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Abstract — This paper proposes an image encryption 

scheme based on chaotic system with changeable 

parameters depending on plain-image.  A generalized 

Arnold map, whose control parameters are changeable 

and image-dependent during the iteration procedure, is 

utilized to generate chaotic orbits applied to permute the 

pixel positions. A diffusion function is also designed to 

realize the diffusion effect by piece-wise linear chaotic 

map. In both the permutation process and the diffusion 

process, the keystreams generated by chaotic maps are all 

strongly dependent on plain-image, and thereby can 

improve the encryption security efficiently. The major 

merits of the proposed image encryption scheme include 

a huge key space, good statistical nature resisting 

statistical analysis attack, differential attack, and good 

resistance against known-plaintext attack and chosen-

plaintext attack, etc.   Experimental results have been 

carried out with detailed analysis to show that the 

proposed scheme can be a potential candidate for 

practical image encryption. 

 

Index Terms — Image-dependent; generalized Arnold 

map; piece-wise linear chaotic map; ergodicity; 

permutation; diffusion. 
 

I.  INTRODUCTION 

With the rapid development of multimedia and 

network technology, a bulk of digital visual data, such as 

digital images, video, and audio, etc. has revolutionized 

in the way of largely stored, manipulated, and transmitted 

over the Internet and wireless networks. Creative ways of 

storing, accessing and distributing data have generated 

lots of benefits into the digital multimedia field. However, 

the visual data often contain private or confidential 

information or are associated with financial interests, and 

therefore the data security encounters a serious threat in 

the process of transmission due to the openness and 

sharing of the networks. To meet the demand of real-time 

secure image transmission, techniques are required to 

provide security functionalities like privacy, integrity, or 

authentication especially suited for image data types. As a 

matter of fact, these techniques for providing privacy and 

confidentiality of visual data play an important role in 

many applications, such as military image databases, 

confidential video conferences, cable TV, medical 

imaging system, online private photograph album, etc. To 

provide the protection of digital data, two complementary 

techniques have been developed: encryption and 

watermarking.  Because images possess some intrinsic 

features, such as bulk data capacity, high correlation 

among adjacent pixels, redundancy of data, less 

sensitivity as compared to the text data, the traditional 

block ciphers, such as Date Encryption Standard (DES), 

International Date Encryption Algorithm (IDEA) and 

Advanced Encryption Standard (AES) are thereby not 

suitable for practical image encryption in real time, 

because their speed is low due to a bulk data volume and 

strong correlation among adjacent pixels [1]. Recently, 

chaos-based image encryption schemes [2-8] have shown 

their superior performance thanks to its ergodicity, 

pseudo-randomness and high sensitivity to initial 

conditions and control parameters, which are close to 

confusion and diffusion in cryptography. These properties 

make chaotic systems a potential choice for constructing 

cryptosystems [9, 10].  

Chaos-based image cryptosystems can be classified 

into three categories according to their architecture, that 

is, permutation-only, diffusion-only and permutation-

diffusion form. Among them, the permutation-only type 

image cipher is superior in the aspect of efficiency due to 

its lowest computational complexity. It only shuffles the 

position of each pixel in a secret order while it does not 

alter its gray value, therefore cannot change the histogram 

of plain image. The diffusion-only one changes the pixel 

gray value one by one or block by block, which gets 

greatly modified histogram for cipher-image which is 

generally uniform distributed and therefore significantly 

different from the histogram of plain image. In this sense, 

diffusion-only can resist the statistical analysis, 

differential attacks efficiently and so remedy the default 

of permutation-only type encryption methods.  The 

permutation-diffusion mechanism not only permutes the 

pixels positions utilizing chaotic systems, but also alters 

the pixel gray values sequentially by some diffusion 

functions. The modification made to a pixel usually 

depends on the accumulated effect of all the previous 

pixels’ gray values, so that a slight change in one pixel 

can be spread out to almost all the subsequent pixels.  

