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Abstract: Detection and analysis of software vulnerabilities is a very important consideration. For this reason, software 

security vulnerabilities that have been identified for many years are listed and tried to be classified. Today, this process, 

performed manually by experts, takes time and is costly. Many methods have been proposed for the reporting and 

classification of software security vulnerabilities. Today, for this purpose, the Common Vulnerability Scoring System is 

officially used. The scoring system is constantly updated to cover the different security vulnerabilities included in the 

system, along with the changing security perception and newly developed technologies. Different versions of the 

scoring system are used with vulnerability reports. In order to add new versions of the published scoring system to the 

old vulnerability reports, all analyzes must be done manually backwards in accordance with the new security framework. 

This is a situation that requires a lot of resources, time and expert skill. For this reason, there are large deficiencies in 

the values of vulnerability scoring systems in the database. The aim of this study is to estimate missing security metrics 

of vulnerability reports using natural language processing and machine learning algorithms. For this purpose, a model 

using term frequency inverse document frequency and K-Nearest Neighbors algorithms is proposed. In addition, the 

obtained data was presented to the use of researchers as a new database. The results obtained are quite promising. A 

publicly available database was chosen as the data set that all researchers accepted as a reference. This approach 

facilitates the evaluation and analysis of our model. This study was performed with the largest dataset size available 

from this database to the best of our knowledge and is one of the limited studies on the latest version of the official 

scoring system published for classification of software security vulnerabilities. Due to the mentioned issues, our study is 

a comprehensive and original study in the field. 

 

Index Terms: Software Security, Software Vulnerability, Information security, Text Analysis, Multiclass Classification 

 

 

1.  Introduction 

Increasingly and unstoppably, software-supported informatics infrastructures are exposed to cyber threats. Many 

financial losses are experienced as a result of the abuse of the threatened systems. Vulnerability concept is an error or 

defect of an information system or component that causes confidentiality, integrity, or usability failure and violates 

security protocols. The probability and frequency of exploitation of a vulnerability is called a threat. The potential size 

of the total impact or damage that may result from the exploitation of a vulnerability is called risk [1]. Not all 

vulnerabilities may have risks to be exploited. In addition, some security vulnerabilities may need to be fixed with 

urgent patches rather than workarounds. At this stage, it is an important process for institutions/organizations with 

limited resources to determine which security vulnerabilities they will prioritize. In this process, each vulnerability 

needs an accurate and standard classification method. 

Many solutions have been proposed to the need to classify the risks that may occur in information systems with a 

framework that is accepted by everyone. Microsoft Threat Scoring System, Symantec Threat Scoring System, CERT 

Vulnerability Scoring and SANS Critical Vulnerability Analysis Scale are recommended systems [2]. These systems 
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have been proposed in the context of the institutions in which they were developed. This has caused them to be 

independent and incompatible with different systems. Their limited nature prevents them from being a standard scale. 

The Common Vulnerability Scoring System (CVSS) has been proposed as a solution to this situation [3]. Offering an 

open source and universal framework, CVSS has eliminated the disadvantages of other systems. The Weighted Impact 

Vulnerability Scoring System (WIVSS) system, which is based on the CVSS system, has been proposed and tried to be 

developed in the literature [4,5] 

Providing a common framework for classifying vulnerabilities, CVSS has been selected as the official scoring 

system by the National Vulnerability Database (NVD) [6]. As a result, the CVSS system was quickly adopted by the IT 

security community. The popularity of the system has grown rapidly and with widespread acceptance it has become a 

standard in this field [7]. 

The main difference of CVSS from its competitors is that it allows customization and creates a consistent 

environment that can be used for ranking thanks to its open framework [2].  Thanks to this structure, CVSS is open to 

development. One year after the first version was introduced in 2004, CVSS 1.0 version was officially announced [3]. 

The announced version has been updated with regular improvements. As a result of this update, CVSS 2.0 version was 

introduced in 2007 [1]. For many years CVSS version 2.0 was widely adopted and remained in use. However, the 

increase in the number of detected security vulnerabilities and changes in security perception necessitated new updates. 

As a result, CVSS 3.0 version was announced in 2016 [8]. The current CVSS version 3.1 was published in 2019 [6]. 

Today, CVSS versions 2.0 and 3.1 are used together. CVSS versions 1.0 and 3.0 are no longer used. Therefore, the 

versions that are in use are included in our study. 

Two proposed systems stand out for determining the scores of software vulnerabilities. These are CVSS 2.0 and 

CVSS 3.1. Generally, calculations are made with these two systems [7].  Vulnerability assessment activities are 

important in order to decide which vulnerabilities have the highest priority. This process is done manually by experts. 

This is time consuming and imprecise. In addition, manual detection and classification of security vulnerabilities by 

experts is costly and contains weaknesses caused by human nature. Vulnerability scoring systems use a computational 

system consisting of different security metrics developed to classify the vulnerability. Definitions consisting of these 

metrics are called security vectors. 

As mentioned above, scoring systems contain differences and similarities. As a result, scoring methods that stand 

out with their different features have been proposed. NVD is one of the largest vulnerability databases and is publicly 

available. The main problem is that NVD experts cannot fully understand the effects of CVSS versions and the security 

vulnerabilities of the constantly changing scores, which system can produce more accurate results over time. CVSS 

scoring system is a system that is constantly updated and new versions are released. Currently, the versions officially 

supported by NVD are CVSS 2.0 and CVSS 3.1. When the security vulnerabilities are examined, it is noticed that there 

are serious differences between the values obtained as a result of the versions. Also, many vulnerabilities found in NVD 

lists are missing security vectors. 

