
I. J. Computer Network and Information Security, 2016, 11, 32-43
Published Online November 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2016.11.04

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

FileSyncer: Design, Implementation, and

Performance Evaluation

Oluwafemi Osho
Department of Cyber Security Science Federal University of Technology, Minna

E-mail: femi.osho@futminna.edu.ng

Anthony Ugbede Faruna
E-mail: thony4u@gmail.com

Abstract—With the pervasiveness of information

technology, one of the growing trends today is a

phenomenon which can be termed one-user-to-many-

computing-devices. In many cases, the need to manage

information across multiple electronic devices and

storage media arises. The challenge therefore is finding a

file synchronization system that can effectively replicate

files across these different devices. This paper presents

the design, implementation, and evaluation of FileSyncer,

a rapid and efficient file synchronization tool that, in

addition to the traditional synchronization capabilities,

supports manual update selection and mechanism to

revert a synchronization process back to the last previous

state. The system employs last modified time, file size

and CRC checksum for update detection and to ensure

integrity of synchronized files. The synchronization times

of the system for files of different sizes were compared

with those of four existing file synchronization systems.

Results showed increased efficiency in terms of time

taken by FileSyncer to complete a synchronization

operation with increase in file size compared to the other

systems. In the future, we plan to release FileSyncer to

the open source community for further development.

Index Terms—File synchronization, backup, recovery,

update detection, reconciler, security.

I. INTRODUCTION

The rapid growth of information technology and

mobile computing has brought to light the need for

maintaining copies of data in different locations [1]. The

growing trend of many computing devices to one user has

come with huge expectations of replicating files across

these different devices. Issues in data management like

loss or damaged data have also highlighted the need for a

backup strategy to recover data when such incident arises.

Thus, the rise in the need to manage information across

multiple electronic devices and storage media used by

information users poses the challenge to develop an easy

to use and efficient file synchronization system.

A file synchronization system helps to maintain

consistency of the state of two computer files in different

locations by constants updates, using a defined algorithm

[2]. It is essential that any file synchronization tool would

be easy to use, and flexible enough to restore or revert

back a synchronization operation in the case where the

synchronization does not yield the required or desired

result.

File synchronization is applicable in virtually all facets

of information technology, including cloud [3], [4],

distributed network [5], [6], [7], peer-to-peer network [8],

[9], and video [10].

Primarily, a file synchronization system is made up of

two components, namely update detector and reconciler

[11]. Typically, the update detector analyzes and

automatically detects changes made to the file replicas

since the last synchronization operation. The reconciler

then combines the update to yield the new synchronized

and updated state of each of the file replica. These steps

are typically repeated each time the synchronization is

initiated. However, there are instances where a user may

probably want to select files to be synchronized. This

happen more often in a situation where the updates to be

propagated are minimal, in a large volume of files. Using

the traditional way of synchronization will not be

effective in this case, considering the needed update

detection time and significant CPU cost that would be

incurred. As an example, a user has 1000 main folders,

with each containing sub-folders and files. Since the last

synchronization, he has only made changes to the sub-

folders and files in just one of the main folders. A good

solution is for the synchronization system to provide

mechanism for such user to manually select that one

folder to be synchronized, without subjecting the entire

folders to the automatic update detection, and then move

directly to reconcile the replicas. It therefore becomes

necessary to have a system that, in addition to providing

mechanism for automatic update detection, allows the

user to manually select files to be updated, thus, skipping

the automatic update detection. In this case, significant

time can be gained.

This study focuses on the development and evaluation

of FileSyncer, a rapid and efficient file synchronization

tool that supports fast synchronization, manual update

selection and mechanism to revert a synchronization

process back to the last previous state.

The rest of the paper is organized as follows: sections

two, three, and four provide extensive literature review of

file synchronization system. Specifically, they discuss the

 FileSyncer: Design, Implementation, and Performance Evaluation 33

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

taxonomy, components, and limitations of file

synchronization system respectively. In section five, the

methodology is presented. The system design,

implementation and testing, and evaluation of the

performance of the system are covered in sections six,

seven, and eight in the order given. Lastly, in section nine,

the study is concluded.

