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Abstract—All the proposed Hill cipher modifications 

have been restricted to the use of dynamic keys only. In 

this paper, we propose an extension of Hill cipher 

modification based on eigenvalues HCM-EE, called 

HCM-EXDKS. The proposed extension generating 

dynamic encryption key matrix by exponentiation that is 

made efficiently with the help of eigenvalues, HCM-

EXDKS introduces a new class of dynamic keys together 

with dynamically changing key size. Security of HCM-

EXDKS is provided by the use of a large number of 

dynamic keys with variable size. The proposed extension is 

more effective in the encryption quality of RGB images 

than HCM-EE and Hill cipher-known modifications in 

the case of images with large single colour areas and 

slightly more effective otherwise. HCM-EXDKS almost 

has the same encryption time as HCM-EE, and HCM-

HMAC. HCM-EXDKS is two times faster than HCM-H, 

having the best encryption quality among Hill cipher 

modifications compared versus HCM-EXDKS. 

 

Index Terms—Hill cipher, eiqenvalue exponentiation, 

pseudorandom number, dynamic key, dynamic key size, 

image encryption. 

 

I.  INTRODUCTION 

The Hill cipher (HC) is a well-known symmetric 

cryptosystem [1], [2]. The core of HC is matrix 

manipulations; it multiplies a plaintext vector by a key 

matrix to get the ciphertext. The HC is extremely secure 

against ciphertext only and brute force attacks. That is 

because the key space is extremely large, due to choosing 

the matrix elements from a large set of integers [3], it is 

also resistant to the frequency letter analysis, but it can be 

broken by the known plaintext-ciphertext attack (KPCA) 

[4], [5], [6], [7]. The key matrix can be calculated easily 

from a set of known plaintext-ciphertext pairs. The 

vulnerability of the HC to the KPCA makes it unusable in 

practice. Security of HC was improved in [5], [8], [9], 

[10]. One of proposed their methods,  HCM-PT, uses a 

dynamic key matrix obtained by permutations of rows 

and columns from the master key matrix to get every next 

ciphertext, and transfers it together with an HC-encrypted 

permutation to the receiving side. Thus, in HCM-PT, 

each plaintext vector is encrypted by a new dynamic key 

matrix that prevents the KPCA; the number of possible 

dynamic keys is equal to the number of permutations of 

the key matrix rows, and it may be used as a 

characteristic of its security. But permutations in HCM-

PT are transferred HC-encrypted, which means that 

master key matrix can be revealed by the KPCA on the 

transferred encrypted permutations [10]. Modification [8], 

HCM-NPT, works as HCM-PT does, but without 

permutations transfer; instead, both communicating 

parties use a pseudo-random permutation generator, and 

only the consecutive number of the necessary 

permutation is transferred to the receiver. It has good 

computational complexity and the number of its dynamic 

keys is the same as for HCM-PT, but [11] shows that 

HCM-NPT is not effective in the encryption quality of 

RGB bitmap images in the case of images with large 

single colour areas. 

Another HC modification [9], HILLMRIV, also uses 

dynamic key matrices: it modifies each row of the matrix 

key by multiplying the current key by a secret initial 

vector. But HILLMRIV is still vulnerable to KPCA [12], 

[13].  Another HC modification [10], HCM-H, also uses 

dynamic key matrix produced with the help of a one way 

hash function applied to an integer picked up randomly 

by the sender to get the key matrix, and a vector added to 

the product of the key matrix with a plain text. HCM-H is 

vulnerable [14] to chosen-ciphertext attack because the 

selected random number is transmitted in clear over the 

communication link and is repeated. To avoid this 

random number transfer, a  modification of HCM-H [14], 

HCM-HMAC, uses only a seed value secure transfer, and 

then both parties generate necessary numbers 

synchronously, where HMAC is a hash function, e.g., 

MD5[15], SHA-1[16]. The difference between HCM-H 

and HCM-HMAC is similar to the difference between 

HCM-PT and HCM-NPT. Despite these improvement, 

the Hill cipher still either susceptible to the KPCA or 

ineffective in image encryption in the case of images with 

large single colour area.  

