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Abstract — Context-awareness has long been an 

important building block in designing systems that vary 

their operating behavior based on an analysis of rapidly 

changing operating conditions. There is the need however 

to define context more formally so that context data-

sharing can take place between systems and more 

complex interactions between connected systems can be 

developed. The area of computer security is examined in 

particular as an area where the representation and sharing 
of context data can lead to more effective policy 

enforcement. A framework is proposed for sharing data 

between assessment sensors and enforcement 

mechanisms in order to facilitate more accurate policy 

enforcement.  A detailed performance analysis of the 

proposed system is offered along with conclusions on the 

feasibility of such systems. 

 

Index Terms — Context Awareness, Systems 

Integration,Data Sharing, Adaptive Access Control 

 

I.  INTRODUCTION 

Context-awareness has long been an important 

building block in designing systems that vary their 

operating behavior based on an analysis of rapidly 

changing operating conditions. The term has, however, 

become overly used to refer to a wide variety of 
approaches. In many ways, context-awareness as it will 

be considered is already achieved implicitly by many 

systems. There is the need however to define context 

more formally so that context data-sharing can take place 

between systems and more complex interactions between 

connected systems can be developed. The area of 

computer security is examined in particular as an area 

where the representation and sharing of context data can 

lead to more effective systems. 

We consider, for instance, the security paradigm in 

which the security of a system is due to the enforcement 

of a predetermined policy of allowed and disallowed 

actions. Although the policy may be written statically it 

may nonetheless include values and properties whose 

exact value is resolved dynamically when the policy is 

being evaluated. For example, the XACML [5] schema 

abstracts this into policy decision-making and policy 
enforcement and makes provisions for the evaluation of 

access control policies based on contextual information in 

the form of custom attribute evaluation modules which 

can return the value of a system property dynamically. 

Ordinarily, such contextual property-evaluation modules 

are developed on an as-needed basis and any 

infrastructure needed to return a value for that property 

must be done at that time. 

So moving one step forward, we propose a general 

solution to the problem of gathering contextual 

information from various sensors and then making it 

available in a structured way to enforcement mechanisms 

which would then, in turn, use that information to enforce 

policy more effectively. One key strategy for achieving 
the type of flexibility and situation-aware enforcement 

demanded by modern security systems is to design 

frameworks that allow data sharing between otherwise 

autonomous security mechanisms. This strategy provides 

flexibility in the performance of the individual security 

tasks due to the modularity of each enforcement function. 

It also ensures the extensibility of the framework because 

its components are loosely coupled. Such a general 

solution has multiple challenges, however, which must be 

addressed. In order to facilitate the discussion of context 

sharing as a process, we will abstract it into three phases: 

data acquisition, data analysis and application. 

The acquisition process consists of all tasks necessary 

to discover and retrieve context data based on certain 

criteria for relevancy. This is distinct from the process of 

analysis that derives secondary information from the data 

that is acquired during the first stage. The application 
stage, therefore, makes use of primary and secondary 

context data to fulfill some security assurance task. 

This paper will present a detailed discussion of the 

design and implementation required to achieve context 

acquisition. A brief summary of the results obtained from 

testing policy enforcement will also be given to 

demonstrate the soundness of the approach. A complete 

discussion of the analysis algorithms and data application 

methods used for policy enforcement as well as a 

complete discussion of the policy enforcement testing 

results are detailed elsewhere in a forthcoming paper. In 

sum, this paper will address the design of frameworks for 

data sharing leading to context-aware policy evaluation 

and enforcement but will not detail the analysis 

algorithms and procedures used in the system or the 

strategies employed for data application at the point of 

enforcement for the sake of brevity.  
The paper will begin with a detailed background on the 

system integration challenges which were addressed 

followed next by a description of the design goals which 

were upheld. Next we will present a description of a 

system implementation addressing the design challenges 

and a detailed performance analysis of that system. 
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II. BACKGROUND  

A. Defining Context Data 

Schilit and Theimer [12] first mentioned the term 

context-aware with the explanation that such systems, 

―[adapt] according to the location of use, the collection of 

nearby people, hosts, and accessible devices, as well as to 

changes in such things over time.‖ Other definitions such 

as the one offered by Dey in [3] have taken a human user-
centric view of context, defining it as: ―any information 

that can be used to characterize the situation of an entity. 