II. TAXONOMY OF FILE SYNCHRONIZATION SYSTEM

File synchronizers can be classified on the basis of

direction of the synchronization operation and on the way

conflicts are treated. Most file synchronizers propagate

updates just in one direction, while others propagate in

two directions. It is also noteworthy that every file

synchronizer by default propagates updates that are not

conflicting. The basis for propagating conflicting updates

depends on the specifications and methods used by the

file synchronizers. Fig. 1 provides a diagrammatic

depiction of the taxonomy of file synchronization.

A. File Synchronization Based on Direction

A file synchronization based on direction focuses on

the direction of the synchronization operation. Based on

the direction, synchronization can either be propagation

of updates from source directory to a target directory or

from a target directory to a source directory, or it could

be a simultaneous propagation between the source and

target directory. These are termed one-way

synchronization and two-way synchronization

respectively [11], [12], [13].

Fig.1. Taxonomy of File Synchronization System

One-Way File Synchronization

This type of synchronization propagates changes made

in one direction, and the contents are expected to change

in only one replica. The synchronization operation

reconciles the changes made in only one of the replicas.

The replicas cannot be really considered to be in the same

state here since the updates are not being propagated in

both directions. One of the replicas is referred to as the

source while the other as the target. The updates are

propagated from source to target only. Take for example,

a case where a new file was added to a replica A (Source).

The update will be propagated and reconciled to the

replica B (Target). If we also have a new file in replica B,

it will not be propagated to replica A.

Two-Way File Synchronization

This type of synchronization operation propagates

updates of files in both replica and directions, to ensure

consistency, and reconcile changes made in both ways.

The contents of the replicas are expected to change in the

different locations. Both locations would have the same

state as a result of the synchronization operation. For

example, if there was a file that is new in a replica A, A

will be propagated to replica B. And if replica B also

contained a new file, it will be equally propagated to

replica A.

B. File Synchronization Based on Resolution of Conflict

File synchronization system performs synchronizations

based on resolution of conflicts mechanism. Under this

category, file synchronization systems are further sub-

categorized as either state-based file synchronizers or

operation/trace-based file synchronizers [1], [2], [11],

[14].

State-Based File Synchronizers

These synchronizers utilize the present state or

contents of the filesystem to detect updates. This includes

observing modification times, inode number, dirty bits,

contents of files, and comparing them against the copies

that was saved. State-based synchronizers tend to be very

portable; does not require administrative privileges,

which makes them suitable for use as user-level programs;

and are readily used in situations where it is very

impractical to use full-blown distributed filesystems and

databases. A major issue associated with state-based

synchronizer is how to determine the areas changes and

Operation/
Trace-Based

Operation/
Trace-Based

State-Based

Two-Way

One-Way

Synchronization Based
on Direction

Synchronization Based on
Resolution of Conflict

34 FileSyncer: Design, Implementation, and Performance Evaluation

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

modification were made by aligning the present replicas

and the replica that was saved at the last synchronization

operation.

Operation/Trace-Based File Synchronizers

Operation/trace based synchronizers detect possible

updates by examining sequence of all operations carried

out on the replica and all the modifications and changes

made to the file. The operating system provides the trace

to the file synchronizer when it is being executed or it can

also monitor the updates and changes being made in real

time. Although operation-based synchronizers possess

more detailed information to make decision, which

implies a better decision in regards to propagating

changes and resolving conflicts, they, however, need the

support for building the synchronization process in the

system at a very low level.

III. COMPONENTS OF FILE SYNCHRONIZATION SYSTEM

Every file synchronization system, as depicted in Fig. 2,

is basically made up of two components, which are the

update detection mechanism and the reconciliation

algorithm [1], [2], [10], [11], [14], [15], [16], [17], [18].

Fig.2. Components of a File Synchronization System

A. Update Detection

The update detector of each of the file replica S

calculate a that will summarize all the changes

that have been applied to S. While there is room to make

error for safety sake to indicate possibility of changes

where none happened, it is necessary that real changes

made must be detected [1].

Both filesystems in each of the replicas are the same

initially with contents O. When a user updates one of the

replicas, or both, it results in new states of A and B.

During the synchronization operation, using either the

size or modification time of the two replicas, the update

detector detects changes on both replicas and calculate

the predicate and . These predicates with

the current state are used by the reconciler to compute the

new states. The following specifications are made for the

update detector [1], [2], [11]:

Definition 1: We define a predicate dirty as an up-

closed predicate on the file paths, i.e., predicate such

that, if we have p ≤ q and (q), then () The

implication of this statement is that if is predicate

dirty, then () implies ().