Up to now, HC modifications consider the dynamic 

keys as the major solution for enhancing the security and 

reducing the risk of cryptanalysis of the HC. However, 

using the dynamic keys is not always the best solution, 

since the generated keys are dependent on the initial 

parameters. In this paper, we propose an extension of the 

HC modification, HCM-EE [11]. HCM-EE generates 

dynamic encryption key matrix efficiently with the help 

of eigenvalues; it uses the eigenvalues for matrix 

exponentiation to a pseudo-random power for a new key 
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matrix generating for each plaintext block. The proposed 

extension uses the dynamic keys together with 

dynamically changing key size instead of using dynamic 

keys only.  

The paper is organized as follows. Section II briefly 

introduces the Hill cipher, HCM-PT, HCM-NPT, HCM-

H, HCM-HMAC, and HCM-EE. Section III is devoted to 

the proposed extension HCM-EXDKS. In Section IV, 

comparison of the proposed extension, HCM-EXDKS, 

versus HC modifications is given; estimates of their 

execution time and experimental results on image 

encryption are presented. Conclusion is in the Section V. 

 

II.  OVERVIEW OF THE HILL CIPHER AND ITS 

MODIFICATIONS 

All matrices considered throughout the paper are m x 

m sized with entries over
{0,1,.., 1}NZ N 

, hence all the 

operations in encryption/decryption algorithms are 

assumed mod N, where m (block size) and N (alphabet 

cardinality) are selected positive integers (e.g., N=256 for 

gray scale images). Also, we assume that two parties, A 

and B, want to communicate securely, and A is a sender, 

and B is a receiver. 

First, we introduce HC, HCM-PT, HCM-NPT, HCM-

H, HCM-HMAC and then we describe HCM-EE. 

When HC is used, A and B share an invertible key 

matrix K. Sender A encrypts a plaintext vector, P: 

 

C K P   (1) 

 

The receiver, B, decrypts the ciphertext vector C by 

 
1P K C  , (2) 

 

where 1K  is the key inverse. For existence of 1K 

, we 

require 

 

( ) , ) 1gcd(det K mod N N  .
 

(3)
 

 

where gcd is the greatest common divisor and det(K) 

denotes the determinant of K. 

HCM-PT [5] differs from HC in the following. To 

encrypt a plaintext P, A randomly selects a permutation, t, 

of Zm, and permutes the rows and columns of a key 

matrix K according to t producing a new key-matrix 

Kt=t(K). HCM-PT encryption is then performed by (1), 

but using Kt instead of K. Additionally, sender A 

encrypts t by (1) using K and getting u as a ciphertext, 

and sends C and u together to the receiver. In order to 

decrypt the ciphertext, B decrypts t from u by (2), gets 

(K-1)t = (Kt)-1 [5] from K-1, and then reveals the 

plaintext by (2), using   (K-1)t instead of K-1. The 

number of dynamic keys used in HCM-PT is  

 

!NDK(HCM-PT) m . (4) 

 

HCM-NPT [8] uses the same initialization and the 

same encryption/decryption technique as HCM-PT does. 

But HCM-NPT assumes that the sender, A, and the 

receiver, B, share a secret seed value, SEED, which is 

used to generate a pseudo-random sequence of 

permutations. In order to encrypt a plaintext, the sender, 

A, selects a number r, and calculates. 

 

( , )rt PRPermutationG SEED r , (5) 

 

getting the r-th output permutation from the pseudo-

random permutation generator PRPermutationG (r can be 

a block number in the sequence of transmitted blocks, or 

its function). Sender A then gets a ciphertext C as in HCM-

PT, and sends to receiver B both C and r. In order to 

decrypt, B calculates tr according to (5), and then gets the 

plaintext as in HCM-PT. The number of dynamic keys 

used in HCM-NPT, NDK(HCM-NPT), is the same as 

NDK(HCM-PT) (4). 