An entity is a person, place or object that is considered 

relevant to the interaction between a user and an 

application.‖ Broader definitions also exist such as, ―all 

the knowledge that constrains problem solving at a given 

step without intervening in it explicitly‖ [1]. There are a 

few problems with definitions such as those stated above 

when trying to apply them to the domain of computer 

security. They are either are overly broad - lumping many 

types of information together as context - or they are 

overly specific, restricting context to types of information 

related to the physical surroundings of the system in 

question. 

Many applications in the security domain, however, 

typically consider patterns of behavior over time to be a 

primary type of context. For an application such as 
intrusion detection, the physical context of a system is 

less important than the history of related events that have 

occurred in the system. In addition we would like to 

develop a way of describing context and context-

ownership that facilitates context-sharing among entities 

in a given domain. This would be difficult if we consider 

a model where only objects possess context. If we were to 

develop a model based on the additional abstraction of an 

event (along with objects), then we could begin to 

describe the context of an event as being other events that 

are related to it based on some application-dependent 

criteria for relatedness. Then context-sharing becomes as 

easy as providing information on related events to all 

objects in the domain where the present event is now 

occurring. 

Moving forward, the following definition for context 

will be used, ―context is the set of interrelated conditions 
and secondary events surrounding and connected to a 

primary event under consideration which define and 

distinguish the environment in which it has occurred.‖ 

B. Integration Techniques for Distributed Systems 

There are three main characteristics that distinguish an 

integrated system is mentioned by Hasselbring in [6]: 

heterogeneity, autonomy and distribution. From the 

perspective of systems integration, all of these issues are 

risks which must be mitigated (i.e. they are things 

standing in the way of a fully integrated system). But the 

mitigation often does not change the fundamental 

characteristics of the constituent systems and so the same 

characteristics are usually present before and after 

integration - integration merely provides a bridge so that 

these factors can be overcome. Heterogeneity can 

manifest itself in two main areas: technical and 

conceptual. Technical heterogeneity can come from 

differences in things such as: hardware platforms, 

operating systems, database management systems and 

programming languages. Conceptual heterogeneity can 

be produced by differing programming and data models 

or differences in modeling real-world concepts. 

Autonomy usually occurs in the areas of design or 

communication and execution.  

 

1) Architectures for Systems Integration 
There are two main architectures for systems 

integration. The first integration architecture is termed a 

component coalition. The architecture integrates 

independent components by providing a custom solution 

that will link the interfaces of the two components. These 

coalitions maintain the independence of the individual 

components in the following ways: each component has 

its own interface and each component has independent 

control of its data and processing.  

The second architecture for systems integration is the 
federation. The main concept underlying component 

federations is the creation of a platform which can 

support a myriad of components as long as they conform 

to a set of standards. The federation provides 

infrastructure for inter-component communication and 

data sharing. Therefore in contrast with component 

coalitions, component federations are more general-

purpose and more flexible [6]. 

 

2) Data and Control Integration Mechanisms 
Data integration mechanisms are of two types: those 

which achieve data persistence and those which provide 

common data semantics. Data persistence is either 

achieved by data conversion in which components 

maintain separate data stores and data is translated to a 

format consumable by other components or by a common 

data store which is a single source that accumulates data 

from all of the components. Data semantics, on the other 

hand, is either achieved by using a common schema or 

common data formats.  

The main method for achieving control integration is 

message passing. This message passing solution is 

actually the product of a mechanism to enable 

communication and a protocol to define the 
communication pattern. 

 

III. RELATED WORK 

The approach to integrated security used by Ryutov et 

al. [11] is based the notion of an advanced security policy 

that can specify allowed activities, detect abuse and 

respond to intrusions. Each of these tasks (access control, 

intrusion detection and intrusion response) is performed 

by a single, multi-phase policy evaluator. A global 

'System Threat Level' is used to integrate information 

from outside intrusion detection systems. 

Teo et al. [13] propose a system to manage network 

level system access that considers threat information. 

Each node and service in the system has an associated 

access threshold. This threshold is checked against the 
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threat level of a part requesting access to determine if 

access is granted. The threat level of a source is regulated 

(increased and decreased) when signatures are triggered 

that specify the type of action to match and the type of 

threat level adjustment that should be performed. 

In [4] the authors use a framework to assess the risk 

associated with granting a given access request and a 

corresponding level of trust required by any subject 

seeking to execute the request. In parallel, the trust level 

of the actual requesting subject is calculated and 

compared with the established value for the request to 

form a decision for the request. 