According to the problems described above, the main purpose of our study is to contribute to the process of 

evaluating security vulnerabilities by clearly revealing the relationship between scoring systems. It is to provide a 

complete data set to the use of researchers by completing the missing data in the NVD lists. This can be used to support 

developers and experts in the field and help them make the right decisions. One of the most important innovations of 

our study is that it is one of the first studies conducted with CVSS 3.1, the newest version of scoring systems. Moreover, 

the NVD database will open a large unused data stack to the use of researchers due to missing data. 

The main research questions of our study are as follows; 

RQ 1. Can the missing data in the NVD data set be reconstructed in a way that can be used by researchers in their 

studies? 

Increasingly, vulnerabilities are becoming an unstructured data pile. Evaluation of vulnerabilities is a time-

consuming process as it is manually analyzed by humans. Therefore, experts who fulfill this task give priority to newly 

dated deficits. Especially when a new version of the vulnerability scoring system is released, there are large gaps in the 

analysis of old reports retrospectively. Since new security vulnerabilities are constantly entering the system, it does not 

seem possible to fix this situation manually. However, analyzing the old vulnerabilities is essential for the correct 

analysis of the new vulnerabilities. In order to solve this problem, it is thought that a model that uses natural language 

processing techniques and machine learning algorithms, which are used successfully in many fields, can be developed. 

RQ 2. Can models developed using technical descriptions of software vulnerability reports be used for this purpose? 

When the studies in the literature are examined in order to create the predicted model, it is seen that the technical 

explanations of the vulnerability reports are generally used. These technical explanations appear to be found in all 

reports that are missing safety scores and metrics. This means that it can also be used in our study. In addition, it has 

been determined that the methods that achieve the highest prediction success rate in the literature are Tf-Idf and KNN 

algorithms. Therefore, in this study, a model using these methods has been proposed. 

Other parts of the study are organized as follows. In the second section, the literature that guided the study was 

examined in detail. In the third section, databases and the data set used are explained in detail, and CVSS is introduced 

in the fourth section. The research methodology is presented in the fifth section, and the findings are given in detail in 

the sixth section. In section seven there is a discussion of the findings. Threats to the validity of the study are stated in 
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the eighth section, and in the last section, the results of the study are presented and future studies are expressed. 

2. Related Work 

Information technologies have become an indispensable part of human life. In particular, the storage and 

transmission of financial and personal data via digital systems is an inevitable result of this situation. Personal data 

trafficking and malicious approaches threaten modern systems as a security problem. This situation shows the 

importance of ensuring compliance with security principles during the development and use of software, which forms 

the basic structure of technological systems. 

Spanos et al. [7], the main purpose of their research is to develop, accelerate and support the manual procedure of 

vulnerability characteristic assignment. To achieve this goal, a model was developed that combines text analysis and 

multi-target classification techniques. This model estimates vulnerability features and then calculates vulnerability 

severity scores from predicted features. A dataset containing 99,091 records from the vulnerability database in the 

publicly available National Vulnerability Database (NVD) was used to perform the present research. The number of 

vulnerabilities in the NVD database has almost doubled since the date of the study. In addition, the 2nd version of the 

CVSS scoring system is used in the study. The shortcoming of the study is that it does not include new data and does 

not calculate according to the CVSS 3.1 version, which is the new version of the CVSS scoring system. In addition, the 

study ignores the relationship between the categories of vulnerabilities. The authors suggest that the classification 

success can be increased with new data added and different algorithms. Our study will fill the academic gap of this 

study in terms of the size of the data set it will cover and the different vulnerability scoring systems. 

Ghaffarian et al. [10], their work has filled an important gap in the field. They investigated the use of machine 

learning and data mining algorithms, which have been successfully applied in many fields, in the analysis and discovery 

of security vulnerabilities. They are conducting a literature review that they divide into four different categories. They 

suggest the use of deep learning-based methods in their studies. 

Morrison et al. [11], aimed to support the use of security measurement in the software lifecycle of the practitioner 

and researcher by cataloging the security measures presented in the literature, their validity, and the issues they 

measured. In their study, they moaned 71 articles through a systematic mapping study. For each metric, they identified 

the subject being measured, how the metric was validated, and how the metric was used. They divided the metrics into 

categories and gave examples of metrics for each category. As a result, it is recommended that researchers check their 

vulnerability count definitions when making comparisons between articles. They report there are research opportunities 

for greater attention to vulnerability scoring. It is expected that our project will include different scoring standards such 

as CVSS 2.0-3.1 and WIVSS, and will create a different perspective for the academic community and researchers. 

Aota et al. [12], used text mining methods to classify security vulnerabilities categorically. The results of their 

studies show that they achieved a success rate of 96%. One of the results they obtained was that they detected many 

reports that were assigned to the wrong category. As the reason for this situation, they show that the classification and 

categorization processing is done manually by humans. 

Moore et al. [13], emphasize that it is necessary to quickly determine whether a vulnerability can be exploited. The 

reason for this is the concerns arising from the rapid increase in the abuse of security vulnerabilities in recent years. 

They argue that as a result of their foresight, exploitation of a vulnerability can be prevented. 

Theisen et al. [14], have examined the problems in processing vulnerability reports, which have become a rapidly 

growing and large unstructured data pile. They emphasize that it is not possible to evaluate large-scale vulnerability 

data with statistical methods. They say that there may be points that cannot be discovered if analysis is done using only 

statistical methods. Their suggestions are the use of machine learning and data mining algorithms that have been 

successfully applied in solving many problems. They say that in this way, many unexplored points can be revealed. 

