
I. J. Computer Network and Information Security, 2017, 8, 48-53
Published Online August 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2017.08.07

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 8, 48-53

Distributed Malware Detection Algorithm

(DMDA)

Aiman A. Abu Samra, Hasan N. Qunoo, Alaa M. Al Salehi
Islamic University of Gaza, Gaza city, Palestine

E-mail: aasamra@iugaza.edu.ps, hqunoo@gmail.com, asalehi@iugaza.edu.ps

Received: 18 May 2017; Accepted: 05 July 2017; Published: 08 August 2017

Abstract—The increasing number of malwares has led to

an increase in research work on malware analysis

studying the malware behavior. The malware tries to leak

sensitive information from infected devices. In this paper,

we study a specific attack method, which distributes the

data source and the point of data loss on different

versions of the malware application. That is done using

local storage by storing part or all of the vital data to be

leaked in the future.

We introduce a Distributed Malware Detection

Algorithm (DMDA), which is an algorithm to detect

distributed malware on app versions. DMDA proposes a

new way to analyze application against redistributed

malware. DMDA is created to analyze the data and

identify transitional loss points. We test this algorithm on

a sample of Android applications published on the

Google Play market containing 100 applications, where

each application has two versions. The algorithm

detected 150 transient data sources, 200 transient loss of

data point and two leakages of data. In comparison, this

dataset was checked using 56 anti-malware applications

but none of them could find any malicious code.

Index Terms—Android, Distributed malware, Malware

detection, Transient data sources, Transient sinks.

I. INTRODUCTION

Tremendous increase of android markets and Google's

open policy of accepting applications in the Android

Marketplace, make it easy for anyone to publish apps and

update them. So, the problem of detecting Malwares on

mobile devices is an interesting topic. In fact, 86% of

detected malwares are old malware repackaged in new

apps [1]. However, the antimalware and antivirus tools

that we looked at in the scope of this paper, focus only on

the current app version. They do not detect an attack

distributed over multiple versions of the same application.

There are two types of code analysis that can be used

to detect malwares, Static Code Analysis and Dynamic

Code Analysis. The difference between two types is that:

static program analysis is performed without executing

programs, while dynamic analysis is performed by

executing programs.

In this paper, we propose a new way to analyze

application against redistributed malwares. We also

introduce a Distributed Malware Detection Algorithm

(DMDA), which is an algorithm to detect distributed

malware on application versions.

A. Android Application Entry points

Android provides a Software Developer Kit (SDK) to

developers. This SDK exposes the API needed by

developers to build applications. Unlike java application

that has one entry point for the application which is the

main method and works on one program architecture,

android application has multi-entry points and works on

message passing architecture. Android multi-entry points

are: Activities, Services, Broadcast Receivers.

B. Android Storage Options

Android provides several options to save application

data. The option you choose depends on your application

needs, such as, whether the data should be private for

your application or accessible by other applications and

how much space your data require.

Android data storage options are the following: Shared

Preferences, Internal Storage, External Storage, SQLite

Databases and Network Connection [2].

II. RELATED WORK

Many works were done in the field of android malware

detection. Some works used Static program analysis

where the source code is given as input to some

automated tool. The tool checks the code without

executing it, and yields results. Other works use dynamic

analysis where the code is executed. Here we present

some of the recent works related to the propagation of

malware on the Android platform

In [3] authors explain how to apply clustering

techniques in Malware detection of Android applications.

Their evaluation is given by clustering two categories of

Android applications: business, and tools. They extract

the features of the applications from XML-files which

contain permissions requested by applications

Enck et al. [4] introduced an approach to convert

Dalvik bytecode back to Java bytecode, and then used

existing decompilers to obtain the source code of the

apps for analysis.

mailto:aasamra@iugaza.edu.ps
mailto:hqunoo@gmail.com
mailto:asalehi@iugaza.edu.ps

 Distributed Malware Detection Algorithm (DMDA) 49

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 8, 48-53

Chin et al. [5] showed that apps might be exploitable

when servicing external intents. They built ComDroid to

identify publicly exported components and warn

developers about the potential threats. For that,

ComDroid checks app metadata and specific API usages.