 

IV. GENERAL APPROACH TO CONTEXT SHARING FOR 

ADAPTIVE POLICY ENFORCEMENT 

The general approach employed involves a few key 

design decisions and a general architecture. The first key 

for the approach is termed Dynamic Context Discovery. 

Using the notion that the context of an event consists of 

other, related events we then establish a criteria for 

relatedness that is appropriate for each individual security 

mechanism and then frame the context of an event based 

on those two factors. This context acquisition strategy 

must allow security components to select and receive 

only that data that is relevant to the decision they are 

trying to make. Because security mechanisms deal with 

events, they should be able to select the other events that 

relate to the event under consideration without 

necessarily having to process and deal with every event 

that occurs in the domain. As noted in [8] this property is 

not so much a desired trait as a required one as the 
volume of events processed solely by intrusion detection 

systems can reach tens of thousands per day. This implies 

also that the strategy for context acquisition must be able 

to search for events based on characteristics of relevance. 

So the first required property of the context acquisition 

approach is that it must provide relevant data. 

The second key of the approach is Implementation 

Transparency. Another goal of our approach with regards 

to acquisition of context data is to allow security 

mechanisms to acquire data from other security controls 

while remaining agnostic of their implementation details: 

that a security component can acquire context data 

merely by knowing the features of the data it would like 

to receive. In this case that will entail the features of the 

event that is being evaluated and the domains from which 

the data should be gathered.  For example, an access 

control system could acquire assessment data rating the 
risk of a particular user without knowledge of whether the 

sources of the data are anomaly or misuse detection 

systems and whether they operate at the network or host 

level. 

The next key of the general approach is Provider and 

Consumer Decoupling. Another necessary feature is that 

the provider and consumer should be decoupled in time 

and space. We would like to provide functionality where 

an event provider can register or publish event 

information and then consumers can access that data 

according to their own constraints around what 

constitutes relevant context data. This also implies that 

the accesses of the provider are to be asynchronous, while 

those of the consumers will be synchronous. Decoupling 

in space is also necessary to support distribution. 

The last key of the general approach behind the 

proposed context sharing framework is Allowing Policy 

Level Description of Relevant Context.  Before we can 

analyze context data, or even search for it, we must have 

a means to describe its features and characteristics. One 

primary way of achieving this is through policy-

specifications that include the features of context data. 

These design goals with serve as the criteria for 

comparing between the different integration methods 
needed to overcome the heterogeneity of the systems 

being examined. A diagram of the general architecture is 

shown in the following figure. 

Figure 1: General architecture for context data sharing 

 

Fig. 1 depicts the flow of context data within the 

general framework from sensors to the policy 

enforcement mechanism using the context sharing 
framework as a mediating service which provides context 

aggregation, analysis and then finally distributes the 

processed data to mechanisms which will apply the data 

in policy evaluation.  The framework in this sense serves 

as a mediating service between loosely coupled data 

providers and consumers. The general approach has been 

applied to data sharing between intrusion detection 

sensors (as providers of context data) and access control 

systems (as consumers of such data) to demonstrate the 

effects of the approach and provide a platform for testing 

the performance of the framework. The proposed system 

which facilitates context data-sharing for adaptive policy 

enforcement has been termed the ABACUS framework.  

Subsequent sections will address the design and testing of 

this implementation. 

 

V. THE ABACUS FRAMEWORK FOR CONTEXT-AWARE 

POLICY EVALUATION 

We summarize the approach being implemented in the 

following way: evidences of vulnerability exploitation 

(collected from intrusion detection sensors) are collected 

and analyzed into a higher level risk assessment for the 

sources and targets of access control requests. This risk 

assessment is subsequently used as an additional 
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parameter or contextual property in access control 

policies so that permit and deny decisions for an 

incoming request are based on an assessment of the risk 

posed by the requesting source and/or the risk posed to 

the targeted resource. This approach has been termed the 

Adaptive Assessment-Based Access Control System 

(ABACUS). The underlying methodology for this 

approach is that adaptive policy mechanisms must 

essentially rely on three interrelated processes: context 

data acquisition, analysis and application. 

The remainder of this section will elaborate on how the 

architecture fulfills the design goals related to acquisition 

of context data which were enumerated previously. The 
reader interested in more detail on the implementation of 

the portions of the framework responsible for data 

analysis and application is referred to a previous paper 

[10]. 