Fang et al. [15], state that listing the security vulnerabilities published in the NVD database causes time delays due 

to the institutional structure of NVD. In their study, which emphasizes that only a small portion of security 

vulnerabilities are exposed to exploitation, they explain the importance of correct and rapid classification of 

vulnerabilities that can and cannot be exploited. 

In this experimental paper by Ruohone [16], he examines the time delays between Common Vulnerability Scoring 

System (CVSS) information added to CVEs published in NVD. According to empirical results based on regular 

regression analysis of over eighty thousand archived vulnerabilities, CVSS content is statistically unaffected by time 

delays. Ruohonen et al. [9], in a different study, observes time delays between the assignment of CVEs and their 

subsequent appearance in the National Vulnerability Database (NVD). Considering a period from 2008-2016, more than 

five thousand CVE examples were used to model delays with approximately fifty explanatory metrics. The main reason 

for these delays is the manual nature of the evaluation process. Our work will speed up the evaluation process and help 

experts. 

Malhotra et al. [17], used the definitions of Apache Tomcat vulnerabilities as input, reducing the data size using 

chi-square and information gain methods. They estimated the severity of security vulnerabilities with the data sets they 

created. They used Bagging Technique, Random Forest, Naive Bayes, Support Vector Machine as classification 

algorithm. They reported that the Naive Bayes algorithm together with the information gain technique produced the best 
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results and achieved approximately 92% success. 

Kekül et al. [18], estimated vulnerability vectors and severity levels using statistical feature extraction methods and 

different classification algorithms from technical descriptions written in natural language. In their study, they presented 

a hybrid mix of methods that worked best. The results they obtained are quite promising. It is also one of the first 

studies to use the current version of scoring systems. 

When the above studies are examined, it is seen that a structure similar to the method suggested by the current 

study is not used. In addition, when the data sets of the studies are examined, it is seen that the missing data are 

generally removed from the data set. It is seen that the lack of security vectors of new versions in the existing data will 

increase, especially if the scoring systems are regularly updated. In this study, it is aimed to estimate the missing safety 

vector data of the scoring systems officially used in NVD. Since this study is the first applied in this field, it is an 

original study and will fill an important academic gap. 

3. Software Vulnerability Databases 

Kekül et al. [17] examined in detail and systematically the databases that were used in the literature, that were not 

out of date, and that were open to access. In this study, they compared seven different databases available to researchers. 

These databases and comparison criteria are shown in Table 1. 

Table 1. Comparison of Vulnerability Databases 

Database 
Security 

Score 
Solution 

Exploit 
Code 

Test Reporting 
Business 
Model 

Data Size * 

CVE     Everyone Public 214.988 

NVD   ()  Members Public 170.788 

Exploit-DB     Everyone Public 44.421 

SecurityFocus   ()  Everyone Public 102.330 

Rapid7     Employees Commercial 171.816 

Snyk     Employees Commercial 6.012 

SARD     Everyone Public 177.184 

: There is -  : None - (): For some data there is for some not [19]. 

* data sizes are the values as of 31.08.2021 and it continues to increase [19]. 

 

The databases examined here are; It has been evaluated according to the criteria of whether or not there is a 

vulnerability scoring, whether it contains a solution method for the vulnerability, whether there are exploit codes, 

whether or not there is a test for security vulnerabilities, who reports it, business model and data size. Security scores 

are used to express the impact value of vulnerabilities. When Table 1 is examined, it is seen that the databases from 

which this score information can be obtained are NVD, Rapid7 and Snyk. It is seen that databases based mainly on 

CVE lists provide datasets of different sizes due to the methodologies for interpreting and evaluating these data [19].  

3.1. Database Used 

In this study, the NVD database, which has been making the most reliable vulnerability data available to 

researchers since 1988, has been used. The NVD includes security checklist references, security-related software flaws, 

misconfigurations, product names, and impact metrics information. Supported by the National Cyber Security Division 

of the US Department of Homeland Security. The main task of NVD staff is to analyze the vulnerability lists published 

in the CVE dictionary. At this stage, they use all the additional data they can collect the explanations and references 

found in the CVE [20,21]. As a basis for the data published in the NVD database, associated impact metrics (Common 

Vulnerability Scoring System - CVSS), vulnerability types (Common Vulnerability Enumeration - CWE), applicability 

statements (Common Platform Enumeration - CPE) and other relevant metadata are added. However, NVD does not 

perform vulnerability testing for the attributes it assigns. According to new information, CVSS scores and applicability 

expressions of the data may change [6].   

Within the scope of this study, 173,241 records published until 31.10.2021 were selected. In the analyzes made, it 

was determined that some reports did not have importance scores. Registries with official values were used to train, 

validate and test the proposed system. As a result, 163,229 records with CVSS 2.0 values and 89,868 records with 

CVSS 3.1 values were included in the data set to be used to establish the model. Models were applied separately for the 

two scoring systems. For this, the data set is divided into 70% for training-validation and 30% for testing. The training-

validation and test sets consisted of 114,260 – 48,967 records for CVSS 2.0. For CVSS 3.1, 53,907 records are reserved 

for training-validation and 26,961 records are reserved for testing. The number of records that do not have official 

values and whose safety vectors will be estimated using the established model is 10.012 for CVSS 2.0 and 83.373 for 

CVSS 3.1. Table 2 shows an example dataset record. The dataset used in our study has been made available to 

researchers on Github. 
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Table 2. A Dataset Record 

CVSS 3.1 CVSS2.0 

CVE ID CVE-2021-22940 

Description Node.js before 16.6.1, 14.17.5, and 12.22.5 is vulnerable to a use after free attack where an attacker might be able to 

exploit the memory corruption, to change process behavior. 