Definition 2: Assuming that O and S are filesystems

and is a dirtiness predicate. We can then say

 is to calculate the updates from O to S if

 (P) means O/p, given all paths p. One

important feature of this definition is that if A, B, and

O are filesystems and and computes the

update from O to A to B, then () and

 () together imply A/p = B/p.

The update can be implemented with different

strategies. These include [1], [2], [11]:

Trivial Update Detector

This is one of the simplest implementations which

present a predicate that is always true; it just denotes all

file as dirty, with the reconciler taking every file, except

the ones that are the same in the two filesystems, as

conflicts. This can be a fairly acceptable update detector

strategy for situations where the filesystems are small,

but it becomes an issue, in large filesystems, as the

reconciler has to compare all the files in both filesystems.

Exact Update Detector

This implementation strategy differs slightly from the

trivial update detector, as it exactly computes the

dirtiness predicate for the replicas by storing a duplicate

File
Synchronization

Update
Detection

Reconciliation

Trivial

Exact

Simple
Modtime

Modtime-Inode

3-in-One
Constraint

 FileSyncer: Design, Implementation, and Performance Evaluation 35

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

of the entire filesystem during the last synchronization

operation, and comparing that copy with the current

filesystem. To detect update in an exact style is quite

expensive in terms of the space it will take to keep the

former copy of the filesystem, and more notably, the time

it will take to compute the changes made to the present

contents with the copies of the filesystems that were

saved. Although this implementation can perform well

when there is adequate time to carry out the

synchronization operation.

Simple Modtime Update Detector

This implementation for the update detector is much

cheaper but accuracy is on the low side. The update

detector uses the last modification time to compute

changes that were made to the filesystems. In order to

detect the changes, the last modification time of each file

replica is assessed against its value and checked whether

it is old or new, and marked as dirty if it is new. Although

this strategy is quite simple but it is not just enough to

detect changes by only looking at the file modification

time and its directories, since its location can be changed,

leaving its modification time alone but altering its parent

directory modification time. To handle and prevent this

problem carefully, we call a file dirty given that at least

one of its parent directories has a more recent

modification time than the last synchronization operation.

Modtime-Inode Update detector

A more efficient strategy of recognising updates under

UNIX operating system is the use of the modification

time and inode numbers. We not only make use of the

last time of synchronization but also the inode number of

every single file in each copy. A path will be marked

dirty by the update detector given that its inode number is

different from the one stored or the modification time is

different from the time of the last synchronization.

3-in-One Constraint Update Detector

This type of update detection mechanism combines

three different constraints/merits to detect and propagate

updates during synchronization. This method does not

only employ the last modification time but also makes

use of the size of the file and CRC (Cyclic Redundancy

Check) checksum of the files that needs to be updated.

CRC is a type of algorithm known as a hash. A hash

algorithm accepts variable-length input and produces a

fixed-length output which uniquely represents the input

data. The hash is usually much shorter in length than the

data it represents. A sample CRC value for a file could be

DAF42G8R. In theory, no other file should produce the

same hash value. The file synchronizer calculates the

CRC value of one file and compares it to the CRC of the

corresponding file in the other folder. If the CRCs differ,

the files differ.

B. Reconciliation

The reconciler works by using the predicates to

determine which replica is most recent and contains

changes. The process of combining this updates from the

various replicas to yield a new synchronized state is

called reconciliation [2].

The following are the definitions for a reconciler as

follows [1], [2], [11]:

Definition 1: We have two filesystems A and B. A

given path p is said to be useful in (A, B) iff either =

 or = for some and , with A () = B () =

DIR.

Definition 2: The new pair of the filesystems (C and D)

is given as the result of the synchronization of the

primary filesystems A and B with regards to the

predicate dirty for both A and B. The following

conditions are satisfied for each path relevant in A, B.

 A() = B() C() = A() D() = B()

 () C/ = D/ = B/

 () C/ = D/ = A/

 () () A() B()

C/ = A/ D/ = B/

IV. LIMITATIONS OF FILE SYNCHRONIZATION SYSTEM

Several challenges for file synchronization systems

have been identified. These includes: the problem of set

reconciliation, the design and semantics of a file

synchronization system, CPU and bandwidth

optimization, and communication complexity [1], [16],

[17], [19], [20], [21].