Proposed in [10], another HC modification, HCM-H, 

works as follows. The sender, A, and the receiver, B, 

share an invertible matrix K. To encrypt the plaintext P , 

A, selects a random integer a, where
0 a N 

, and 

applies a one way hash function to compute the 

parameter 11 12
( || || || ... || )

mm
b f a k k k

, where 

11 12
, ,..., mmk k k are the elements of K ; b is used to select 

the ijk  from K, where i and j can be calculated according 

to (6) 

 
1 1

(mod ) 1, .
b b

i m j b m
m m

   
   
   

 
       (6) 

 

Then, A generates a vector 1 2
[ , ,..., ]

m
V v v v

 

according to (7) 

 
2

1 2 1

1

( )mod , ( )mod ( )mod ,...,

( )mod ( )mod .

ij ij m

m

ijm

v f k N v f v N f k N v

f v N f k N


  

 

 

(7) 

Then, A encrypts the plaintext P by  

 

ijC k P K V    , (8) 

 

and sends together C and a  to B. The decryption process is 

done by 

 
11 )(   KVCkP ij .

 
(9) 

 

The number of dynamic keys used in HCM-H is 

  
2( , )NDK(HCM-H) min m N . (10) 

 

Proposed in [14], HCM-HMAC, works as follows. In  
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order to transfer a seed value, the sender, A, transmits the 

seed value a according to the Hughes key-exchange 

protocol [17]. Then the seed value 
0

a can be used to 

generate the chain of pseudo-random numbers 

synchronously by the both parties; 
t

a can be calculated by 

 

' 1( ), 1,2,...t tk
a HMAC a t  , (11) 

 

where 'k  is the secret key of the hash function, 'k can 

calculated by 

 
'

11 12 13 1( || || || ... || || )mod 2q
mm tk k k k k a  , (12) 

 

where || denotes the concatenation, q is the number of bits 

required for the hash function, and at is used in recursive 

calculations of the vector V=[v1, v2, ..., vn], calculated for 

the  
 

encryption of t-th block, 0 1v  , if 

0(mod )ta p otherwise  0 modtv a p , p is a prime 

number.  

 

1 modii ij tv k v a p  , 1,2,...i m , and 

1( mod ) 1ij v m   
(13) 

 

1iv  is calculated by 

 

2 2
1 12 mod 2i iv v

    
   
   

 

 
  
  
 

, 2 1log 1iv    
 

(14) 

 

where log 12 1v i       denotes the bit length of 1iv  . 

Then, A encrypts the plaintext Pt by 

 

0
mod

t t
C v P K V P    , (15) 

 

and sends together Ct and a  to B, t=1,2,... The receiver B 

calculates the required parameters by using (11)-(14), and 

then gets the plaintext by 

 
1 1

0 ( ) modt tP v C V K P     .
 

(16)
 

 

HCM-EE [11] works as follows. Sender A selects a 

set 1 2
{ , ,..., } {0}m N

E e e e Z  
, gcd(ej, N)=1, gcd is the 

greatest common divisor, 1≤ j≤ m; at least one ej should 

have the maximal order which is 

( )

2

N

for N being a power 

of 2  [18], 
( )N

 is the Euler’s totient function [4], giving 

the number of positive integers less than N and co-prime to 

it. Then A constructs an invertible matrix Q and calculates 

the key matrix K [19]:  

 

1K Q D Q    , (17) 

 

where D  is a diagonal matrix, diagonal elements of which 

are its eigenvalues from E. Note that Q and D satisfy (3); A 

and B share them securely. Additionally, they share the 

secret values, SEEDl and SEEDt; SEEDl is used to 

generate the set of pseudo-random 

numbers
1 2

{ , ,..., }nl l l l by (18), 0
i

l  and 

{2,..., ( ) 1}
i

l N  , 1 i n  , n is the number of blocks. 

SEEDt is used to generate a pseudo-random sequence of 

permutations t. In order to encrypt the i-th plaintext 

block
i

P , A selects  

 

( , ) 0
i

l PRNG SEEDl i  , (18) 

 

then calculates 

 

{ } ,1 ,1i

r

l

i j tE e j m i n     , 
(19) 

 

where 
j

e E , n is the number of blocks, and the random  

permutation  
r

t can be obtained by (5). Finally, A 

calculates 

 
1

i iKM Q D Q   , (20) 

 

where 
i

D is a diagonal matrix, diagonal elements of 

which are from
i

E (19) after exponentiation to 
i

l and 

permutation 
r

t are performed  and 

 

( )

2

N
i r s


   , 

( )
0 .

2

N
s


   (21) 

 

The plaintext Pi is encrypted as follows 

 

( )
i i i i

C KM P diag D   , (22) 

 

where ( )
i

diag D is a vector of the main diagonal elements 

of iD . 