Attack Complexity LOW Access Vector NETWORK 

Attack Vector NETWORK Access Complexity LOW 

Privileges Required NONE Authentication NONE 

User Interaction NONE NaN 

Scope UNCHANGED Nan 

Confidentiality Impact NONE NONE 

Integrity Impact  HIGH PARTIAL 

Availability Impact  NONE NONE 

Exploitability Score 3.9 10 

Impact Score 3.6 2.9 

Base Score 7.5 5.0 

Severity CRITICAL HIGH 

Vector String AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H AV:N/AC:L/Au:N/C:P/I:P/A:P 

4. Common Vulnerability Scoring System – CVSS 

The software vulnerability scoring system is explained in the CVSS Introduction. CVSS officially uses three 

different metric groups in both versions. These metric groups are called Basic, Temporal, and Environmental. Each 

metric group has an independent security vector and calculation. However, the Base Score does not change over time. 

In addition, this score is usually created by the software developer company or the organizations that maintain the 

software product for which they are authorized. This ensures that the Base scores are unchanged over time and produce 

a standard value for all platforms. Therefore, only Core Metric values are published [9]. 

With the CVSS 2.0 base set of metrics, it specifies the characteristics of a software vulnerability that will not 

change over time as the user environment or platform changes. This metric group has six independent metric groups. 

Although no sub-division is clearly specified in this metric group, the metrics that determine how the access to the 

vulnerability is provided and whether additional conditions are needed to exploit this vulnerability are Access Vector 

(AV), Access Complexity (AC), and Authentication (Au). The other three metrics are called Impact metrics, which 

indicate the potential effects of the vulnerability and the potential harm it can cause when exploited. These are called 

Confidentiality Impact (CI), Integrity Impact (II) and Availability Impact (AI), which indicates different aspects of 

possible effects independently of each other. The standalone effect means that while a security vulnerability causes loss 

of usability, it may not cause any privacy impact [1]. 

In CVSS 3.1, as in previous versions, basic metrics are a group of metrics that do not change over time and in 

different environments. Thanks to this feature, it provides general information about the vulnerability. Subgroups that 

are not explicitly mentioned in CVSS version 2.0 are officially defined in CVSS version 3.1. Basic metrics are divided 

into two as Exploitability and Impact metrics. It also has an independent metric called Scope. Availability metrics are 

Attack Vector (AV), Attack Complexity (AC), Privileges Required (PR), and User Interaction (UI). Impact Metrics are 

Confidentiality (C), Integrity (I), and Availability (A) [9]. 

Table 3. CVSS 2.0 Base Metrics Groups [8] 

Vector Description Values Weights Category 

Access Vector 
Specifies the method by which the vulnerability can be exploited. The 

further the attacker is, the greater the value. 

Local (L) 

Adjacent Network (A) 
Network (N) 

0.395 

0.646 
1.0 

Exploitability 

Access 

Complexity 

It is a measure of the complexity of the attack required to exploit the 

vulnerability. The lower the complexity, the higher the value. 

High (H) 

Medium (M) 
Low (L) 

0.35 

0.61 
0.71 

Exploitability 

Authentication 
The authentication value required to exploit the vulnerability. The 

lower the value, the higher the score. 

Multiple (M) 

Single (S) 
None (N) 

0.45 

0.56 
0.704 

Exploitability 

Confidentiality 

Impact 

Expresses the effect of exploiting the vulnerability on the privacy of 

the system. Scores the extent to which privacy will be affected as a 

result of exploitation in the system. The higher the effect, the higher 
the score. 

None (N) 

Partial (P) 

Complete (C) 

0.0 

0.275 

0.660 
Impact 

Integrity Impact 
It refers to the effect a successful attack will have on system integrity. 

Increasing the integrity effect increases its score. 

None (N) 

Partial (P) 
Complete (C) 

0.0 

0.275 
0.660 

Impact 

Availability 
Impact 

It specifies how the resources used by the system are affected in case 

of a possible attack. The higher the effect, the higher the vulnerability 

score. 

None (N) 

Partial (P) 

Complete (C) 

0.0 

0.275 

0.660 

Impact 
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Table 4. CVSS 3.1 Base Metrics Groups [10] 

Vector Description Values Weights Category 

Attack Vector 
Describes the situation required for the attacker to exploit the 
vulnerability. The further it is possible to benefit from the vulnerable 

system, the more points increase. 

Network (N) 

Adjacent (A) 

Local (L) 
Physical (P) 

0.85 

0.62 

0.55 
0.2 

Exploitability 

Attack 
Complexity 

It refers to the external conditions necessary for the attacker to 

perform a successful abuse. The score has the highest value for low 

complexity attacks. 

Low (L) 
High (H) 

0.77 
0.44 

Exploitability 

Privileges 

Required 

It refers to the level of privilege the attacker must have in order to 

exploit the vulnerability. For a non-privileged vulnerability, the value 

is the highest. 

*if Scope/Modified Scope is Changed 

None (N) 
Low (L) 

High (H) 

0.85 
0.62 or 0.68* 

0.27 or 0.5* 

Exploitability 

User Interaction 

Indicates whether any user's action is required to exploit the 

vulnerability. If the action of a different user is not required, the 
score is high. 

None (N) 
Required (R) 

0.85 
0.62 

Exploitability 

Confidentiality 

Impact 

Expresses the effect of exploiting the vulnerability on the privacy of 

the system. Scores the extent to which privacy will be affected as a 

result of exploitation in the system. The higher the effect, the higher 
the score. 