A. The Problem of Set Reconciliation

One challenge faced by most implementations of

remote file synchronization system is having to avoid

sending the whole file during the synchronization

operation. For files containing large group of little

register, e.g., schedule on a mobile device, the issue is

how to efficiently detect files that have been modified

without transferring specific fingerprint or time stamp for

each files. This issue is termed as the problem of set

reconciliation. Most present file synchronizers sends all

the files if any file has changed which is fair enough for

record-based data that are small, but not in the case of

files that are large. To say the least, there exist the non-

trivial issue of properly stating the semantics for the file

synchronization system.

B. The Design and Semantics

The process of designing a file synchronization system

is tedious and a demanding goal. The basis for this is the

fact that file synchronization system must deal with every

details regarding the semantics and low-level twists of

real-world filesystems. A file synchronizer software that

naturally handles operation in a distributed fashion is

expected to be proactive in the face of possible host and

network failure. This is so because misbehaviour of a file

synchronizer can damage and corrupt random user files

and data. Thus, correctness of the file synchronizer

36 FileSyncer: Design, Implementation, and Performance Evaluation

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

design becomes a critical issue.

C. CPU and Bandwidth Optimization

Several issues often occur in trying to optimize the

amount of bandwidth consumption. There are various

types of overhead that may arise in some situations

during the process of remote file synchronization. The

first is the cost of CPU incurred due to calculation of

hash and structure of data lookups and insertions. The

second issue is the expenses incurred in scanning the file

system and files retrieval. The latter cost is mostly

substantial when ensuring consistency of large directory

trees with few updates and modifications, and is the same

for most techniques used to perform remote file

synchronization.

D. Communication Complexity

Another file synchronization limitation is the present

communication bounds for feasible protocols, which are

still a logarithmic factor from the lower bounds for most

interesting distance metrics, even for multi-round

protocols

V. METHODOLOGY

The major objective of this work is the development of

FileSyncer, a file synchronization system that provides

rapid synchronization, offers user the ability to manually

select specific files and path to synchronize, and also

ensures the possibility of restoring to a pre-synchronized

state.

Information system design methodology approach was

utilized in the development of the system. Essentially, it

is made up of four distinct phases: planning, analysis,

design and implementation [22].

VI. SYSTEM DESIGN

We present, in this section, the design of FileSyncer.

The functional and non-functional requirements are

defined. In addition to this, the framework of the system

is discussed. The structures of the different components

are equally discussed.

A. Requirements Definition

The requirement of a file synchronization ranges from

detecting conflicting and non-conflicting updates, and

reconciling updates in a timely manner. The safety of file

synchronization operation in terms of treatment of

conflicts is an important issue to be considered and given

top attention during development life cycle.

Non-Functional Requirements

The following are the basic requirements of our file

synchronization system:

 Ease of Use: The file synchronizer software should

have a friendly and interactive interface that is not

complex for a user to operate.

 Openness: The file synchronizer should be open to

contributions and improvements by third party

individuals. This will help to improve, to a large

extent, on errors that may be present in the system.

 Safety: The file synchronizer should ensure

appropriate and correct synchronization. The

synchronizer should not take arbitrary decisions

without the knowledge of the user, as this may

result in an undesired synchronized state of files.

 Robustness: The synchronization software should

have the ability to handle possible errors during

synchronization operation in a timely and orderly

fashion.

Functional Requirements

The functional requirements of a file synchronization

system are those core and basic requirements needed to

perform a synchronization operation. They mainly

include detection of updates, reconciliation along with

other features. These requirements are itemised below:

 The file synchronizer should be able to detect

updates where changes were made in any of the file

replicas.

 The synchronizer should be able to perform

synchronization from source to target or vice versa,

as the case may be.

 The file synchronizer should perform

synchronization in both directions, that is, it should

be able to detect and reconcile updates in the

different replicas.

 The file synchronizer should provide mechanism to

restore from new state to old state by offering a

backup option before performing any

synchronization operation.

 The file synchronizer should offer the ability to

preview changes before it is made.

 The file synchronizer should provide an audit log,

containing synchronization details, after every

synchronization operation.

B. Framework for FileSyncer

FileSyncer is a state-based file synchronizer that is

consisted in a 3-in-one constraint update detector, and

reconciler. Fig. 3 presents the process of file

synchronization.

The system is essentially an application for

synchronization of files between different media,

including computers and storage media. Since it does not

involve remote connection, the issue of minimizing

bandwidth is consequently eliminated, as the file

synchronizer only detects and reconciles local changes.