C. Architecture 

The primary components of the framework architecture 

are an alert server, which receives and processes 

assessment information, an analysis server, which 

responds to requests for analysis data, and the actual 

access control mechanisms which performs policy 

evaluation and enforcement. The access control system 

integrated with this architecture is the Apache webserver. 

The webserver is extended to perform the three intrusion 

responses discussed previously as the means to attack 

resistance: forcing additional authentication, restricting 

user permissions and restricting access to a target. Based 

on the resource and the actions available on that resource, 

a threshold is determined for the source and target 
associated risk above which, requests are denied. The 

intrusion detection system listens on the link for 

incoming requests and reports alerts for any requests that 

seem intrusive (in this case specifically, those requests 

that appear to be an attempt to exploit a known software 

vulnerability). The raw alerts from the IDS are passed 

through the alert processing server that performs any 

required filtering and also updates the risk assessments 

for the appropriate entities. Finally, the data from the new 

events is stored in an event database. 

 

 
 

Figure 2: Proposed ABACUS System Architecture 

 

The architecture is shown in Fig. 2.  

D. Alert Processing Server 

The alert processing module is responsible for 

extracting the information for each of the tables 

mentioned previously from the alerts it receives. In 

addition it can perform the functions of filtering out alerts 

that do not reference concrete vulnerabilities, or alerts for 

which the vulnerability does not match the current system 

configuration. Because of the nature of the analysis 

model, many of the most critical analysis functions are 

actually performed by the alert server. The present 

analysis model requires that the primary analysis function 

(updating risk values for entities) occurs as the events are 

processed (and consequently must be performed by the 

alert server and not by another entity). 

E. Analysis Server 

The analysis server receives client requests for 
assessment data, extracts the appropriate information 

from the event database and sends a response to the client 

(in this case the webserver).  

F. Event Database 

The event database is backed by a relational database 

implementation (in this case MySQL). Some of the 

structure of this database was derived from the IDMEF 

schema [2]. Some of the tables contained in the event 

database are the following: 

• CVSS Vulnerabilities - this table stores information 

regarding current vulnerabilities from the National 

Vulnerability Database (NVD), which has adopted the 

CVSS scoring system. Each vulnerability is listed with its 

CVSS base score, exploit subscore, impact subscore, 

overall score and vector.  

• Network Access Requests - Entries in this table are 

generated on the receipt of an IDS alert by the alert 

processing engine. The IP address and port of the source 
node are listed with the IP address and port of the target 

node. The time of the request, action being performed and 

target entity are also included in this table. 

• Entity Tables - individual tables for the Nodes, Ports, 

Files and Users references in requests 

• Intrusion Assessments - this table links individual 

requests to an intrusion assessment. Each assessment 

provides a classification for the event, its severity (which 

may be provided by the intrusion detection sensor) and 

whether or not the attack completed successfully.  

• Vulnerability Descriptions - a vulnerability 

description provides information on a concrete software 

vulnerability. Each vulnerability description is provided 

by a vulnerability database (for the purposes of this study 

we only use CVE vulnerabilities because they have an 

objective scoring system). Each vulnerability description, 

therefore, only links to one element in the table of CVSS 
vulnerabilities and, consequently, only has one base score.  

• Request Risk Cache - this table stores a calculated 

risk value for each request ID by querying for the CVSS 

score for all of the vulnerability descriptions that are 

linked to an intrusion assessment (and which provide a 

CVE ID). As mentioned in the section describing the 

model, the exponential average of all of the CVSS scores 

for the vulnerability descriptions used in a particular 

intrusion assessment are taken, and this value is stored in 

the request risk cache. When a particular risk handler 

queries the risk cache to produce a risk evaluation for a 
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particular entity, the risk estimate is multiplied by the 

decay factor to produce a dynamic risk estimate for that 

particular request. 

G. Access Control System 

The access control system integrated with the 

framework was the Apache webserver. In order to make 

as few modifications as possible to its existing access 

control policy evaluation mechanism, the ability to make 

and specify custom access control handlers for certain 

resources was utilized. Rather than returning a value for a 

specific attribute and querying against the event database 

within the access control handlers, the querying and 

analysis functions were abstracted into an external 
analysis server that provides risk analysis as a service. 

Requesting access control systems (such as the Apache 

webserver implementation) submit requests to the 

analysis server specifying the type of desired risk analysis 

(source, target or system) and the attributes of the entity 

which the analysis should center on (in the case of the 

source and target analyses). Based on the risk assessment 

returned and the risk threshold that is assigned to that 

particular resource or action a permit or deny decision is 

returned by the webserver. 