In order to decrypt the ciphertext, B computes li according 

to (18), tr according to (5) and (21), 
i

E according to (19), 

and 

 
1 1 1 1 1( ) ( )i i iKM Q D Q Q D Q          . (23) 

 

Then, B retrieves the plaintext:  

 
1 ( ( ))i i i iP KM C diag D   . (24) 

 

It is appropriate to mention that for computing i
KM

we 
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use a diagonal matrix, and only the diagonal entries of iD  

are exponentiated to the power i
l

, requiring O ( i2
mlog l ) 

multiplications. On the other hand, to get 1

iD , we 

calculate the inverse of m numbers only. Note also that 
1Q and 1

iD are calculated only once. The diagonal 

elements of 1

iD  belong to the group G of numbers co-

prime to N. Based on Theorem 10.3 [18] we see that for 

N=256, 

( )
64

2

N


is the maximal order of elements of G  

(odd numbers in 256
Z

). In HCM-EE, we select at least one 

element in the diagonal with the maximum order to 

guarantee the maximum period of the diagonal elements. 

The number of dynamic keys of HCM-EE is estimated as 

 

( ) !LB m! NDK(HCM-EE) N m    . (25) 

 

where LB is the maximum order of the diagonal 

elements in iD . If N  is a power of 2, 

( )

2

N
LB




. 

 

III. THE PROPOSED EXTENSION OF HCM-EE (HCM-

EXDKS)  

Here, we extend the HCM-EE (HCM-EXDKS) to be 

more secure and more effective in encryption quality by 

using dynamic keys together with the dynamic key size for 

encryption each plaintext block.  

The proposed extension assumes the same initial settings 

and the same encryption-decryption as in HCM-EE. 

Additionally, we assume the parties share the secret values 

MAXks and MINksb, which are used to calculate the size 

for each block by using the pseudo-random numbers 

generated by (18), MAXks represents the maximum and 

MINks is the minimum key size. Hence, HCM-EXDKS 

calculates the key size as follows: 

 

( mod )
i i

KeySize l s MINks  , (26) 

 

where 1s MAXks MINks    and 1i  . The number 

of dynamic keys of HCM-EXDKS is estimated as 

 

( )LB DS NDK(HCM-EEX) N DS    , (27) 

 

where ( !)
i

DS sum used Keysize . 

A. Example 

Let N=256, the plaintext to be encrypted is P =”155 

140 130 101 207 156 102 235 65 48 32 0 149 76 199 156 

255 240 230 201 187 156 142 73 13 17 20 111”, 

16MAXks  , MINks =5, note that by (18), the set of 

pseudo-random numbers l contains 1
157l 

, 2
23l 

, and 

3
121l 

, the set of eigenvalues E ={75, 171, 91, 215, 99, 

95, 111, 91, 115, 95, 81, 7, 47, 89, 105}, the set of a 

pseudo-random sequence of permutations 

t contains:
1

(2, 3, 5, 1, 6, 4)t 

2 3
t =(1,2,3,4,5,6,7,8,9,10,11,12,16,15,14,13), andt =( 2,1,3,4,6,5)

. 

 
 

 
 

Note that by (26), the set of dynamic key sizes (DKS) 

DKS = {6, 16, 6}.  

 

The first block encryption: 

Since 1
6KeySize 

, hence, the used matrices will 

be 6 6 , and 1
E

will take the first 6 elements from E , 

therefore 1
{75, 171, 91, 33, 215, 99}E 

, by (19) using 

the permutation 
1

(2, 3, 5, 1, 6, 4)t  and 1
157l 

,  the 

new 1
{155,139,247,187,115,161}E 

which represents the 

diagonal elements of the diagonal matrix 1
D

, it is worth 

noting that 6 6  block matrices will be selected from 

Q and 
1,Q 

(selection will be from left to right and up to 

down) which will be used to compute 1
KM

according to 

(20), then the first 6 elements will be selected from the 

plaintext to represent the first plaintext block 1
P

=[155, 140, 

1 3 0 ,  1 0 1 ,  2 0 7 ,  1 5 6 ] .  B y  u s i n g  ( 2 2 ) , 

1
[116,143,85,194,208,25]C 

. The same steps can be 

followed to encrypt the second block with length 16 and 
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the third block with length 6. Hence, the ciphertext is “116 

143 85 194 208 25 117 68 230 229 163 79 246 19 212 247 

204 23 213 188 152 177 165 110 122 214 5 6”. The 

decryption is depicted as follows:  

Since the receiver has the matrices
1,Q Q 

, the set  E  

and the encrypted block number, the receiver can calculate 

the elements of l according to (18), iE
 using (19) to 

construct
1

iD 

, the iKeySize
according to (26) and then 

compute the inverse of the key matrix iKM
 by (23). 

