images. This was achieved by sectioning each image into patches and 

then feeding the linear embeddings of these patches into the transformer layer. These patches are used in the same 

manner as the tokens used in NLP.   

 

 

Fig.6. Vision Transformer Architecture.  

As Illustrated in Fig 6, the 2D image patches of dimension 𝑥 ∈ ℝ𝐻×𝑊×𝐶  are flattened into dimension 𝑥𝑝 ∈

ℝ𝑁×(𝑃2⋅𝐶) where (𝐻, 𝑊) is the image patch resolution, and 𝑁 = 𝐻𝑊/𝑃2 is the number of patches which is also the 

input sequence length of the Transformer. An embedding is added to this sequence that acts as the image representation. 

A classification head is attached to this, implemented by a MLP, for both pre-training and fine tuning. Position 

embeddings are also included in the patch embeddings. The transformer encoder layer used is similar to the ones 

applied in NLP. Finally, the last layer is a softmax layer that classifies the images. Vision Transformers have low 

image-centric inductive bias compared to CNNs. This requires Vision Transformers to be trained with large datasets 

(14M-300M images). These Transformers can then be fine-tuned for a particular application, preferably at higher 

resolutions [18]. 

3.3.2 Swin Transformer Model 

Although conventional Transformer architectures are able to capture long distance dependencies between the 

pixels of an image, the computational complexity of their self-attention layers have quadratic computational complexity. 

This makes performing tasks like semantic segmentation difficult.
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Swin Transformer addresses this problem by introducing a hierarchical representation in its architecture from the 

image patches. This is accomplished by performing patch merging operations on neighboring patches as the input 

moves further into the consequent layers, increasing the overall patch size in each layer. The transformer utilizes a 

shifted window based self-attention mechanism to link windows from the preceding layers, which results in a 

significant boost in model representation.  

Local windows are placed taking care of the fact that the windows do not overlap each other, and the entire detail 

of the image is captured. Considering 𝑀 × 𝑀 patches per window, the computational complexity on an image of ℎ × 𝑤 

dimensional patches for ordinary MSA (Multi-head Self Attention) W-MSA (window based MSA) are: 

 

𝛺(𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2(ℎ𝑤)2𝐶                                                                    (1) 

 

𝛺( 𝑊 −  𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2𝑀2(ℎ𝑤)𝐶                                                           (2) 

 

Here, there is quadratic complexity with respect to ℎ𝑤 in MSA compared to only linear complexity in the W-MSA 

implementation.  

 

 

Fig.7. Efficient batch computation using cyclic shift 

Multiple Stages are connected one after another and embedding and patch merging operations are performed as 

depicted in the figure below. The patch merging layer takes a 2 by 2 image layer and concatenates it and then it is down 

sampled from 4C to 2C. The process repeats in rest of the stages resulting in the expected hierarchical representation 

[19]. 

 

 

Fig.8. A single Swin Transformer Layer 

 

Fig.9. Swin Transformer Architecture
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Tokens with a fixed scale are not very appropriate for use in image data training because such activities often 

include visual objects with a varied range of sizes. And as for detecting the defects in wafer, it can be seen that the size 

of similar types of defects might vary in great range. This is where the Swin transformer thrives, because of its use of 

variable patch sizes, by combining shifted windows and patch merging. 

3.3.3 FNet Transformer Model 

Modern Image Transformer models obtain high accuracy in many image-based tasks, such as Image Classification, 

Semantic Segmentation etc. But these models leave room for improvement in terms of speed and memory consumption. 

FNet has managed to improve the Transformer in this regard, by utilizing Fourier Transforms in place of the self-

attention layer present in conventional Transformers.  

FNet achieves comparable accuracies to other Transformer architectures but faster. It achieves 92% and 97% 

accuracy in GLUE benchmark [16] with respect to BERT-Base and BERT-Large on respectively, training 70% faster in 

TPUs and 80% faster in GPUs. In terms of longer sequence lengths,  

FNet is competitive on the Long-Range Arena benchmark [20] resulting in close accuracy measures to other 

Transformer architectures but faster.   