High (H) 
Low (L) 

None (N) 

0.56 
0.22 

0.0 

Impact 

Integrity Impact 
It refers to the effect a successful attack will have on system 

integrity. Increasing the integrity effect increases its score. 

High (H) 

Low (L) 
None (N) 

0.56 

0.22 
0.0 

Impact 

Availability 
Impact 

It specifies how the resources used by the system are affected in case 

of a possible attack. The higher the effect, the higher the 

vulnerability score. 

High (H) 

Low (L) 

None (N) 

0.56 

0.22 

0.0 

Impact 

Scope (S) 

Expresses whether components other than the vulnerable component 

affect the resources it uses. If a scope change occurs, the score will 

increase. 

Unchanged(U) 
Changed (C) 

 

 

 

The CVSS v2.0 equations are defined below. 

𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 =  𝑅𝑜𝑢𝑛𝑑𝑇𝑜1𝐷𝑒𝑐𝑖𝑚𝑎𝑙((0.6 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡 + 0.4 ∗ 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 1.5) ∗ 𝑓(𝐼𝑚𝑝𝑎𝑐𝑡))          (1) 

 

𝐼𝑚𝑝𝑎𝑐𝑡 =  10.41 ∗  (1 − (1 −  𝐶𝑜𝑛𝑓𝐼𝑚𝑝𝑎𝑐𝑡) ∗  (1 −  𝐼𝑛𝑡𝑒𝑔𝐼𝑚𝑝𝑎𝑐𝑡) ∗  (1 −  𝐴𝑣𝑎𝑖𝑙𝐼𝑚𝑝𝑎𝑐𝑡))          (2) 

 

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  20 ∗  𝐴𝑐𝑐𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ∗  𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ∗  𝐴𝑐𝑐𝑒𝑠𝑠𝑉𝑒𝑐𝑡𝑜𝑟                    (3) 

 

𝑓(𝐼𝑚𝑝𝑎𝑐𝑡)  =  0 𝑖𝑓 𝐼𝑚𝑝𝑎𝑐𝑡 = 0;  1.176 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 (4) 
 

The CVSS v3.1 equations are defined below. 

 𝐼𝑓 (𝐼𝑚𝑝𝑎𝑐𝑡 𝑠𝑢𝑏 𝑠𝑐𝑜𝑟𝑒 <=  0)     0  𝑒𝑙𝑠𝑒,  
 𝑆𝑐𝑜𝑝𝑒 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑     𝐵𝑎𝑠𝑒 𝑆𝑐𝑜𝑟𝑒 =  𝑅𝑜𝑢𝑛𝑑𝑢𝑝(𝑀𝑖𝑛𝑖𝑚𝑢𝑚[(𝐼𝑚𝑝𝑎𝑐𝑡 +  𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦), 10])               (5) 

 

𝑆𝑐𝑜𝑝𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑑       𝐵𝑎𝑠𝑒 𝑆𝑐𝑜𝑟𝑒 =  𝑅𝑜𝑢𝑛𝑑𝑢𝑝(𝑀𝑖𝑛𝑖𝑚𝑢𝑚[1.08 ×  (𝐼𝑚𝑝𝑎𝑐𝑡 +  𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦), 10])           (6) 

 

𝑆𝑐𝑜𝑝𝑒 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 6.42 ×  𝐼𝑆𝐶𝐵𝑎𝑠𝑒                                                             (7) 

 

𝑆𝑐𝑜𝑝𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 7.52 ×  [𝐼𝑆𝐶𝐵𝑎𝑠𝑒 −  0.029]  −  3.25 ×  [𝐼𝑆𝐶𝐵𝑎𝑠𝑒 −  0.02] 15                                    
(8) 

 

𝐼𝑆𝐶𝐵𝑎𝑠𝑒 =  1 −  [(1 −  𝐼𝑚𝑝𝑎𝑐𝑡𝐶𝑜𝑛𝑓) ×  (1 −  𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑛𝑡𝑒𝑔) ×  (1 −  𝐼𝑚𝑝𝑎𝑐𝑡𝐴𝑣𝑎𝑖𝑙)]                 (9) 

 

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 8.22 ×  𝐴𝑡𝑡𝑎𝑐𝑘𝑉𝑒𝑐𝑡𝑜𝑟 ×  𝐴𝑡𝑡𝑎𝑐𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ×  𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ×  𝑈𝑠𝑒𝑟𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛   (10) 

 

The basic scores of the vulnerabilities detected by the vulnerability scoring systems, whose formulas and metric 

values are given above, are calculated. The calculated scores are a value between 0.0 – 10.0. These found values are 

classified using the qualitative severity rating. Tables 5 and 6 show the scales of CVSS 2.0 and 3.1, respectively. 

Table 5. Qualitative severity rating scale for v2.0 [6] 

Severity Rating Base Score Range 

Low 0.0 - 3.9 

Medium 4.0 - 6.9 

High 7.0 – 10.0 
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Table 6. Qualitative severity rating scale for v3.1 [6] 

Severity Rating Base Score Range 

None 0.0 

Low 0.1 - 3.9 

Medium 4.0 - 6.9 

High 7.0 - 8.9 

Critical 9.0 - 10.0 

5. Research Methodology 

The main purpose of this study is to estimate missing security vectors found in vulnerability reports. Estimating 

software vulnerability vectors from the limited technical descriptions of security reports is a difficult task. The aim of 

our work is to find the best solution to this difficult problem. For this, text analysis and multi-class classification 

algorithms are used. The technical descriptions of the vulnerability reports appear to be documents written by experts 

and no longer than a few sentences, as indicated in Table 2. Especially in the old reports, the fact that the explanations 

are very short texts makes the estimation of security vectors very difficult. However, there is no data that can be used in 

the implementation of the proposed methodology other than the technical explanations of the safety reports. In addition, 

technical explanations are written in natural language and are a large chunk of unstructured data. The first thing to do is 

to convert this large chunk of unstructured data into a structured data set. The basic steps required in the classification 

of text data also apply to the proposed method. These are preprocessing, creation of text vectors, and classification [22]. 