 FileSyncer: Design, Implementation, and Performance Evaluation 37

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

Fig.3. Activity Diagram of Syncrhonization using FileSyncer

Two special features of FileSyncer are functionalities

to manually choose files to be synchronized and revert to

previous versions of files synchronized.

C. Update Detector

The update detector for the file synchronization is

based on three constraints which are Cyclical

Redundancy Checksum (CRC), file size and file

modification time.

The update detector will therefore detect update by

comparing the two files to be synchronized using any of

the three metrics to know where there was an update. An

update is said to be detected if the last modified time for

both files are different, the file size for both files are

different or there is difference in the checksum calculated

for both files. Depending on the mode of synchronization,

these updates are propagated either from source to target,

target to source, or simultaneously between source and

target.

When performing forward or backward file

synchronization, the file synchronizer works by

comparing the file modification time of the source and

target directory to propagate update. For the forward

synchronization, the source directory is marked as the

directory with the latest modified time. On the other hand,

when performing backward synchronization, the target

directory is marked as the directory with the latest

modification time.

For a two-way synchronization, the file synchronizer

makes use of file size to propagate updates. The detector

compares both directories, and detects that there were

updates made to both, thus resulting in them having

different file sizes. The update detector will

simultaneously propagate the updates that were present in

one file to the other, and vice versa.

The detector also makes use of CRC checksum, as a

metric, to ensure the integrity of the synchronization

operation. The checksum values for both source and

target directories using CRC algorithm are computed.

This guarantees that there are no errors during

synchronization.

D. Reconciler

Reconciliation is the process of combining the updates

and changes made to the various file replicas to yield new

consistent replicas that are identical and the same. Based

on the updates detected by the update detector,

FileSyncer implements a reconciliation algorithm which

propagates these updates to get new states. The

specifications of the reconciler supported by FileSyncer

are forward, backward, and two-way synchronization,

and mirroring. These are modelled using Fig. 4 to 6.

[manual
selection]

browse source directory

browse target directory

[select forward
propagation]

[automatic update selection]

select files to be synchronized

instruct system to analyze both directories

[select backward
propagation]

updates propagated from source to target

updates propagated from target to source

[select mirror]

[select 2-way
propagation]

updates propagated from/to source to/from target

replicate source to target

38 FileSyncer: Design, Implementation, and Performance Evaluation

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

Fig.4. Forward/Backward Propagation of Updates

Fig.5. Two-way Propagation of Updates

Fig.6. Mirror Propagation of Updates

E. Restore Operation

To support restoring of files to their pre-synchronized

states, the system provides an option to back up files

before performing the synchronization. The backed up

files are compressed and placed in a zip folder. This helps

to reduce the size, to conserve memory. The zip folder is

stored in a directory on the user’s system. The file

synchronizer maintains a database that stores all the files

that were backed up to enable retrieval.

VII. SYSTEM IMPLEMENTATION AND TESTING

The system was implemented using Java, on NetBeans

8.0.2. The choice of Java was based on its distinct

features. Apart from being object-oriented, it is platform

independent, simple, reliable and secure, and provides

well-designed intuitive set of APIs which helps

programmers write better code with fewer bugs. Fig. 7

presents the main interface of the system.

At the top of the software interface is the Log button,

used to display the details or summary of the last

synchronization operation. There are two Browse buttons

which are used to select the Source and Target directories

respectively. The Analyze button is used to display list of

files that needs to be updated and propagated. It checks

both source and target directories, and identifies the files

that were modified in either directory.

The forward arrow Sync button is used to perform

synchronization from source to target regardless of

changes that may be present in the target directory. The

backward arrow Sync button performs synchronization

from target to source, also regardless of changes that may

be present in the source directory. It only propagates

changes in the target directory. The backward and

forward Sync button represents a two-way

synchronization operation, for propagating updates and

changes made to both source and target. This

synchronization method is mostly used when the user is

sure to have made changes to both source and target

directories at different times.