 

VI. PRELIMINARY ACCESS CONTROL ENFORCEMENT 

RESULTS 

As mentioned previously, the focus of the current study 

is examining the infrastructure necessary for context data 

acquisition and evaluating the performance of such a 

system using real-time data. However, we will provide 

here a brief overview of some preliminary results from 
using context data in access control policy enforcement 

for the purpose of completeness. This set of testing 

results is designed to demonstrate results of testing the 

ABACUS framework integrated with an Apache 

webserver as the access control policy evaluation and 

decision point. This testing will take place with real time 

incoming requests. Three techniques were selected to 

respond to probable intrusive behavior: forcing 

(additional) authentication, restricting subject permissions 

and restricting object permissions. In order to effectively 

illustrate the effect of these techniques, a scenario was 

generated with a webserver traffic simulator and requests 

were sent to two different webservers: one using the three 

analysis modules described previously, and another only 

using the notion of the global system threat to trigger 

response techniques. Whereas validation of the risk 

model could be performed with a captured data set being 
replayed over the network, the use of the response 

strategies will require active connections to the access 

control system and hence demands live traffic. 

The traffic simulator creates an array of requesting 

nodes S where    is a member of S, each with an 

intrusiveness rating   , an inter-request period p and a 
total request life l. The webserver is arranged as an array 

of target resources T (where     is a member of T). Each 

   has a set of valid actions {          + and invalid or 

intrusive actions *         +. Every p seconds (or some 

randomized derivative of p seconds) request source    
selects a member of T and then based on its intrusiveness 

rating, selects either a normal or intrusive action to 

perform on the resource. Sources with a higher   , have a 
greater probability of selecting an intrusive action for 

each request. In practice, these intrusiveness or 

maliciousness ratings range from 0% to 90%.  

The risk analysis model was fixed for the simulation of 

the scenario detailed below. Vulnerability weightings 

were the following: high severity ( ( )   ) , medium 

severity ( ( )   ) and low severity ( ( )   ). The 

risk multiplier ( ) was set to 10, to provide a more 

noticeable difference between various assessments. 

In this intrusion scenario, a single intruder executes 

intrusive requests on several system resources - a method 
indicative of probing for which vulnerabilities have been 

patched or which configuration holes have been closed. 

The rest of the sources generating system requests are 

normal users - executing little or no requests that could be 

categorized as intrusive. The requests were generated 

over the course of a three hour simulation. The request 

trace for the intruder demonstrates that requests for 

different actions are denied based on his overall risk 

profile and eventually the intruder is locked out from all 

system requests. Meanwhile, requests from the other 

users are still permitted. A summary of the results for a 

simulation of this scenario are presented in Table . 

 
Table I: Simulation Results for Scenario 

Property Server 1 

(Source Risk) 

Server 2 

(System Risk) 

Total Requests 2472 2472 

Total Intrusive 

Requests 

230 230 

Intrusive Requests 
Denied 

229 179 

Percentage Denied 99.5% 77.8% 

Total Normal 

Requests 

2242 2242 

Normal Requests 

Denied 

16 1751 

Percentage Denied .7% 78.1% 

 

In this scenario all of the intrusive requests were from the 

single intruder. Server 1 began to deny requests from the 

intruder after their source risk passed the threshold of 45. 

The normal requests blocked by server 1 were also from 

the intruder. Once the system risk for server 2 passes the 

threshold, it begins to deny requests from all sources. 

 

VII. PERFORMANCE TESTING RESULTS 

A. Overview 

This section is designed to provide some insight into 

the issues faced when designing systems that use real-

time context data by examining various performance 

results. Two closely-related strategies for implementing 

the phases of acquisition and analysis were used and 
tested.  
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The first approach (referred to as version 1 of the 

framework) performed on-demand analysis: abstracting 

acquisition and analysis into different server mechanisms 

and performing the analysis by aggregating requests and 

deriving a risk assessment as new requests came in. 

Essentially, under the first approach, the acquisition 

server collects a set of intrusion detection alerts regarding 

various users and resources in the system but the data is 

merely stored in a database until there is a request from 

the data consumer (the access control system) to provide 

a risk analysis for a request source or request target. At 

that point the analysis server queries the database and 

returns a result. The set of results discussed as the first 
version of the framework are pertaining to this 

implementation.  