In Figure 1, all stages of the proposed method are shown in detail. 

 

 
Fig.1. The general structure of the proposed methodology. 

Within the scope of our study, the non-profit NVD database funded by the US Department of Homeland Security 

was selected. In addition, this database uses CVSS, a security scoring system generally accepted by IT professionals. 

The NVD database was preferred in this study, as it is open to the public and provides a generally accepted standard 

framework. Moreover, this allows us to compare the results of our study with different studies. As can be seen in Figure 

1, first of all, the technical explanations of the vulnerability reports need to be pre-processed. At this stage, the NVD 

database provides all reports in JSON and XML format. 

At the first stage, the technical explanations of the reports obtained from expressions such as stop words, 

punctuation marks, etc. are cleared. The cleaned data is not directly used in classification algorithms. At this stage, 

technical descriptions need to be represented as a numerical vector using natural language processing methods. Many 

different methods have been proposed in the literature for this process. However, Tf-Idf method was preferred within 

the scope of this study. At this stage, it has been seen that a 300-word vector is the most optimal value in experimental 

studies and literature analysis. For this reason, all technical explanations are represented by the 300 words with the 

highest frequency values[23]. Our model, which was trained with the data set whose document vectors were created, 

then estimated the missing data in our data set. The data set with the missing values and the vulnerability vectors 

predicted by the proposed model has been presented to the use of the researchers. 

5.1. Text Preprocessing 

Text preprocessing is the process of cleaning text data, removing noise and revealing important features. When the 

effect of text preprocessing on the classification performance is examined, it has been revealed that it is as important as 

the other stages [24].  This phase starts with cleaning up punctuation marks, extra spaces and special characters in the 

text data. The second preprocessing step is parsing the words. This process is called tokenization. With this process, it is 

aimed to examine the words in the sentence one by one and to distinguish meaningful or meaningless items [25], [26]. 

The next step is to remove the words, which are expressed as stopwords in documents reserved for tokens, and which 

are in every language but do not have significant meaning, from the data set. After this stage, the data set is made up of 

only meaningful word groups and is free from many noises. However, it is not yet in a completely clean structure. This 

is because a word can be used in different forms in many languages. These words, which have the same root but appear 
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in a different structure, should be reduced to their roots and analyzed as the same word. This process is called 

lemmatization [27]. After completing all the steps, the pre-processing phase is completed. 

5.2. Creating Text Vectors 

The preprocessed text data has to be converted into a structured data that can be used in machine learning 

algorithms. This step is also called as feature inference in different classification problems. In text analysis, on the other 

hand, it is the stage where textual data is converted into numerical vectors. Feature extraction methods in text 

classification can be divided into two groups. These can be expressed as statistical methods and deep learning-based 

word embedding methods [28]. Bag of words (BoW) [29], term frequency inverse document frequency (TF-IDF) ) [30] 

and ngram  [31] can be given as examples of statistical methods in general. 

Statistical methods have been successfully applied in the literature to solve many problems and are still used. 

Basically, they have two disadvantages. These are the fact that they only focus on the frequencies of the words in the 

document and corpus during the vector creation phase. As a result, it causes the loss of semantic relations and 

morphological connections between words. Another disadvantage is that the computational costs are high. Despite their 

disadvantages, they can be used to compare the performance of classification problems [22]. In this study, TF-IDF was 

chosen from the traditional statistical approaches, which was the most successful method used in the literature for 

classification of vulnerability vectors [18]. 

5.3. K-Nearest Neighbors (KNN) Classification Algorithm 

Classification of text data, which has become a huge data pile today, is an important research area. In particular, 

some criteria were determined in the selection of the algorithm used in the classification of the proposed model. First of 

all, since the problem of interest has a multi-class structure and high computation is required, algorithms that can make 

multi-class classification within themselves have been tried to be selected. As another criterion, an algorithm that has 

been used before, especially in text classification problems and classification of security vulnerabilities, has been 

included in the model. For the classification stage of the methodology, the K-Nearest Neighbors (KNN) [32] algorithm, 

which is a built-in strategy grouped estimator with multiple learning support, was chosen. While creating the 

classification model, the cross validation method was used. A value of 10 was chosen as the cross validation parameter. 

Cross validation is a statistical analysis that checks the accuracy of the model on independent data sets  [33].  Its main 

purpose is to estimate the accuracy of a system in practice. Thus, overfitting or selection bias problems can be detected 

by determining the sensitivity of the model to new data [34]. 

The KNN algorithm is an easy-to-apply and high-performance method that is widely used in solving data mining 

and statistical problems [35]. The algorithm calculates which class it belongs to among the k nearest neighbors in the 

vector space given during the training phase. While elements belonging to the same class have high similarity values, 

different classes have low similarity values [36].  Although the algorithm has advantages such as simplicity and 

accuracy, it has high computational costs [37]. It is one of the algorithms frequently used in text classification [38]. In 

addition, as far as it is known in the literature, it is the classification algorithm that achieves the highest classification 

values in the classification of security vulnerabilities [18].  

5.4. Validation 

Used in multi-class classification problems and the following well-known evaluation criteria were used to evaluate 

the proposed methodology  [39]. 