As a result, warned public components are not

necessarily exploitable or harmful (e.g. the openness can

be in the design or the component is not security critical).

On the other hand, Android permission system is subject

to several instances of the classic confused deputy attack

[6]. As demonstrated by [7,8,9], an unprivileged app can

access permission-protected resources through privileged

apps that do not check permissions. Grace et al. [9]

employed an intra-procedural path-sensitive static

analysis to discover permission leaks specific to stock

apps from multiple device vendors.

In [10] authors introduced a security software that

provides comprehensive protection of personal data and

mobile telephone from malware and illegal activity of

cyber criminals. The developed security software Green

Head protects personal smartphones of majority of

brands from spam, viruses and unauthorized access.

In [11] authors introduce differential susceptible e-

epidemic model for the transmission of malicious codes

in a computer network. Authors used Numerical methods

to derive the formula for reproduction number (R0) to

study the spread of malicious codes in computer network.

AndroidLeaks [12] also state the ability to handle the

Android Lifecycle including callback methods. It is based

on WALA’s context-sensitive System Dependence Graph

with a context-insensitive overlay for heap tracking, but

it taints the whole object if tainted data is stored in one of

its fields, i.e., is neither field nor object sensitive. This

precludes the precise analysis of many practical scenarios.

SCanDroid [13] is a tool for reasoning about data

flows in Android applications. It mainly focusses on the

inter-component and inter-app data flow. This poses the

challenge of connecting intent senders to their respective

receivers in other applications. SCanDroid prunes all call

edges to Android OS methods and conservatively

assumes the base object, the parameters, and the return

value to inherit taints from arguments.

III. RESEARCH APPROACH AND TOOLS

In this research, we follow the reverse engineering and

the static analysis approach. We also used the Call Graph

and Scandroid tools.

Reverse Engineering

Reverse Engineering is a process of analyzing program

code or software to test it from any vulnerability or any

errors. Reverse engineering is the ability to generate the

source code from an executable code. This technique is

used to examine the functioning of a program or to evade

security bugs, etc.

Static Analysis

Static analyses inspect the program code to derive

information about the program’s behavior at runtime. As

nearly every program has variable ingredients (inputs

from a user, files, the internet, etc.) an analysis extract an

abstract from concrete program runs. It aims to cover all

possibilities by making conservative assumptions. [14]

Call graph (CF)

A call graph is a directed graph that represents calling

relationships between functions in a computer program.

Specifically, each node represents a function and each

edge (f, g) indicates that function f calls function g. Thus,

a cycle in the graph indicates recursive function calls.

Call graphs are a basic program analysis. Results of

the analysis can be used for human understanding of

programs, or as a basis for further analysis, such as the

analysis that tracks the flow of values between functions.

One simple application of call graphs can find functions

that are never called.

WALA

Watson Libraries for Analysis (WALA) is a

framework that provides static and dynamic analysis

capabilities for Java bytecode and related languages and

for JavaScript. [15]

Scandroid

SCanDroid [13] is a tool for reasoning about data

flows in Android applications. Its focus is the inter-

component (e.g. between two activities in the same app)

and inter-app data flow.

IV. DEFINITIONS

To get a precise definition for some terms used in this

paper, we define the following terms: Entry point, Source,

Sink, Transition Source, Transition Sink, Leak,

Transition Leak

Definition 1 (Entry Point)

An Entry point is the point where operating system

enters a program. In many programming languages it is

the main function where a program starts its execution.

Android is an operating system with multiple entry points.

Activity onCreate method is entry point.

Definition 2 (Sources)

Sources are calls into resource method returning non-

constant value into the application code. This value may

be valuable for user privacy or user life. Example

getDeviceId() resource method is an Android source. It

returns a value (the IMEI) into the application code.