However, among the existing image encryption schemes, 

the key streams generated by chaotic systems in both the 

permutation process and the diffusion process are 

generally fixed and independent of plain-images, which 

becomes the most serious flaw for chaos-based ciphers.  

Cryptanalysis has shown that chaos-based image 

encryption schemes can be broken, especially for the 
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permutation process [11-15].  The opponents can analyze 

the cryptography schemes via chosen-plaintext or known-

plaintext attack to obtain the key streams and so 

equivalently obtain the keys. The major reason lies in the 

keystreams yielded by chaotic systems are nothing with 

the plain-images. A number of chaos-based schemes with 

good diffusion functions are designed to resist known-

plaintext attack and chosen-plaintext attack [16-19]. 

However there are few image encryption schemes 

considering the issue in the permutation process. In this 

paper, a novel image encryption scheme based on chaotic 

system with changeable parameters is proposed. An 

essential difference between the encryption scheme 

proposed here and the conventional encryption scheme is 

that the parameters of the chaotic system here are 

changing at each iteration of the chaotic system. The 

changeable parameters are strongly related to the plain-

images and therefore the proposed permutation process 

can efficiently resist known-plaintext attack and chosen-

plaintext attack.  A diffusion function is also designed to 

finish the diffusion stage to make the proposed scheme 

more secure.  In both the permutation process and the 

diffusion process, the key streams are generated strongly 

dependent on the plain-images. As a result, the proposed 

encryption can achieve one-time keystreams in which 

different plain-images will generate different keystreams. 

Other merits of the proposed image encryption scheme 

are achieved as well, including a huge key space, great 

sensitivity to cipher keys, good statistical properties 

resisting statistical attack and differential attack, good 

entropy analysis, etc. Experimental results have been 

carried out with detailed analysis to show that the 

proposed scheme can be a potential candidate for 

practical image encryption. 

The rest of this paper is organized as follows. In 

Section II, the generalized Arnold map and the piece-wise 

linear chaotic map are introduced briefly. Section III 

proposes a novel image encryption based on chaotic 

system with changeable parameters dependent on plain-

images.  Section IV gives the detailed experiment results 

and security analysis. Section V makes some conclusions. 

 

II.  THE GENERALIZED ARNOLD MAP AND THE  

PIECE-WISE LINEAR CHAOTIC MAP  

A. The generalized Arnold map 

Arnold map is also called cat map. It is a two-

dimensional invertible chaotic map introduced by Arnold 

and Avez [20]. The classical Arnold map is described by  
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where “  mod  1x ” means the fractional part of a real 

number x  by adding or subtracting an appropriate integer. 

Therefore 
 ,n nx y

 is confined in the unit square
2[0,1)

. 

The map is area preserving since the determinant of its 

linear transformation matrix is 1. As shown in Fig.1, the 

unit square is first stretch by the linear transform matrix 

and then folded back to the unit square by the modulo 

operation. 

The above 2D cat map (1) can be generalized to the 

following form by introducing two integer control 

parameters >0a  and >0b , 
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The generalized Arnold map (2) has one Lyapunov 

characteristic exponent 

2 2

1

1+ + +4
=1+ >1

2

ab a b ab


, so 

the map is always chaotic for >0a , 0b  . 

In this paper, we extend the integer control parameters 

a  and b  to real numbers. This is an essential difference 

from the control parameters in conventional generalized 

Arnold maps. As a result, we can enlarge the key space 

significantly. Fig. 2 (a) shows an orbit of  

   0 0, = 0.5231,0.7412x y
 with length 1500 derived by 

the generalized Arnold map 
(2)

 with =5.324, =18.2a b , 

the x-coordinate and the y-coordinate sequences of the 

orbit are plotted in Fig. 2 (b) and Fig. 2(c) respectively. 