The next is the Mirror button, which helps to replicate

the contents of the source directory exactly to the target

directory. This option is used, for instance, when a user

rearranges a directory and may want to synchronize with

the target directory, even though there are no updates to

be transferred.

c

b

a

d

DIR

DIR

A =

f g h

b

a

d

DIR

DIR

B =

f g

c

b

a

d

DIR

DIR

A =

f g h

c

b

a

d

DIR

DIR

B =

f g h

c

b

a

d

DIR

DIR

A =

f'* g h

c

b

a

d

DIR

DIR

A =

f* g h*

c

b

a

d

DIR

DIR

B =

f* g h*

*

c

b

a

d

DIR

DIR

A =

f g h*

c

b

a

d

DIR

DIR

A =

f'* g h

c

b

a

d

DIR

DIR

A =

f* g h

c

b

a

d

DIR

DIR

B =

f* g h

c

b

a

d

DIR

DIR

A =

f g h*

 FileSyncer: Design, Implementation, and Performance Evaluation 39

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

Fig.7. Main Interface

The Delete Source directory button is used to delete a

source directory that may no longer be needed, while the

Delete Target directory button is used to delete a target

directory from its location. The Delete None operation

preserves both source and target directories. The Clear

button clears the details of a synchronization operation..

The right hand pane of the software contains the

Report Dialog panes. The panes display information

regarding the synchronization operation, including the

changed files, new files, new directories, relocated files

and additional files. The Changed Files pane displays

information regarding files that were changed and

propagated. The New File pane shows information on

files that were added to either source or target directory,

and were propagated. The New Directories pane provides

details on new directories that were created and

propagated, Relocated Files pane information on all files

that were synchronized, that were actually moved from

one folder/directory to another, and Additional Files pane

information about files that may have been propagated

even though they probably existed in another location in

the source or target directory.

The capability of the system to manually indicate files

to be synchronized is demonstrated in Fig. 8 and 9. From

the left and right directories, four and two files

respectively are indicated to be synchronized.

Using two-way synchronization, the right directory is

updated with the four selected files from the left directory,

while the left directory with the two files selected from

the right directory.

Fig.8. Manual Selection of Files to be updated from Both Directories

40 FileSyncer: Design, Implementation, and Performance Evaluation

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

Fig.9. Two-way Synchronization of Files Manually Selected

VIII. PERFORMANCE EVALUATION

To evaluate the performance of FileSyncer, two tests

were performed: system integrity and synchronization

speed.

The integrity of the system is measured in terms of its

capacity to synchronize files without modifications to the

integrity of the file. To determine this, we calculate a type

of checksum known as MD5, using FastSum, a tool

developed on the basis of the generally accepted MD5

checksum algorithm which is used globally for assessing

and testing the integrity of files [23]. The integrity of

each file in the source and target directories, after a

synchronization operation, is determined. Results of the

integrity tests are presented in Fig. 10 and 11.

Fig.10. Integrity Test of Source Directory

 FileSyncer: Design, Implementation, and Performance Evaluation 41

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

Fig.11. Integrity Test of Target Directory

To assess the performance of the system in respect of

speed of synchronization, that is, time taken to complete

a synchronization process, two sets of experiments were

performed. The two experiments entail synchronization

of data of sizes 100MB, 200MB, 300MB, 400MB,

500MB, 1000MB, 2000MB, 3000MB, 5000MB, and

10000MB. In the first experiment, each was a single

video file. On the other hand, in the second experiment,

each was the total size of multiple files. In both cases, the

times taken to synchronize were compared with those by

three other popular file synchronization tools: Synkron

1.6.2 [24], FreeFileSync 7.1 [25], and DirSync Pro 1.50

[26].

The tests were carried out with the aid of a computer

system with the following specifications:

 OS Name: Microsoft Windows 7 Ultimate

 Version: 6.1.7601 Service Pack 1 Build 7601

 OS Manufacturer: Microsoft Corporation

 System Manufacturer: Hewlett-Packard

 System Model: HP 630 Notebook PC

 System Type: x64-based PC

 Processor: Intel(R) Pentium(R) CPU B960 @ 2.20

GHz, 2200 MHz

 RAM Size: 2.00GB, 1.85GB usable

Tables 1 and 2 show the synchronization time (in

seconds) taken by the four tools for different files of one

file type and different types respectively. In both sets of

experiments, FileSyncer was found to be more efficient

in terms of time taken to complete a synchronization

operation. The efficiency level increases with

corresponding increase in file size.

IX. CONCLUSION

In this study we presented a FileSyncer, a rapid and

efficient file synchronization system which provides

functionality for manual update selection and mechanism

to revert a synchronization process back to the last

previous state. The system was demonstrated to

effectively synchronize between media. When compared

with some popular open-source file synchronization

systems, FileSyncer synchronized significantly faster.