Definition 3 (Sinks)

Sinks are calls into resource method accepting at least

one non-constant data value from the application code as

parameter, if and only if those parameters go out the

application. The sendTextMessage() resource method is

an Android sink as the message text are possibly non-

constant and goes to phone number.

Definition 4 (Transient Sources)

50 Distributed Malware Detection Algorithm (DMDA)

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 8, 48-53

Transient Sources are calls into resource method

returning non-constant value stored into local storage of

the application code. This value is valuable to user

privacy or user life. Example retrieve data from local

database.

Definition 5 (Transient Sinks)

Transient Sinks are calls into resource method

accepting one non-constant data value from the

application code as parameter if and only if those

parameters go to local storage resource. Example saving

contacts information on local database.

Definition 6 (Leak)

Leak is a call graph path, where the start is a Source

resource and the end is a Sink resource. Example

Application sends contacts data to internet website.

Definition 7 (Transient Leak)

Transient Leak is a call graph path, where the start is a

Source resource and the end is a transient Sink resource.

Example Application saves contacts data into local

storage media.

V. DISTRIBUTED OVER VERSIONS ATTACK MODEL

As Android is an open environment for development

that makes it a target for attacks [7,8,9]. Many other

papers talking about malwares attacks, were mentioned in

Related Work section. The effort in those papers was

focused on a single version of android application. Those

papers talked about misused permissions.

However, an attacker can develop an attack based on a

distributed multiple version using the accumulated

permissions. Android markets including Google Play

market support versioning for an android application [16].

Versioning is done through android-mainfest.xml

attributes, android: v ersionCode and android:

versionName so it is easy for malware producer to

distribute his or her malware on multi-version of android

application. At the first version, it gets the data from

android OS for example contacts and SMSs and store

them on its own data. In a later version, the attacker

removes the code that was responsible for storing the

user data and replaces it with another code that leaks the

data to the attacker or to a third party. Figure 1 shows the

attack model, which distributes its sources and sinks into

two versions of the app

Fig.1. Distributed over versions Attack Model

VI. DMDA ALGORITHM

In this section, we explain the proposed DMDA

algorithm briefly and then in details. The algorithm

implementation and results are explained later in the

paper.

A. DMDA algorithm main steps:

1- Build call graph based on entry points

2- Find transient sink and save them with their path

to source

3- Replace every transient source with its transient

sink path to source

4- Search for data leakage

B. DMDA algorithm in details:

1- Determine entry points of app version

2- Create Call Graph based on S where S is group of

E and E is an entry point. Call Graph contains N

where N is a group of nodes and D where D is a

group of edges

3- Visit Call Graph and determine the following

nodes: PI –pure sink, PO –pure source, transient

TI –transient sink and TO –transient Source.

4- Use [17] to solve dependencies and reduce

reachability.

5- if v == 1 where v is the version of app then

a) call findLeak

Version 1
Entry

Sourc

e

Transient

Sink

Version 2 Entry Sink

Transient

Source

Leakag

e

 Distributed Malware Detection Algorithm (DMDA) 51

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 8, 48-53

b) call findTransientSink

6- if transient sink exists then call savetransientSink

7- if v>1

a) call findTransientLeak

b) call findLeak

c) call findTransientSink

d) saveTransientSink

FindLeak procedure

 if there is path between source and sink then

leak exists and this is a malware app

SaveTransientSink procedure

 After finding transient sink check for possible

paths used for this sink if there is path to source

then save that path

 save the key used to this parameter –example

table name for inset statement -

FindTransientLeak procedure

 if transient sink saved earlier have the same key

of transient sink then it is a transient leak.

do replace transient sink with transient source

paths stored earlier

 else

ignore this transient source

C. Implementation

We used WALA call graph, which depends on graph

reachability concept, and Pointer analysis implementation

using kidall`s Framework [18] to follow keys of transient

source and transient sinks.