B. The piece-wise linear chaotic map 

The piece-wise linear chaotic map (PWLCM) can be 

described as follows 
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where [0,1)ix  , when control parameter (0,0.5)p , 

the PWLCM system (3) evolves into chaotic state [21]. 

p  and 0x  can be served as cipher keys. The PWLCM 

system has uniform invariant distribution and very good 

ergodicity, confusion and determinacy, so it can provide 

excellent random sequence, which is suitable for 

cryptosystem. 
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Figure.1 The Arnold map 
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(a) The orbit of (0.5231, 0.7412) 
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(b) x -coordinates sequence 
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 (c) y -coordinates sequence 

 

Figure.2. Orbit derived from the generalized Arnold map 

with a=5.324, b=18.2 

III. THE PROPOSED IMAGE ENCRYPTION SCHEME 

The proposed image encryption scheme consists of one 

permutation stage and one diffusion stage. Without loss 

of generality, we assume that the plain-image A  is a gray 

image of size L M N  and 256 gray-scale levels; A  is 

an integer matrix of M  rows and N columns, in which 

the values range from 0 to 255 representing the gray 

values of the digital image with 256 gray-scale levels. 

A. Permutation stage  

Given the initial conditions 0x
, 0y

and control  

parameters a , b ,  we iterate generalized  Arnold map (2) 

to generate an orbit 
  0, ; 0,1,2,...,k kx y k N

 with 

iteration  time 0N
large enough. Let 

 

( ) 1, ( ) 1.
k k k k

s floor x M t floor y N    =  

 

Then 0( , ), 0,1, ,k ks t k N  must be the positions of 

some pixels in A . In case that some coordinates are the 

same, we delete the repeated coordinates and preserve the 

first one. Then the pixel values of those preserved 

coordinates in A  are put in a vector V  with length 
L M N   orderly. According to the ergodicity of the 

Arnold map, as long as the orbit is long enough, all the 

coordinates of the pixels in A  can be found in 

 

 0( ) 1 ( ) 1 ; 0,1,...,k kfloor x M floor y N k N    （ ， ）

 

However, one suitable 0N
 is applied in order to save 

computational time and storage, and therefore there may 

be some coordinates that cannot be found in the finite 

orbit sequence. Find out these pixel values and put in the 

rest part of V . Then reshape V  back to one 2D matrix to 

yield the shuffled image 1A
. The detailed permutation 

process is outlined as follows. 

 

Step1: Set the values of
0x ,

0y , a , b  for the generalized 

Arnold map. 

Step2: Iterate map (2) to generate the orbit of 0 0( , )x y : 

  0, : 0,1,2,...,k kx y k N  by the following 

formula 
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where 

0 0,a a b b  , 

 ( ) 1, ( ) 1k k ka A floor x M floor y N     , 

( ) ( ) 2,k k kb floor x M floor y N          

01,2,...k N .
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Throughout the paper, “ ”floor  operation on x  returns 

the largest value not greater than x . 

Step3: Perform the following formula to transform 

 ,k kx y  into integer sequence: 

 

0( ) 1,        0,1,2,...k ki floor x M k N    , 

0( ) 1,        0,1,2,...k kj floor y N k N    . 

 

Step4: Let 
ki  be the first column and 

kj  be the second 

column to construct a coordinate matrix S  sized 

0 2N  , then each row of S  can be regarded as 

the coordinates of a certain pixel in A . If there are 

repeated coordinates in S , then only preserve the 

first one to get a coordinates matrix 1S with 

different coordinates and size 2l   . 

Step5: Let B  be a M N  indexing matrix initialized by 

zero matrix, then set 

 

( 1( ,1), 1( ,2)) 1,  1,2,...., .  B S i S i i l   

 

Find out the positions in B whose element values 

are zero and then place them in a vector T sized 

( ) 2L l  . 

Step6: Permute the pixels in the plain-image to get a 

vector V with length L  by the following way  

 

( ) ( 1( ,1), 1( ,2)),       1,2,...., ,V i A S i S i i l   

( ) ( ( ,1), ( ,2)),   1,2,..., .V l j A T j T j j L l     

 

Step7: Reshape V  back to a 2D matrix to yield the 

shuffled image 
1A . 