Our future plan is to release FileSyncer to the open

source community for further development

Table 1. Comparison of the Various Synchronization Times for the
Different File Synchronizers for One File Type

File
Size(MB)

Synkron FreeFileSync DirSync FileSyncer

100 3 3 3 1

200 5 5 6 4

300 13 11 13 10
400 19 17 21 16

500 26 25 25 23

1000 70 69 65 53
2000 128 146 125 108

3000 158 166 160 150

5000 270 276 268 260
10000 725 788 721 644

Table 2. Comparison of the Various Synchronization Times for the
Different File Synchronizers for Different File Types

File

Size(MB)

Synkron FreeFileSync DirSync FileSyncer

100 12 14 15 12

200 30 32 31 31

300 40 42 40 40
400 53 54 53 52

500 63 62 64 61

1000 170 200 187 153
2000 266 289 290 241

3000 365 381 395 331

5000 780 790 798 760
10000 1589 1660 1646 1540

42 FileSyncer: Design, Implementation, and Performance Evaluation

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

REFERENCES

[1] B. C. Pierce, and J. Vouillon, ―What's in Unison? A

formal specification and reference implementation of a

file synchronizer,‖ 2004. Retrieved June 17th, 2015 from

http://repository.upenn.edu/cgi/viewcontent.cgi?article=1

045&context=cis_reports

[2] N. Ramsey, and E. Csirmaz, ―An algebraic approach to

file synchronization,‖ ACM SIGSOFT Software

Engineering Notes, vol. 26(5), pp. 175-185, 2001.

[3] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. Anderson,

and D. Wetherall, ―MetaSync: File synchronization across

multiple untrusted storage services,‖ 2015. Retrieved July

29th, 2015 from

ftp://trout.cs.washington.edu/tr/2014/UW-CSE-14-05-

02.PDF

[4] C. Liang, L. Hu, Z. Lei, and J. Wang, ―SyncCS: a cloud

storage based file synchronization approach,‖ Journal of

Software, vol. 9(7), pp. 1679-1686, 2014.

[5] B. Muruganantham, and T. K. Pandey, ―Replica

synchronization in distributed File system using

asynchronous replication,‖ SSRG International Journal of

Computer Science and Engineering, vol. 2, pp. 12-17,

2015.

[6] M. S. Seemadevi, S. Y. Ramesh, and P. B. Dhainje,

―Adaptive replica synchronization for distributed file

systems,‖ International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 5, pp.

1368-1371, 2015.

[7] M. J. Vini, R. Nallathamby, and C. R. Robin, ―A Novel

Approach for Replica Synchronization in Hadoop

Distributed File Systems,‖ Procedia Computer

Science, vol. 50, pp. 590-595, 2015.

[8] A. Lareida, T. Bocek, S. Golaszewski, C. Luthold, and M.

Weber, ―Box2Box - A P2P-based file-sharing and

synchronization application,‖ In Peer-to-Peer Computing

(P2P), 2013 IEEE Thirteenth International Conference,

pp. 1-2, September 2013.

[9] J. Lindblom, M. Huang, J. Burke, and L. Zhang, ―File

Sync/NDN: Peer-to-peer fileSync over Named Data

Networking. NDN, Technical Report (NDN-0012),‖ 2013.

Retrieved July 29th, 2015 from http://named-data.net/wp-

content/uploads/TRFilesync.pdf.

[10] H. Zhang, C. Yeo, and K. Ramchandran, ―VSYNC — a

novel video file synchronization protocol,‖ In proceedings

of the 16th ACM international conference on multimedia,

pp. 757-760, October 2008.

[11] Balasubramaniam, S., & Pierce, B. (1998). What is a File

Synchronizer? In Proc. of the ACM/IEEE MOBICOM’98

Conference, pages 98–108, October 1998.

[12] Aspera, ―Aspera sync. Scalable, multidirectional

synchronization of big data – over distance,‖ Retrieved

August 10th, 2015 from

http://asperasoft.com/fileadmin/media/Asperasoft.com/Re

sources/White_Papers/Sync_Asper aWP.pdf

[13] TGRMN Software, ―FAQ and Knowledge Base,‖

Retrieved from http://www.tgrmn.com/web/kb/item

34.htm

[14] S. Khanna, K. Kunal, and B. C. Pierce, ―A formal

investigation of diff3,‖ International Conference on

Foundations of Software Technology and Theoretical

Computer Science, pp. 485-496, December 2007,

Springer Berlin Heidelberg.