We used many Entry points like:

Android.app.Activity: onCreate, onStart, onRestart,

onResume, onPause, onStop, Android.app.Service:

onCreate, onStart, onStartCommand, onDestroy, onBind.

ContentProvider: onCreate, query, insert, update,

delete. BroadcastReceiver: onReceive.

Then, source and sink of our analysis is determined. In

the algorithm Sources have been chosen these like:

 Android.content.ContentResolver. query

 Android.location.LocationManager.[all methods]

 Android.telephony.TelephonyManager.[getNeig

hboringCellInfo| getCellLocation]

In addition, Sinks were used like:

 Android.app.Activity.setResult: this method

used to respond on call of startActivityForResult

and it can leak data on it is parameter to other

android application.

 Android.app.Activity.[starActivity|

starActivityForResult| startActivityIfNeeded|

startNextMatchingActivity|

startActivityFromChild]: these methods can leak

data to other applications on the intent send to

start their activities.

 Android.content.ContentResolver.[query|insert|

update|delete]: these methods help developers to

access Content Provider query, insert, update

and delete

These are not all the sources and sinks in android.

These are just the ones we used in our work to prove the

idea. Some works have studied this topic very well like

[4,13,19].

We used also in analysis Transient Sources and

Transient Sinks.

Transient sources and sinks are those methods used to

store application data into local storage. They cannot be

considered as a pure sources and pure sinks because they

almost used to store clear data. So, considering them as a

source or sink probably results in a false positive

malware detection. However, ignoring transient sources

and transient sinks may prevent detecting malwares

distributed into application versions.

We choose the following methods as transient Sinks:

1- android.content.SharedPreferences.Editor[putBool

ean| putFloat| putInt| putLong| putString|

putStringSet]: shared preference used to persistent

primitive data or Strings and reuse them after a

while. These methods can transiently leak data

through their second parameter.

2- android. database. sqlite. SQ Lite Database[insert|

insert Or Throw| insert With On Conflict| replace|

replace Or Throw| update| update With On

Conflict]: SQ LLite is a simple relational database

used to store complex data types and reuse them

with fast query. These methods can transiently

leak data through their second parameter through

their parameter Content Values.

For this paper, we choose the following method as

transient Source:

1- android.content.SharedPreferences [getBoolean|

getFloat| getInt| getLong| getString| getStringSet]:

these methods used to retrieve data stored on put

methods. These methods can transiently be a

source of data through their return values.

2- android.database.sqlite.SQLiteDatabase [query|

query With Factory| raw Query| raw Query With

Factory]: those methods used to retrieve data

stored using update, insert and replace methods.

These methods could transiently be a source of

data through their return values.

All these lists –sources, sinks, transient sinks, transient

sources and entry points- included on eAndroidSPec.java,

which is, extend ISpec class one of scandroid

specifications.

Exclusion list

52 Distributed Malware Detection Algorithm (DMDA)

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 8, 48-53

Call graph and static analysis is memory consuming

activity. Even simple analysis of an app uses a relatively

large memory space. So, WALA uses an exclusion list,

which used to exclude unimportant classes from call

graph and data flow analysis. We exclude famous

libraries and basic java packages. This technique helps

WALA to reduce consumed memory and increase

productivity.

VII. EXPERIMENTS AND ANALYSIS

In this section, we explain two experiments made to

show and explain the distributed attack and to experiment

the effectiveness of DMDA Algorithm. The first

experiment focuses on the attack model and how the

distribution of a famous malware in two versions makes

most of anti-malware unable to detect it. The second

experiment checks the effectiveness of DMDA algorithm

in finding malware behavior distributed over android app

versions and checking these apps.

A. Attack Model Experiment

In this experiment, we use a combination of

DroidKungFu and VirusTotal tools.

DroidKungFu is a Trojan, which although seemingly

inoffensive. It can carry out attacks and intrusions: screen

logging, stealing personal data, etc.