 

The first block decryption: 

1
E

contains the first 6 elements from E , due to 

1
6keySize 

, hence, the used matrices will be 6 6 , 

and 1
{75, 171, 91, 33, 215, 99}E 

, by (19) using the 

permutation 
1

(2, 3, 5, 1, 6, 4)t  and 1
157l 

, the new  

1
{155,139,247,187,115,161}E 

, 1
E


contains the 

multiplicative inverse of the elements in 1
E

, 1
E


={147, 35, 

199, 115, 187, 79} which represents the diagonal elements 

of 
1

1
D 

. By using 6 6 block matrices selected from 

Q and 
1,Q 

which will be used to compute 
1

1
KM 

according to (23), then the first 6 elements of the 

ciphertext 1
[116,143,85,194,208,25]C 

will be decrypted 

according to (24). Hence, the obtained plaintext 1
P

= [155, 

140, 130, 101, 207, 156]. The same steps can be followed 

to get 2
P

and 3
P

but using key size accordingly. 

IV.  SIMULATION RESULTS AND DISCUSSION  

The simulations are hosted on a Windows XP OS 

running on a Dell Latitude D630 laptop with Intel(R) 

Core(TM) 2 Duo 1.8 GHz processor and with 2-GB RAM. 

The simulation is implemented by Visual studio 

Environment version 2008. The performance evaluation 

tool used is C# application, which provides a wide range of 

profiling instruments for reading and manipulating images. 

In our experiments, several RGB images are encrypted. 

Firstly, the image, P , of size NxM is converted into its 

RGB components. Afterwards, each colour matrix (R, G, B) 

is converted into a vector of integers within
{0,1,...,255}

. 

Each vector has the length L NxM . Then, the so 

obtained three vectors represent the plaintext 

(3 )P L
which will be encrypted using the block size 

m=16 when HCM-PT, HCM-H, HCM-HMAC, HCM-EE 

are used and 
[3,...,16]m 

in the case of HCM-EXDKS. 

We examine the encryption quality for three different 

images containing very large single colour areas: 

Nike.bmp (Fig. 1), Symbol.bmp (Fig. 2), and 

Blackbox.bmp (Fig. 3). Also we examined the encryption 

quality for an image that does not contain many high 

frequency components: Lena.bmp (Fig. 4). The Girl.bmp 

(Fig. 5) is used as an example of an image containing 

many high frequency components. Each image is 

encrypted using HCM-PT, HCM-H, HCM-HMAC, HCM-

EE, and HCM-EXDKS. 

Table 1. ID For Encrypted Images Using HCM-PT, HCM-H, HCM-HMAC, HCM-EE, m=16 And HCM-EXDKS, 
[3,...,16]m 

. The smaller ID, 

the better. 

Image/Algorithm HCM-PT HCM-H HCM-HMAC HCM-EE HCM-EXDKS 

Nike.bmp 23980.79 13171.75 9983.87 2656.62 1676.54 

Symbol.bmp 10482.25 5755.68 4830.91 2378.07 1851.66 

Blackbox.bmp 34036.28 18511.62 11491.48 3285.25 1742.05 

Lena.bmp 10256 10518.66 10469.33 10172.66 10110.66 

Girl.bmp 11459.55 10472.61 10336.77 9942.21 9753.75 

 

 

The quality of encryption of these images is studied by 

visual inspection (Figs. 1-5) and quantitavely (Table I, 

used irregular deviation based quality measure ID [9, 20, 

21] is explained in the Appendix).  

Based on visual inspection, it is obvious that HCM-

EXDKS and HCM-EE are better than HCM-PT, HCM-H, 

and HCM-HMAC in hiding all the features of the image 

containing large single colour areas (Figs. 1-3). 