[15] D. Gupta, and K. Sagar, ―Remote file synchronization

single-round algorithms,‖ International Journal of

Computer Applications, vol. 4(1), pp. 32-36, 2010.

[16] T. Suel, and N. Memon, ―Algorithm for delta compression

and remote file synchronization,‖ 2002. Retrieved March

16th, 2015 from http://cis.poly.edu/suel/papers/delta.pdf

[17] T. Suel, P. Noel, and D. Trendafilov, ―Improved file

synchronization techniques for maintaining large

replicated collections over slow networks,‖ Proceedings

20th International Conference on Data Engineering, pp.

153–164, 2004, IEEE.

[18] A. Tridgell, and P. Mackerras, ―The Rsync algorithm,

―Joint Computer Science Technical Report Series, pp. 1-6,

1996. Retrieved July 29th, 2015 from

https://cs.anu.edu.au/techreports/1996/TR-CS-96-05.pdf

[19] U. Irmak, S. Mihaylov, and T. Suel, ―Improved single-

round protocols for remote file synchronization,‖

Proceedings IEEE 24th Annual Joint Conference of the

IEEE Computer and Communications Societies, vol. 3, pp.

1665-1676, March 2005.

[20] G. Shial, and S. Majhi, ―Techniques for file

synchronization: a survey,‖ Journal of Global Research in

Computer Science, vol. 5(11), pp. 1-4, 2014.

[21] H. Yan, U. Irmak, and T. Suel, ―Algorithms for low-

latency remote file synchronization,‖ INFOCOM 2008.

The 27th Conference on Computer Communications.

IEEE. IEEE, April 2008.

[22] A. Dennis, B. H. Wixom, and R. M. Roth, ―System

Analysis and Design, 5th ed., Danvers, MA: John Wiley

and Sons, 2012.

[23] FastSum, ―Frequently Asked Questions: Basic Concepts.

What is MD5 hash?,‖ 2011. Retrieved October 16, 2015

from www.fastsum.com/support/md5-checksum-utility-

faq/md5-checksum.php

[24] Synkron, ―Folder Synchronization,‖ 2011. Retrieved

October 17th, 2015 from www.Synkron.sourceforge.net/

[25] FreeFileSync, ―About FreeFileSync,‖ 2015. Retrieved

October 17th, 2015 from www.freefilesync.org/

[26] DirSync Pro, ―What is it?,‖ 2015. Retrieved October 17th,

2015 from www.disyncpro.org/

Authors’ Profiles

Oluwafemi Osho is currently a lecturer

in the Department of Cyber Security

Science, Federal University of

Technology, Minna, Nigeria. He holds a

B.Tech. degree in Mathematics/Computer

Science and an M.Tech. degree in

Mathematics. Before joining the

institution, he served as Head of the IT

Department of one of the leading

mortgage banks in Nigeria. His current research interests

include cybersecurity, mobile security, and security analysis. He

is a Certified Ethical Hacker (CEH).

Anthony Ugbede Faruna holds a

B.Tech degree in Computer Science

(Cyber Security).

http://repository.upenn.edu/cgi/viewcontent.cgi?article=1045&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1045&context=cis_reports
ftp://trout.cs.washington.edu/tr/2014/UW-CSE-14-05-02.PDF
ftp://trout.cs.washington.edu/tr/2014/UW-CSE-14-05-02.PDF
http://named-data.net/wp-content/uploads/TRFilesync.pdf
http://named-data.net/wp-content/uploads/TRFilesync.pdf
http://cis.poly.edu/suel/papers/delta.pdf
https://cs.anu.edu.au/techreports/1996/TR-CS-96-05.pdf
http://www.disyncpro.org/

 FileSyncer: Design, Implementation, and Performance Evaluation 43

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 11, 32-43

How to cite this paper: Oluwafemi Osho, Anthony Ugbede Faruna,"FileSyncer: Design, Implementation, and

Performance Evaluation", International Journal of Computer Network and Information Security(IJCNIS), Vol.8, No.11,

pp.32-43, 2016.DOI: 10.5815/ijcnis.2016.11.04