B. Diffusion stage 

Diffusion stage can enhance the resistance to statistical 

analysis and differential attack greatly, in which the 

histogram of the cipher-image is fairly uniform, and is 

significantly different from that of the plain-image. A 

slight change in one pixel could be spread out to almost 

all the subsequent pixels. The diffusion process is 

outlined as follows. 

 

Step1: Transform the shuffled image 
1A  into a one-

dimensional vector denoted by q  with length 

L M N  . 

Step2: Set the values of initial condition 0t  and control 

parameter p of the PWLCM system. Iterate the 

PWLCM system k  times to discard the 

transitional part and set 1 = kw t（） . 

Step3: Let =1i . 

Step4: Use the following formula to yield
( )b i

 

 

 

 

14( ) ( ( ) 10 )mod256b i floor w i 
. 

 

Step5: Compute the pixel gray value in the cipher-image 

by 

 

( ) (( ( -1) ( ))mod256) ( )c i c i q i b i  
, 

 

where 
( )c i

 is the pixel value of cipher-image; 

(0)c
 can be set to one part of the cipher keys in 

the diffusion process. 

Step6: Compute h  by
( ( ) mod3) 1h c i 

 to get the next 

( 1)w i 
 by iterating the PWLCM system with 

parameters 
p

 on 
( )w i

 for  h  rounds. 

Step7: Let = +1i i  and return to step 4 until i  arrives at L . 

Step8: Reshape c  back to one 2D matrix to yield the 

cipher-image 2A
. 

 

IV. EXPERIMENTAL RESULTS AND 

PERFORMANCE ANALYSIS  

We set the initial values and control parameters as 

follows. 

Permutation process:  

 

0 0 00.3201, 0.6317, 3.631, 27, 230000.x y a b N    

 

Diffusion process: 

 

0 0.2356, 0.3651, (0) 56, 100t p c k    .
 

 

We choose the 256 256  gray images Lena and sail 

boat for simulation. Figs. 3(a), (c) are the plain-images 

Lena and sail boat respectively, Figs. 3 (b), (d) are the 

corresponding cipher-images respectively.  

 

 
(a) plain-image Lena 
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(b) cipher-image of Lena 

 

   
(c) plain-image sail boat 

 

   
(d)  cipher-image of sail boat 
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(e) Histogram of the plain-image Lena 
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     (f) Histogram of the cipher-image of Lena 
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  (g) Histogram of the plain-image sail boat 
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(h) Histogram of the cipher-image of sail boat 

 

Figure 3. The encrypted results. 

 
The crucial measure for the quality of a cryptosystem 

is its capability to withstand the attempts of an 

unauthorized participant or an opponent to gain 

knowledge about the unencrypted information. A good 

cryptosystem should resist all kinds of known attacks, 

such as known /chosen plaintext attack, statistical attack, 

differential attack, and brute-force attack. In the 

following subsections, security analyses have been 

performed for the proposed image encryption scheme, 

including the most important ones like key space analysis, 

statistical analysis, and differential attack. All the 

analyses show the proposed image encryption scheme is 

highly secure. 
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A. Key space analysis  

Key space size is the total number of different keys 

which can be used in the encryption. A good encryption 

algorithm should be sensitive to the cipher keys, and the 

key space should be large enough to make brute-force 

attack impossible. 

The analysis result regarding the sensitivity and the 

key space are summarized as follows. Assume that we 

want to verify the sensitivity of parameter K , we encrypt 

the plain-image
( ( , ))M NA A i j 

 with K , -K K  and 
+K K  respectively while keeping the other parameters 

unchanged, the corresponding encrypted images are 

1A
, 2A

, 3A
 respectively, where K  is the perturbing 

value. The sensitivity coefficient of parameter K is then 

calculated by 
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In the case that K  is small, the larger 
( )sP K

 means 

the more sensitivity for parameter K . Table I shows the 

results of the sensitivity test.  The variations for the 

considered cipher keys are shown as follows. 