The second approach (referred to as version 2 of the 

framework) differs in that the analysis function is 

triggered by the arrival of new security events from the 

sensors and consequently, the analysis does not take place 

as a function of an incoming request from the consumer. 

Risk assessments are continually maintained for all of the 

entities in the system (all resources and known request 

sources) so data for previous risk assessments are cached. 

In addition, as new assessment data becomes available, 

those risk assessments are updated for the entities in that 

event. The set of results mentioned as version 2 of the 

framework pertain to this implementation. After offering 

performance results of each version separately, a 

summary and relative comparison of the two approaches 

is offered. 

B. Performance Testing Methodology 

In order to compare the performance of the final 

version of the ABACUS framework against the earlier 

version and also against a normal Apache webserver, 

each server was stress-tested. This part of the testing 

relied on a regression testing and benchmarking utility 

called Siege [7]. The basic aim of this testing was to 

examine the behavior of each server subject to increasing 

load. The following parameters were used in the testing 

process: 

• Number of clients - with the use of a wrapper for 

Siege called Bombard, the user is able to specify an initial 

number of clients an increment of how many clients the 

load should be increased by for each iteration and a total 

number of iterations (which also limits the maximum 

number of clients) 

• A set of URLs - the same URLs from the scenario 

testing were used (both normal and intrusive). They were 
placed in a configuration file and read into memory by 

the utility when it starts. The clients then randomly 

request one of the URLs in the file for each request. 

• Delay between requests - before each request, the 

client waits a random number of seconds between 0 and d, 

where d is the maximum delay between requests 

specified by the user 

By testing in this way, we hope to draw conclusions on 

the following: the degree of improvement provided by the 

second iteration of the ABACUS framework over the first, 

the point at which each of the server types become 

overwhelmed given the hardware constraints as well as 

the specific reasons that account for the performance 

differences. 

C. Performance of Initial ABACUS Framework (v1) 

These results summarize the overall performance of the 

framework using the analysis model discussed in [9] 

which aggregated previous events on-demand or when a 

new request came in that required the information. 

 

 
Figure 3: Time to Serve Requests - Scenario1 – All Requests 

 

 
Figure 4: Time to Serve Requests - Scenario1 – Only Intrusive Requests 

 

 
Figure 5: Time to Serve Requests - Scenario1 – Non-Intruder Requests 

 

In Figure , Figure  and Figure  the time to serve 

requests on Server 1 during scenario 1 is shown as the 

number of requests increases. For the collection of this 
data, the simulator was set to generate 3 hours of traffic 

from 10 different nodes, only one of them executing 

intrusive requests (scenario one as described above). In 

Figure  the time to serve is shown for all of the requests. 

In Figure , only the time to serve requests from the 

intruder is shown - this graph has the same linearly 

increasing pattern that is apparent when looking at the 

peaks of the graph in Figure . In Figure  the time taken to 
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serve requests from the non-intruder nodes is graphed. 

The time to serve these requests remained relatively 

constant throughout the entire simulation, oscillating 

between zero and one seconds. The reason that the 

increase only occurred for the intruder node is that when 

the webserver requests risk data on that node, there is a 

constantly increasing amount of event data to analyze. 

For the other nodes, there is no such increase of data to 

analyze and, as a result, requests are served in the same 

amount of time for the duration of the simulation. This is 

undesirable, however, and could potentially create a 

scalability issue in scenarios where there are more nodes 

with intrusive behavior. In order to ameliorate these 
performance issues, a caching scheme was devised to 

facilitate faster generation of risk data. 

D. Performance of ABACUS Framework with Recursive 

Analysis Model (v2) 

In the second version of the framework, the risk 

analysis method was changed to a recursive one that 

would only require one calculation each time new data 

came in. This allowed risk calculations to be effectively 

cached and reused in subsequent requests which led to a 

significant performance increase.  The performance 

analysis for the second version of the framework is 

shown in Fig. 6-9. 