Based on the numerical evaluation of encryption 

quality measure ID (Table I, the smaller ID, the better), 

we note that the proposed extension HCM-EXDKS versus 

HCM-EE gives better encryption quality. Table I shows 

also that the proposed extension HCM-EXDKS is more 

effective in encryption quality than HCM-PT, HCM-H, 

HCM-HMAC, and HCM-EE. On the other hand, HCM-

PT, HCM-H, HCM-HMAC, HCM-EE, and HCM-

EXDKS are all good in encrypting images containing 

many high frequency components (Lena.bmp and 

Girl.bmp); all the algorithms give nearly the same results.  

We examined the encryption time for the Nike.bmp 

image having 124 124x pixels and 45KB size. The 

encryption time measured when applying HCM-PT, 

HCM-H, HCM-HMAC, HCM-EE, and HCM-EXDKS is 

shown in Table II. In our implementation, HCM-EE and 

HCM-EXDKS were used with RC4 [4] for the pseudo-

random permutation generator (5), and pseudo-random 

number generator (18). We implemented HCM-H with 

SHA-1 [16] since the latter has been used in [10], and the 
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built-in HMAC from C#, HCM-HMAC is used with sha-1. 

Table II shows that HCM-EXDKS has nearly the same 

execution time as of HCM-EE but HCM-EXDKS has 

better encryption quality (Figs. 1-5 and Table I) and 

roughly is twice better than HCM-H; both HCM-EE and 

HCM-EXDKS have nearly the same execution time as of 

HCM-HMAC but HCM-EE and HCM-EXDKS have 

better encryption quality (Figs. 1-5, and Table I). Table II 

shows that HCM-NPT is faster than HCM-EE but 

equations (4) and (24) show that NDK(HCM-EE) is 

greater than NDK(HCM-PT), hence HCM-EE is more 

secure than HCM-PT. Inequality (27) shows that 

NDK(HCM-EXDKS) is greater than NDK(HCM-EE). 

Hence HCM-EXDKS is more secure and is more effective 

in the encryption quality than HCM-PT, HCM-H, HCM-

HMAC and HCM-EE, and has nearly the same encryption 

time as HCM-EE and HCM-HMAC 

 

Table 2. Encryption Time (msec) of Nike.bmp With HCM-PT, HCM-

H, HCM-HMAC, HCM-EE and HCM-EXDKS. 

HCM-

NPT 

HCM-

H 

HCM-

HMACk 

HCM-

EE 

HCM-

EXDKS 

103 425 214 200 207 

 

 

 
 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig 1:Nike.bmp encrypted by: a) HCM-PT, b) HCM-H, c) HCM-
HMAC, d) HCM-EE, e) HCM-EXDKS. 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig 2: Symbol.bmp encrypted by: a) HCM-PT, b) HCM-H, c) HCM-
HMAC, d) HCM-EE, e) HCM-EXDKS. 

 
 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig 3: Blackbox.bmp encrypted by: a) HCM-PT, b) HCM-H, c) HCM-
HMAC, d) HCM-EE, e) HCM-EXDKS. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig 4: Lena.bmp encrypted by: a) HCM-PT, b) HCM-H, c) HCM-
HMAC, d) HCM-EE, e) HCM-EXDKS. 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig 5: Girl.bmp  encrypted by: a) HCM-PT, b) HCM-H, c) HCM-
HMAC, d) HCM-EE, e) HCM-EXDKS. 

V. CONCLUSIONS 

Thus far, we have presented an extension of HCM-EE. 

Versus HCM-EE, the proposed extension HCM-EXDKS 

resists the known plaintext-ciphertext attack because of 

the use of dynamically changing key matrices similar to 

other considered here HC- modifications (HCM-NPT, 

HCM-EE and HCM-H), but the proposed HCM-EXDKS 

is the most secure and efficient; HCM-EXDKS uses 

dynamically changing key together with the key size. 

HCM-EXDKS is more secure than HCM-EE, HCM-H 

and HCM-NPT because of the significantly larger number 

of dynamic keys generated. The proposed HCM-EXDKS 

is more effective in the encryption quality of RGB images 

than HCM-EE and HC-known modifications in the case 

of images with large single colour areas and slightly more 

effective otherwise.  