VirusTotal is a free online service subsidiary of

Google that analyzes files and URLs enabling the

identification of viruses, worms, trojans and other kinds

of malicious content detected by antivirus engines and

website scanners

Of course, a malware distributed over app versions

make most of anti-malware unable to detect it. Even for

simple, old and famous malwares like DroidKungFu [20].

We use DroidKungFu as an example to explain the attack

model. We test DroidKungFu in two versions by

VirusTotal, but none of the anti-malwares could catch

DroidKungFu.

B. Effectiveness of DMDA Experiment

For this experiment a group of apps has been chosen

including DroidKungFu [20], with two versions of every

app these apps taken from [21].

This group contains 100 apps. All of them related to

contact's APIs. For every app two versions were chosen.

Table 1 shows the results.

Table 1.

No. of apps No. of versions for
app

Transient sources Transient sinks sources leakages

100 2 156 209 200 2

The algorithm detects over 200 transient sinks and

over 150 transient sources, these are not a leakage but

they can be developed into a leakage in a future version.

The algorithm detects also two leakages. The same

dataset was checked using 56 anti-malware applications.

All of them failed to detect those positives.

VIII. CONCLUSIONS

Android is the most popular OS for smart phones and

it has the biggest number of malwares. In this paper, we

propose a new way to analyze mobile apps against

redistributed malwares. We also introduce a Distributed

Malware Detection Algorithm (DMDA), which is an

algorithm to detect distributed malwares over an

application versions.

The purpose is to find transient source and transient

sink and convert them to their original call graph. This

method helps solving malware distribution.

We used call graph to determine reachability and

Kidall`s Framework to solve dependencies and to

determine transient sources and sinks.

To evaluate our algorithm, we tested a group of apps

using our algorithm. As a future work plan to enlarge the

dataset by adding other existing malwares datasets.

REFERENCES

[1] Y. Zhou and X. Jiang, "Dissecting Android Malware:

Characterization and Evolution," in IEEE Symposium on

Security and Privacy, 2012.

[2] "Android Developers," Google, [Online]. Available:

http://developer.android.com/guide/topics/data/data-

storage.html.

[3] Aiman A. Abu Samra, Kangbin Yim, Osama A. Ghanem,

"Analysis of Clustering Technique in Android Malware

Detection" IMIS-2013 7th International Conference on

Innovative Mobile and Internet Services in Ubiquitous

Computing, 3-5 July 2013, Asia University, Taichung,

Taiwan.

[4] W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, "A

study of android application security," in USENIX

conference on Security , 2011.

[5] E. Chin, A. Porter Felt, K. Greenwood and D. Wagner,

"Analyzing inter-application communication in Android,"

in international conference on Mobile systems,

applications, and services, 2011.

[6] N. Hardy, "The Confused Deputy: (or why capabilities

might have been invented)," in ACM SIGOPS Operating

Systems Review, 1988.

[7] L. Davi, A. Dmitrienko, A.-R. Sadeghi and M. Winandy,

"Privilege escalation attacks on android," in international

conference on Information security , 2011.

[8] Felt, H. Wang, A. Moshchuk, S. Hanna and E. Chin,

"Permission Re-Delegation: Attacks and Defenses," in

USENIX Security Symposium, 2011.

[9] M. Grace, Y. Zhou, Z. Wang and X. Jia, "Systematic

Detection of Capability Leaks in Stock Android

Smartphones," in 19th NDSS, 2012.

[10] C. Gibler, J. Crussell, J. Erickson and H. Chen, "Scale,

AndroidLeaks: Automatically Detecting Potential Privacy

 Distributed Malware Detection Algorithm (DMDA) 53

Leaks in Android Applications on a Large," Trust and

Trustworthy Computing, vol. 7344, pp. 291-307, 2012.

[11] Fuchs, A. Chaudhuri and J. Foster, "SCanDroid:

Automated Security Certification of Android

Applications," in Proceedings of the 31st IEEE

Symposium on Security and Privacy, 2010.