 

 

Fig.10. FNet Architecture 

Being a self-attention free architecture, FNet leverages a Fourier mixing sublayer followed by a feed-forward 

sublayer. A 2D DFT is applied by the Fourier sublayer to the Transformer embedding input with dimensions (sequence 

length 𝐹𝑠𝑒𝑞  , hidden dimension 𝐹ℎ).  

 

𝑦 =  ℜ(𝐹𝑠𝑒𝑞((𝐹ℎ(𝑥)))                                                                        (3) 

 

Here the Fourier Transform can be interpreted as an effective method for token mixing, which provides adequate 

access to all tokens to the feed-forward sublayers. The alternating encoder blocks can be perceived as applying alternate 

Fourier and Inverse Fourier operations on the input, switching alternatively from time to frequency domain.  

 

 

Fig.11. Working principle of BEiT  
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3.3.4 BEiT Transformer Model 

This model uses a similar objective function that BERT [21] uses, which is Masked Language Modeling (MLM), 

which in case of BEiT is Masked Image Modeling or MIM and Next Sentence Prediction (NSP). MLM is used to mask 

some certain token in a sentence during Natural Language Processing (NLP) training and the model is asked to predict 

it. In the case of NSP, one single sentence is used as an input and the model predicts what the next sentence will be. 

For BEiT [22] images are divided into patches (tokens) and they are masked randomly. After that these patches are 

flattened into a vector. Then all the embeddings for patches and their positional embeddings are learned and a BERT 

like architecture is used for these embeddings to pass through. Model predicts the masked image tokens only. All of the 

image tokens come from image tokenizer. Lastly, the image data is reconstructed using tokens. 

3.4. Training Configuration 

Every model was fine-tuned according to their needs in this research. Google Colaboratory Environment was used 

for this research. As the GPU google provided in the colaboratory has some limitations authors had to use smaller batch 

sizes which provided better result in the end. Not more than 7 epochs were used in ViT, Swin and BEiT because their 

validation loss was increasing after that drastically. To complete each model 38 neurons were added at the last layer 

along with the function “Softmax” and loss “categorical cross entropy”. 

In Table 3 we can get a glimpse of what parameter we used for different models in our research. 

Table 3. Model Parameters 

Models Epochs Batch Size Learning Rate Patch Size 

Vision Transformer (ViT) 6 10 0.00001 16 

Swin Transformer 7 5 0.00001 4 

BERT Image Transformer (BEiT) 5 10 0.00001 16 

FNet 49 32 0.001 8 

4. Experimental Results and Discussion 

The precision, recall and f1-score for each defect class was separately obtained while conducting the experiments 

using the aforementioned architectures. For most classes, the results of the 4 architectures have been found to be near 

each other, leaving significant changes in only a few defect classes.  

As can be seen in Fig 12, In single type wafers, the results are not widely varying in each individual architecture. 

Overall, the Swin architecture performs the best here and FNet has the lowest precision. 

 

 

Fig.12. Comparison of Precision (per class) of the 4 Transformer architectures (Swin, ViT, BEiT, FNet) 

Swin Transformer and ViT show similar high precision results in detecting Two Mixed Type defects. Here the 

precision of BEiT drops significantly for the C10 class. Noticeable decline in precision is found in Three Mixed Type 

defects in C25 and C26 from FNet and C28 and C29 from BEiT. All the models have great precision in Four Mixed 

Type defects with only a low precision scored in C38 by FNet. 
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Fig.13. Comparison of Recall (per class) of the 4 Transformer architectures (Swin, ViT, BEiT, FNet) 

In terms of recall, in most cases high values are obtained by all 4 architectures. In Single Type defect recall drops 

noticeably for FNet and BEiT in C8. Recall from BEiT also falls down in C33 

in Three Mixed Type architecture. Recall values for Two Mixed Type and Four Mixed Type do not suffer from 

any major fluctuations. 

Lastly, F1-scores obtained also show great results for all 4 architectures. The results only deviate with some 

significance in C33 falling under Three Mixed Type category, followed by C38 of Four Mixed Type category by BEiT 

and FNet respectively. 