APPENDIX 

A. Irregular deviation ID quality 

Irregular deviation ID quality measuring factor is based 

on how much the deviation affected by encryption is 

irregular [9, 20, 21]. This quality measure can be 

formulated as follows: 

 

1. Calculate the matrix, D, which represents the 

absolute value of the difference between each 

pixel value of the original and the encrypted 

image respectively: 

 

D = |O - E|,  

 

where O is the original (input) image and E is 

the encrypted (output) image. 

2. Construct a histogram distribution of the D we 

get from step 1: 

 

h=histogram (D).  

 

3. Get the average value of how many pixels are 

deviated at every deviation value by: 

 
255

0

1
,

256
i

i

DC h


    

 

4. Subtract this average from the deviation 

histogram and take the absolute value by: 

 

AC(i) = |hi - DC|.  

 

5. Count: 

 
255

0

( ).
i

ID AC i


   

 

The smaller ID, the better. 
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B. HCM-EXDKS Versus AES 

To give adequate performance comparison, we 

examine our proposed extension HCM-EXDKS versus 

other well known algorithms (e.g. AES). We examined 

the encryption quality of several images. Based on visual 

inspection, the proposed HCM-EXDKS encrypts the 

images with large single colour areas (identical plaintext 

blocks), it successfully hides data patterns. The AES fails 

to hide the data patterns for the images contain large 

single colour areas (Mecy.bmp: Fig. 6, Penguin.bmp: Fig. 

7, and bicycle.bmp: Fig. 8). That is, the proposed HCM-

EXDKS has advantage in encryption of identical plaintext 

blocks over the AES. 

Table 3: ID for encrypted images using HCM-EXDKS and AES, m=16 

and HCM-EXDKS, m[3,...,16]. 

Image/Algorithm HCM- EXDKS AES 

Mecy.bmp 1872.58 47726.75 

bicycle.bmp 7736.79 25031.32 

Penguin .bmp 7440.06 20745.34 

 

 

 
(a) 

 

 

 
(b) 

 

 

 
(c) 

Fig 6: a) Mecy.bmp encrypted by: b) HCM-EXDKS, c) AES 

 

   

Fig 7: a) Penguin.bmp encrypted by: b) HCM-EXDKS, c) AES. 

 

   

Fig 8: a) Bicycle.bmp encrypted by: b) HCM-EXDKS, c) AES. 

 

REFERENCES 

[1] Hill L. S. 1929. Cryptography in an Algebraic Alphabet, 

American Mathematical Monthly; 36(6): 306-312. 

[2] Hill L. S. 1931. Concerning Certain Linear Transformation 

Apparatus of Cryptography, American Mathematical 

Monthly; 38(3): 135-154. 

[3] Overbey, J. Traves, W. and Wojdylo, J. 2005. On the Key 

Space of the Hill Cipher, Cryptologia, 29(1), 59-72. 

[4] Stallings W. 2006. Cryptography and Network Security 

Principles and Practices (4th edn.). Prentice Hall: New 

Jersey. 

[5] Saeednia, S. 2000. How to Make the Hill Cipher Secure, 

Cryptologia, 24(4), 353-360. 

[6] Konheim A.G. 2006. Computer Security and 

Cryptography. John Wiley & Sons: New Jersey, 2007. 

[7] Koblitz N. 1987. A course in Number Theory and 

Cryptography. Springer-Verlag: New York, 64-74. 

[8] Chefranov, A. G. 2008. Secure Hill Cipher Modification 

SHC-M, Proc. of the First International Conference on 

Security of Information and Networks (SIN2007) 7-10 May 

2007, Gazimagusa (TRNC) North Cyprus, Elçi, A., Ors, B., 

and Preneel, B. (Eds.) Trafford Publishing, Canada. 34-37. 

[9] Ismail A.I., Amin M, Diab H. 2006. How to Repair the Hill 

Cipher. J. Zhejiang Univ Sci. A; 7(12): 2022-2030 

[10] Lin, C. H., Lee, C. Y. and Lee, C. Yu. 2004. Comments on 

Saeednia’s Improved Scheme for the Hill Cipher, Journal of 

the Chinese Institute of Engineers, 27(5), 743-746. 