Accuracy: Refers to the ratio of the number of correctly predicted tags for a sample set to the total data set. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                                    (11) 

 

Recall: It is a metric that shows how much of the transactions that need to be positive predicted are positive 

predicted. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                            (12) 

 

Precision: It shows how many of the values we guess positive are actually positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                       (13) 

 

F1 Score: It shows the harmonic mean of the Precision and Recall values. 

 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                    (14) 
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Precision, recall and f1 score are more reliable measurements than accuracy. In addition, this set of measurements 

is in line with the suggestions of other researchers working on the evaluation of multi-class classification models [40]. 

6. Results 

The data set used in our study is presented in detail in Section 3. There are approximately 175,000 vulnerability 

reports in our dataset. The basic approach of the proposed methodology is to calculate the missing vulnerability vector 

values of vulnerability reports. We present some statistical information to better understand our results. Kekul et al. [18],  

the size of the dataset they used in their study is approximately 165,000. According to the authors, when the statistical 

properties of the datasets are examined, it is seen that the vulnerability vectors become complex. In their study, which 

they evaluated separately for CVSS versions, they state that there are 355 different vector numbers for CVSS 2.0 and 

that vectors with a frequency value of 1% and above are only the first 20 most frequently used vectors. Also, the 

cumulative sum of these vectors is about 83%. The frequency distribution of the vectors is in the range of 0.01% - 

14.00%. They emphasize the same research that for CVSS 3.1 vector values, there are a total of 1322 vectors out of 

2592 probabilities, which are distributed in the range of 0.01% - 8.85% and cumulative sums are 60%. In addition, only 

the first 22 of the vectors have a frequency value of 1% or more. This illustrates the fact that most of the vulnerability 

vectors are encountered with very low frequencies. They describe the problem of estimating vulnerability vectors as a 

rather difficult task [7]. This clearly shows that the data set has turned into a difficult problem to construct a prediction 

model. 

6.1 Traning Results 

For a more accurate analysis of the results of the method proposed in this study, we present the training results of 

the model. 70% of our dataset detailed in Section 3.1 was used for training purposes. Moreover, the accuracy of the 

model was checked by using the cross validation technique during the training phase. Cross validation value was chosen 

as 10. One of the first metrics to look at in the evaluation of classification problems is accuracy. Accuracy corresponds 

to the ratio of correct classifications to the total number of samples. In multi-class classification problems, the uneven 

distribution of classes can affect the results in the direction of the performance of the dominant class when evaluating 

the models. This is also true for our problem. Although Accuracy is an important indicator, it may not be sufficient on 

its own for multi-class problems [41].  For this reason, our model was also evaluated with macro precision, recall and f1 

score scales, which were created with the averages of the performances of each subclass. Values are presented as 

percentages. 

6.2 Results of Vulnerability Vectors 

At this stage, we present the classification results obtained with the proposed method in detail. As detailed in 

Tables 4 and 5, security vectors of vulnerability scoring systems consist of 6 and 8 metrics for different versions. Each 

metric value consists of different numbers of subclasses. This creates a situation where there are 729 different 

possibilities for CVSS 2.0 and 2592 different possibilities for CVSS 3.1. In the previous section, the difficulty of 

estimation of this multi-probability structure was explained. The values of all predicted metrics of CVSS 2.0 security 

vectors are given in Table 8. Results were evaluated according to Accuracy, Precision, Recall and F1 Score scales. 

Precision and recall values specified in the tables are macro values found by averaging the performance of each class. In 

addition, the F1-score value is calculated with the harmonic average of the precision and recall values. 

 

 
Fig. 2. CVSS 2.0 Security Vector prediction results 
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Table 7. The results of the CVSS 2.0 model with the highest predictive value 

Metric Acc. Prec. Recall F1 

AV 95,32 85 95 88 

AC 87,8 93 67 72 

Au 93,11 97 54 61 

CI 86,78 90 83 85 

II 88,07 90 84 86 

AI 86,59 90 83 85 

 

When Table 7 and Figure 2 are examined, it is seen that the proposed method produces very successful results for 

CVSS 2.0. Especially in AV and Au metric values, a very high estimation result of 95% and 93%, respectively, was 

obtained. For other metric values, satisfactory results were obtained between 87% and 88%. This shows that the 

vulnerability vector that will be created for missing data as a result of the estimations will be very sensitive. With a 

prediction performance of these ratios, 10,012 CVSS 2.0 records missing safety vector values were predicted. 

Table 8. The results of the CVSS 3.1 model with the highest predictive value 

Metric Acc. Prec. Recall F1 

AV 92,45 98 70 78 

AC 95,48 92 74 80 

PR 88,11 92 73 79 

UI 93,31 95 91 92 

S 96,11 98 89 92 

CI 88,16 86 86 86 

II 88,23 88 87 87 

AI 91,29 87 74 78 

 

When Table 8 and Figure 3 are examined, it is seen that the proposed method is quite successful in estimating the 

metrics of the CVSS 3.1 scoring system. The scope metric was the most successful prediction of the model with a 

predictive value of 96.11%. In addition, the AC metric was estimated with a very high value of 95.48%. Among the 

predicted metrics, AV, UI and AI metrics were estimated with 92.45%, 93.31% and 91.29% predictive values, 

respectively. As can be seen, the prediction performance of five of the eight metrics is above 90%. The prediction 

performance of other vulnerability metrics, on the other hand, is very close to this value, although it is below 90%. PR 

was calculated as 88.11%, CI as 88.16% and II as 88.23%. When all the values are examined together, it is seen that the 

results obtained are quite promising. 