Permutation process:   

 
-15 -14 -15 -15

0 0=10 , =10 , =10 , =10 ,a b x y     

 

Diffusion process:  

 
-16 -16

0 =10 , =10 , (0)=1, =1.t p c k     

 

The result in Table I shows that the parameters 

0x
, 0y

, a , b , 0t , 
p

,
(0)c

, k  are all strongly sensitive. It 

also implies from the result that the key space is more 

than
9110 , which is large enough to frustrate brute-force 

attacks.  

 

TABLE I. SENSITIVITY OF THE CIOPHER KEYS. 

K  a  b  0x  0y  

( )sP K
�

 9 9 . 5 9 9 9 . 6 0 9 9 . 5 8 9 9 . 6 1 

K  
0t  0p  (0)c  k  

( )sP K
� 

9 9 . 5 8 9 9 . 6 2 9 9 . 6 1 9 9 . 6 0 

B. Statistical analysis  

A good cryptosystem should be robust against any 

statistical attack. In order to verify the robustness of the 

proposed scheme, we perform the following statistical 

tests such as the histogram, information entropy, and the 

correlation of two adjacent pixels in the images. 

(I) Histogram. An image histogram shows that how 

pixels in an image distribute by plotting the number of 

pixels at each gray-scale level. The histogram of the 

encrypted image is very important; it should not leak the 

information about the plain-image or the relationship 

between plain-image and the cipher-image. Figs. 3(e), (g) 

show the histograms of the plain-images Lena and sail 

boat respectively, Figs. 3(f), (h) are the histograms of 

their encrypted images respectively. From Figs. 3(f), (h), 

we can see that the histograms of the encrypted images 

yielded by the proposed encryption scheme are fairly 

uniform and significantly different from the histograms of 

the plain-images, and hence it does not provide any 

useful information for the opponents to perform the 

statistical attack. 

(II) Correlation of adjacent pixels. For an ordinary 

image having definite visual content, each pixel is highly 

correlated with his adjacent pixels either in horizontal, 

vertical or diagonal direction. However, an efficient 

image cryptosystem should produce the encrypted image 

with sufficient low correlation in the adjacent pixels. 

To test the correlation between two adjacent pixels in 

plain-image and the cipher-image, we randomly select 

2500 pairs of two-adjacent (at horizontal, vertical, and 

diagonal directions) from plain-image and cipher-image, 

and calculate the correlation coefficient of each pair by  

the following formula. 

 

cov( , )

( ) ( )
xy

x y
r

D x D y
  , 

cov( , ) [( - ( ))( - ( ))],x y E x E x y E y
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1
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1

1
( ) ( - ( ))

T

i
i

D x x E x
T 
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where x  and 
y

 are gray-scale values of two adjacent 

pixels in the image, and T  denotes the total number of 

samples. The correlation distributions of two horizontally 

adjacent pixels of the plain-image and the encrypted 

image produced by the proposed scheme are shown in Fig. 

4, from which we can see that the strong correlation 

between adjacent pixels in plain-image is greatly reduced 

in the encrypted image.  Table II shows the correlation 

coefficients of horizontal, vertical, and diagonal adjacent 

pixels for the plain-images and the cipher-images. The 

results indicate that the correlations of two adjacent 

pixels of the encrypted Lena and encrypted sail boat are 

much smaller compared with the plain-images, which 

implies that the proposed image encryption scheme is 

efficient to achieve good statistical nature. 
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TABLE II. CORRELATION COEFFICIENTS OF TWO 

ADJACENT IN PLAIN-IMAGES AND CIPHER-

IMAGES 

 Horizontal Vertical Diagonal 

Lena image 0.9439 0.9663 0.9225 

Encrypted Lena -0.0148 -0.0027 0.0015 

Sail boat 0.9217 0.9242 0.8793 

Encrypted sail boat -0.0045 0.0014 0.0079 
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(a) plain-image Lena 
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(b) cipher-image of Lena 
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(c) plain-image  sail boat 

0 50 100 150 200 250 300
0

50

100

150

200

250

300

pixel gray value at location (x,y)

p
ix

e
l 
g
ra

y
 v

a
lu

e
 a

t 
lo

c
a
ti
o
n
 (

x
,y

+
1
)

 
(d) cipher-image of sail boat 

 

Figure. 4.  Correlation distributions of plain-images and cipher-

images. 