[11] Mahmoud A.Y, Chefranov A.G. 2009. Hill Cipher 

Modification Based on Eigenvalues HCM-EE,  Proc. of the 

Second International Conference on Security of Information 

and Networks (SIN2009) 2009; Gazimagusa (TRNC) North 

Cyprus, Elci, A., Orgun, M., and Chefranov, A. (Eds.) 

ACM, New York, USA: 164- 167. 

[12] Romero Y.R, Garcia R.V, et al. 2007. Comments on How 

to Repair the Hill Cipher. Journal of Zhejiang University 

Science A ; 9(2): 211-214. 

[13] Li CD, Zhang D, Chen G. 2008. Cryptanalysis of an Image 

Encryption Scheme Based on the Hill Cipher. Journal of 

Zhejiang University Science A; 9: 1118-1123. 

[14] Mohsen T, Abolfazl F. 2011.  A Secure Cryptosystem 

Based on Affine Transformation. John Wiley & Sons; 4(2): 

207-215. 

[15] Rivest R, The MD5 Message-Digest Algorithm. Internet 

RFC 1321, April 1992. 

[16] Federal Information Processing Standard (FIPS) 180-2, 

2002, Secure Hash Standard, NIST, U. S. Department of 

Commerce. 

[17] Schneier B., 1996. Applied cryptography: Protocols, 

Algorithms, and Source Code in C (2nd edn), John Wiley & 

Sons: New York. 

[18] Apostol T.M. 1976.  Introduction to Analytic Number 

Theory Springer. 

[19] Galvin, W. P. 1984. Matrices with Custom-Built 

Eigenspaces, this MONTHLY, 91, 308-309. 

[20] Ziedan I, Fouad M, Salem H.D. Application of Data 

Encryption Standard to Bitmap and JPEG Images. Proc. 

Twentieth National Radio Science Conference (NRSC), 

Egypt 2003; 1-16. 

[21] Elkamchouchi H, Makar A.M. Measuring Encryption 

Quality of Bitmaps Images with Rijndael and KAMKAR 

Block Ciphers. Proc. Twenty Second National Radio 

Science Conference (NRSC), Egypt 2005; 1-8. 



 A Hill Cipher Modification Based on Eigenvalues Extension with Dynamic Key Size HCM-EXDKS 65 

Copyright © 2014 MECS                                                I.J. Computer Network and Information Security, 2014, 5, 57-65 

Ahmed Y. Mahmoud received a BSc. in Computer Science 

from Al-Zaytoonah University, Amman, Jordan in 1997, an MSc. 

in Applied Mathematics and Computer Science and PhD in 

Computer Engineering from Eastern Mediterranean University, 

North Cyprus, in 2001 and 2012, respectively. From 2001 to 

2006 he was a Lecturer in the Computer Science Department at 

Al-Azhar University, Gaza Strip, Palestine. From September 

2006 to September 2011 he was with the Computer Engineering 

Department at Eastern Mediterranean University, Famagusta, 

North Cyprus. Since January 2012 he has been an Assistant 

professor in the Information Technology Department at Al-

Azhar University, Gaza Strip, Palestine. His research interests 

are in the areas of information security, discrete geometry, 

parallel programming, and distributed systems. 

Alexander G. Chefranov received a diploma of Engineer in 

Applied Mathematics, PhD, and DSc from Taganrog State 

Radio-Engineering University, Russia, in 1978, 1984, and 1998, 

respectively. Since 1999 he has been a Professor of Software 

Engineering Department of the Institute of Technology, South 

Federal University, Taganrog, Russia, and, since 2002, he has 

been an Associate Professor of the Department of Computer 

Engineering, Eastern Mediterranean University, Famagusta, 

North Cyprus. His research interests are in the areas of 

information security, parallel processing, real-time systems, 

database management systems, and scientific computing. 

 

 

 

 

 

How to cite this paper: Ahmed Y. Mahmoud, Alexander G. Chefranov,"A Hill Cipher Modification Based on 

Eigenvalues Extension with Dynamic Key Size HCM-EXDKS", IJCNIS, vol.6, no.5, pp.57-65, 2014. DOI: 

10.5815/ijcnis.2014.05.08 