 

 
Fig. 3 CVSS 3.1 Security Vector prediction results 

7. Discussion 

The number of software security vulnerabilities has been increasing in recent years. As a result of this situation, 

there has been an increase in the abused systems recently [42]. It is important to share software vulnerabilities with 

industry and researchers in order to be able to analyze them correctly and prevent their recurrence. By using past 

experiences, it can be ensured that the systems to be developed in the future will be more secure. However, there are 

problems due to the size of the security vulnerabilities accumulated for many years and their analysis by people. The 
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biggest problem at this stage is that the first analyzes cannot fully predict potential threats or time delays are 

experienced. Considering that the vast majority of security vulnerabilities are exploited within the first two weeks, it is 

clear that there is no compensation for the errors to be experienced in these transactions. In addition, this manually 

operated procedure makes it impossible to reanalyze old reports by using new features in scoring systems. Even in the 

oldest version CVSS 2.0 system, which is one of the scoring systems we examined within the scope of this study, no 

information was entered in the 10.012 security report. For CVSS 3.1, the last version in use, this figure is 83,373. This 

corresponds to almost 50% of all deficits. This means ignoring a lot of knowledge and experience in software 

vulnerability reports. When the findings of the studies are examined, it is seen that the model established with the 

proposed natural language processing methods and classification algorithms produces very successful results. However, 

for an accurate analysis, it is necessary to discuss the vulnerability scoring systems, which have quite different security 

schemes and classifications, separately. 

Older than software vulnerability scoring systems, CVSS 2.0 has a larger data size and fewer missing values. The 

security vector consists of 6 different metrics. Of these metrics, AV had the highest accuracy with 95.32% prediction 

success. According to the prediction success, AI was the metric with the lowest predictive value with 86.59%. When 

other metrics are ordered according to forecast success; Au 93.11%, II 88.07%, AC 87.8% and CI 86.78%. The security 

vector of CVSS 3.1, the latest version of the software vulnerability scoring system, has 8 different metrics. When these 

metrics are examined, it is seen that the highest prediction success belongs to the S metric with 96.11%. This metric was 

followed by AC, UI, AV and AI metrics with values of 95.48%, 93.31%, 92.45%, and 91.29%, respectively. II, CI and 

PR metrics, which have very close estimation results, have values of 88.23%, 88.16%, and 88.11%, respectively. These 

results show us that when the two versions of our model are included, the highest predicted metric with 96.11% is the S 

metric of the CVSS 3.1 version. The lowest accuracy value is the AI metric of CVSS 2.0 version with 86.59%. 

9. Conclusions 

It is not possible for a software product to be completely error-free. For this reason, each new information system 

released has the potential for different security gaps. The number of software vulnerabilities reported and published as a 

result of increasing software products in recent years has been increasing rapidly. Manual analysis of detected software 

vulnerabilities becomes difficult. In addition, the perception of security changes over time and newly developed 

technologies bring different security vulnerabilities. As a result of this situation, the systems used in the analysis and 

classification of software security vulnerabilities are constantly updated. The backward reflection of these processes 

made with human power causes negligence as it requires too much effort. This situation is exacerbated with each new 

software vulnerability scoring system version or method released. However, transferring meaningful information and 

experience in old software vulnerabilities can guide the analysis of new vulnerabilities. Moreover, it will speed up the 

process by increasing the sensitivity of the analysis. The findings obtained as a result of the study can be used to make 

the development processes of software more secure. 

With this study, a meaningful and measurable model that will fill the gap in the field has been put forward for the 

first time. It is seen that very successful results have been obtained with the proposed model. The technical descriptions 

of the software vulnerability reports were converted into numerical vectors using the TF-IDF method. The obtained 

values were used as input and a multi-class classification was carried out. KNN algorithm was used for classification. 

The results found indicate very high accuracy rates. The lowest value for the metrics of both versions of vulnerability 

scoring systems was 86.59%. This shows that the security vectors created as a result of the prediction can be estimated 

with very high precision. The average accuracy value calculated for CVSS 2.0 of the new data set created by the 

estimation of missing data was found to be 89.61. According to the calculations made for CVSS 3.1, the average 

accuracy value was 91.49%. These values show that the new data set created is reliable and usable in many respects. 

The predicted values for CVSS 2.0 are, in order; AV - 95.32%, Au - 93.11%, II - 88.07%, AC - 87.8%, CI - 86.78% and 

AI - 86.59%. The predicted values for CVSS 3.1 are, in order; S - 96.11%, AC - 95.48%,UI - 93.31%,AV - 92.45%,AI - 

91.29%,II - 88.23%,CI - 88.16% and PR - 88.11% 

Today, the software vulnerability data set has gained a very large size. As a result, it becomes difficult to reanalyze 

old reports with newly published safety scoring systems. This situation causes incomplete data to occur in many reports. 

This problem gets worse with each new version of the vulnerability scoring system released. Especially in recent years, 

the analysis of software security vulnerabilities with machine learning and data mining techniques has increased. 

Generally, missing data is ignored in these studies. The number of vulnerability reports with the latest software 

vulnerability scoring system is about half of the total reports. This situation reveals that there is quite a large amount of 

data that researchers ignore and do not include in their analysis. With the proposed method, the missing vulnerability 

vectors were obtained. A new data set was created to present the obtained safety vector values to the use of researchers. 

The new dataset is available on GitHub (https://github.com/hakankekul/CvssDataSet). Especially recently, all 

researchers recommend that studies on deep learning be conducted. We are planning to expand our work with deep 

learning methods in our next studies. We also want to improve our work with new models that use different feature 

extraction and classification algorithms. 
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