 

 

Fig.14. Comparison of F1-Score (per class) of the 4 Transformer architectures (Swin, ViT, BEiT, FNet) 

Comparing the 4 methodologies, Swin Transformer model performed better than all of them in this experiment 

with an accuracy of 97.47% which can be seen in Fig. 15. Only closest to that accuracy is 96.77%, obtained by Vision 

Transformer (ViT). Remaining two models have accuracy below 95% (BEiT - 94.58%, FNet - 92.86%).  

Table 4 presents the performance results of Swin Transformer model that includes Precision, Recall and F1 Score 

for each class. All the numbers that are in bold font are the one where the Swin Transformer model outperformed other 

models in this experiment. In case of class C1 this model achieved a perfect 1 score in each section indicating that it 

accurately distinguished between normal wafers (C1) and defective wafers (C2-C38). Swin also gave better results in 

many other classes also with different sections. It gave the best result in all sections of class C7 where training samples 

were a little less than usual. Whereas for class C9 which also had much less training samples this model gave average 

performance.
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Fig.15. Comparison of overall accuracy of the 4 Transformer architectures (Swin, ViT, BEiT, FNet) 

Table 4. Performance of Swin Transformer 

Classes Precision Recall F1 score 

C1 1 1 1 

C2 0.986395 0.966667 0.976431 

C3 0.986842 1 0.993377 

C4 0.974026 1 0.986842 

C5 0.986577 0.98 0.983278 

C6 0.97351 0.98 0.976744 

C7 0.986842 1 0.993377 

C8 0.943038 0.993333 0.967532 

C9 0.992958 0.94 0.965753 

C10 0.967742 1 0.983607 

C11 0.992806 0.92 0.955017 

C12 0.993289 0.986667 0.989967 

C13 0.966216 0.953333 0.959732 

C14 0.985816 0.926667 0.955326 

C15 0.972973 0.96 0.966443 

C16 0.980132 0.986667 0.983389 

C17 0.989761 0.966667 0.978078 

C18 0.993377 1 0.996678 

C19 0.986577 0.98 0.983278 

C20 0.986577 0.98 0.983278 

C21 1 0.993333 0.996656 

C22 1 0.906667 0.951049 

C23 0.986111 0.946667 0.965986 

C24 0.986842 1 0.993377 

C25 0.954839 0.986667 0.970492 

C26 0.936306 0.98 0.957655 

C27 0.915033 0.933333 0.924092 

C28 0.885542 0.98 0.93038 

C29 0.954545 0.98 0.967105 

C30 0.973856 0.993333 0.983498 

C31 0.930818 0.986667 0.957929 

C32 0.993151 0.966667 0.97973 

C33 0.993289 0.986667 0.989967 

C34 0.97351 0.98 0.976744 

C35 0.993243 0.98 0.986577 

C36 1 0.961832 0.980545 

C37 0.980132 0.986667 0.983389 

C38 0.851852 1 0.92 

Average 0.972487 0.975487 0.973508 
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5. Conclusion 

In this work, a comparison was made between 4 state-of-the-art transformer based architectures for detecting wafer 

defects of multiple mixed and singular categories. It is observed that all 4 of them perform significantly well in 

detecting these defects across all categories, with Swin Transformer achieving a marginally higher accuracy. Since 

Transfer Learning can make Transformer Networks highly effective in these scenarios along with a high degree of 

accuracy, these models can be easily generalized to other defect identification settings and can be trained much faster. 

The high degree of accuracy and recall also significantly reduces the odds of releasing faulty products out in the market, 

which is vital for the VLSI industry. Since this is an Image based technique, it is also more cost effective compared to 

methods like Electron Beam Inspection.  In order to better identify physical defects and the root cause of the defects, at 

the die level, a die level classifier with a back-propagation network should be employed. Combining these two 

techniques thus results in a complete system for semiconductor defect detection. In this study authors only considered a 

single dataset for both training and evaluation which had only 38015 images. 

Future investigations can be centered around the effectiveness of the sparse counterparts of multiple Vision 

Transformers for material fault identification and diagnosis. Other Wafer Map Datasets in conjunction could be used for 

increasing both robustness and accuracy of the model.  
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