 
(III) Information entropy. Information entropy is the 

most important feature of randomness. Let m  be the 

information source. The formula to calculate information 

entropy is 

 
2 1

2
0

( ) ( )log ( )
n

i i
i

H m p m p m




   

 

where n  is the number of bits to represent a symbol 

im m
 and 

(m )ip
 represents the probability of 

symbol im
.  

For a truly random source emitting 2n
 symbols, the 

entropy is
( )H m n

. Therefore, for an encrypted image 

with 256 gray-scale levels, the entropy should be ideally 

( ) 8H m 
, which shows the information is completely 

random. Hence the information entropy of the encrypted 

image should be close to 8 after encryption to decrease 

the possibility of information leakage. The information 

entropy for the cipher-image of Lena is 7.9902, which 

implies the cipher-image is close to random sources. 

C. Differential attack 

Attackers usually make a slight change (e.g. modify 

only one pixel) of the plain-image and apply the proposed 

scheme to encrypt the original and the modified plain-

images to get two cipher-images. Attackers can observe 

difference between the two cipher-images to find out the 

relationship between the plain-image and the cipher-

image. This is the so-called differential attack. To test the 

robustness of the image cryptosystem against differential 

attack, two measures NPCR (net pixel change rate) and 

UACI (unified average changing intensity) are usually 

used. NPCR measures the percentage of different pixel 

numbers between the two encrypted images. UACI 

measures the average intensity of difference between the 

two encrypted images. They can be calculated by the 

following formulae: 
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, ( , )
NPCR 100%

i j D i j

M N
 




, 

1 2

,

( , ) - ( , )1
UACI 100%

255i j

c i j c i j

M N

 
 
  

 


  

 

where 
1c  and 

2c  are the two cipher-images and ( , )D i j  is 

defined as 

 

1 21, ( , ) ( , ),
( , )

0, otherwise.

c i j c i j
D i j






  

 

We perform the test by changing a pixel gray value 

with a difference 1, for example, replace 
(23,36)A

 to 

(23,36) -1A
, then two plain-images are encrypted with 

same key to generate the cipher-images 1c
and 2c

. The 

results are shown in Tables III-IV, from which we can see 

that the values of NPCR and UACI can reach 
99.55% and 33.40%  at the second round. It implies that 

the proposed scheme is sensitivity to small changes in the 

plain-image, in other words, the proposed scheme can 

resist differential attack efficiently. 

 

TABLE III. NPCR PERFORMANCE. 

Rounds  Lena image  Sail boat  

1 80.54 30.21 

2 99.59 99.61 

3 99.55 99.57 

4 99.60 99.59 

5 99.64 99.59 

 

TABLE IV. UACI PERFORMANCE. 

Rounds  Lena image  Sail boat  

1 27.08 10.01 

2 33.46 33.41 

3 33.35 33.32 

4 33.52 33.40 

5 33.50 33.52 

 

V. CONCLUSIONS  

An image encryption scheme based on chaotic systems 

with changeable parameters is proposed. In the proposed 

scheme, the parameters of the generalized Arnold map at 

the permutation process are changing for every iteration 

as they are plain-image dependent. A diffusion function is 

also designed to make the proposed scheme more secure. 

In both the permutation process and the diffusion process, 

the keystreams are generated strongly dependent on the 

plain-images. The proposed image encryption scheme can 

achieve one-time keystreams in the sense that different 

plain-images generate different keystreams. Other merits 

of the proposed image encryption scheme are achieved as 

well, including a huge key space, great sensitivity to 

cipher keys, good statistical properties resisting statistical 

attack and differential attack, good entropy analysis, etc.  
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