[12] Syed Arshad and Ashwin Kumar, "Android Application

Analysis using Reverse Engineering Techniques and

Taint-Aware Slicing". IJCA Proceedings on International

Conference on Information and Communication

Technologies ICICT(4):5-8, October 2014.

[13] T.J Watson Libraries for Analysis (WALA).

http://wala.sf.net

[14] "Versioning Your Applications," Google, [Online].

Available:

http://developer.android.com/tools/publishing/versioning.

html. [Accessed 2016].

[15] G. Kildall, "A Unified Approach to Global Program

Optimization," in Proceedings of the 1st Annual ACM

SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, 1973.

[16] W. Enck, P. Gilbert, B.-G. Chun, L. Cox, J. Jung, P.

McDaniel and A. Sheth, "TaintDroid: An Information-

Flow Tracking System for Realtime Privacy Monitoring

on Smartphones," in 9th USENIX Symposium on

Operating Systems Design and Implementation, 2011.

[17] "8 Notorious Android Malware Attacks,"

[Online].Available:http://www.informationweek.com/mo

bile/8-notorious-android-malware-attacks/d/d-id/1099385.

[18] "F-Droid," [Online]. Available: https://f-

droid.org/repository/browse/. [Accessed 2016]

[19] Zhukov Igor, Mikhaylov Dmitry, Starikovskiy Andrey,

Dmitry Kuznetsov, Tolstaya Anastasia, Zuykov

Alexander. Security Software Green Head for Mobile

Devices Providing Comprehensive Protection from

Malware and Illegal Activities of Cyber Criminals //

Interna- tional Journal of Computer Network and

Information Security (IJCNIS). — Vol. 5. — No. 5. —

April 2013. —R. 1—8.

[20] Bimal Kumar Mishra, Apeksha Prajapati "Dynamic

Model on the Transmission of Malicious Codes in

Network", I. J. Computer Network and Information

Security, 2013, 10, 17-23

[21] "F-Droid," [Online]. Available: https://f-

droid.org/repository/browse/. [Accessed 2016]

Authors’ Profiles

Dr. Aiman A. Abu Samra, is an Associate

Professor at the Computer Engineering

Department at the Islamic University of

Gaza. He received his PhD degree from the

National Technical University of Ukraine

in 1996.

Dr. Aiman was the Assistant Vice

President of IT Affairs at IUG between

2011- 2014. He was a supervisor of many Master thesis in

mobile computer networks, computer security and other

topics. .His research interests include computer networks and

mobile computing. Dr. Aiman is a member of the Technical

Committee of the International Arab Journal of Information

Technology (IAJIT). He was recognized as one of the most

active reviewers during the year 2016.

Hasan Qunoo, is a young and active

lecturer and researcher in computing.

Hasan has a PhD and MSc degrees in

Computer Security from the University of

Birmingham and an extended experience

and training in diverse and interactive

teaching in the UK and Gaza.
He has taught a number of courses and

has been an active member of the curriculum review

committees at the department and faculty levels. He is a

researcher and lecturer in Computing and Computer Security.

He is a member of Computer Security Group at the University

of Birmingham. He is now an Assistant Professor at the

University of Palestine and was the head of department between

2014 - 2016. He has authored the Palestinian Information

Technology Association of Companies strategy (2015-2018). In

addition, he has worked in various other technical projects.

Alaa Al Salehi, is working in IUG as a

team leader for student portal, one of the

main systems that serves more than 20,000

students. He runs his own start-up -ZAKI-

which is a platform for people whom loves

cooking to share their knowledge and

experience.

He loves mobile development and adding value to people

lives providing solutions for their daily problems. He is recently

focusing on android OS, he is the leader and developer of many

heterogeneous – web and mobile projects

How to cite this paper: Aiman A. Abu Samra, Hasan N. Qunoo, Alaa M. Al Salehi,"Distributed Malware Detection

Algorithm (DMDA)", International Journal of Computer Network and Information Security(IJCNIS), Vol.9, No.8,

pp.48-53, 2017.DOI: 10.5815/ijcnis.2017.08.07