 

 
Figure 6: Statistics for ABACUS Framework Version 2 - Time to Serve 

Requests for Webserver 

 

 
Figure 7: Statistics for ABACUS Framework Version 2 - Time to Serve 

Requests for Analysis Server 

 

 
Figure 8: Statistics for ABACUS Framework Version 2 - Time for Alert 

Server to Process Alerts 

 

 
Figure 9: Statistics for ABACUS Framework Version 2 - Time for Alert 

Server to Receive Alerts 

 

For the graphs in Figures 6-9, the following properties 

were used for traffic generation: 

• 100 Active Clients 

• 0-1 second randomized delay between requests 

• 10 Minute Duration 

• File size of 9.7KB 

• Traffic Rate: ~45,000 Requests Per Hour 

It is immediately noticeable from the graphs on version 

2 of the framework that changing when the analysis takes 

place (on consumer demand versus upon being provided) 

eliminated the increasing request service time that was 

seen in the graphs for the first version of the framework. 

The performance was more stable in the face of an 

increased number of requesting nodes.  The server was 

able to handle the load better and achieve higher 
throughput. 

E. D. Performance Comparison Between ABACUS 

Framework v2 and Ordinary Apache Webserver 

Fig. 10-12 summarize the server response, concurrency 

and transaction rate. time as seen from the client for three 

different server types: 1) a normal Apache webserver, 

with no integration of risk information, 2) an Apache 

webserver integrated with the first version of the analysis 

framework as discussed above (ABACUS Server v1) and 

3) an Apache server integrated with the final version of 

the analysis framework (ABACUS Server v2).  Fig. 13-

15 present the same server comparisons, only with a 

larger randomized delay between subsequent requests. 

Server response time is the time between when a client 

initiates a request and when the server begins to respond 

with data. Concurrency is the number of clients the server 
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can handle simultaneously. Transaction rate is the 

number of requests which the server can successfully 

fulfill within a given amount of time. Both sets of graphs 

demonstrate that the server response, concurrency and 

transaction rate of the plain Apache webserver was higher 

than the ABACUS v2 server and that it, in turn performed 

better than the ABACUS v1 server. 

For the first set of tests, the maximum number of 

clients which the ordinary Apache server could handle 

was approximately 310: at this point the response time 

spiked significantly and both the concurrency and 

transaction rate dropped off indicating that the server 

stopped responding.  For the Abacus v2 server the 
maximum number of simultaneous clients was 

approximately 100 – the server indicated the same failure 

behavior, only the failure occurred much earlier. The 

point of failure for the Abacus v1 server was around 30 

clients. 

When the request delay was increased the estimated 

load of the normal Apache server increased its processing 

load to approximately 360 clients of the hardware being 

used for testing.  The Abacus v2 server also increased its 

performance to approximately 220 clients and the Abacus 

v1 server only increased its performance marginally to 

approximately 35 clients. 

 

 
Figure 10: Server Comparison - 0 to 1 Second Delay Between Requests 

- Response Time 

 

 
Figure 11: Server Comparison - 0 to 1 Second Delay Between Requests 

- Concurrency 

 
Figure 12: Server Comparison - 0 to 1 Second Delay Between Requests 

- Transaction Rate 

 

 
Figure 13: Server Comparison - 0 to 10 Second Delay Between 

Requests - Response Time 

 
Figure 14: Server Comparison - 0 to 10 Second Delay Between 

Requests - Concurrency 

 

 
Figure 15: Server Comparison - 0 to 10 Second Delay Between 

Requests - Transaction Rate 

 

F. Results Analysis and Discussion 

It would be difficult to say that the first version of the 
framework (before changing the analysis approach) could 

realistically support any number of users for an extended 

period of time. As shown in Figure  the time to serve 
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requests for the first version of the server was increasing 

even when the number of simulated clients was held 

constant. The performance determinant for the first 

version of the framework was the number of requests: 

increasing the number of simulated clients just caused the 

number of requests to increase more rapidly. The time to 

service each request was linear in the number of requests 

that the server had received up to that point. The caching 

approach allowed for a constant time to serve each 

request, but at the expense of data accuracy, where the 

algorithmic complexity was still the same. 

The ABACUS Framework v2 was able to serve 100 

simulated clients with a response time close to that of the 
Apache (5.16 seconds and 1.73 seconds), respectively. A 

critical factor, however, was that at this load the 

ABACUS Framework was maintaining the request 

frequency without a noticeable increase in processing 

time during the duration of the test, as demonstrated by 

Figure . Therefore, it is likely that the resources of the 

server machine were exhausted when the test moved to a 

higher number of simulated clients (110). The Apache 

webserver limits the number of forked client processes to 

256 by default (this limit is compiled into the software). It 

appears based on the data that the server resources were 

exhausted by the increasing number of forked client 

processes being created by the Apache server. During 

testing, this led to incidences where the server machine 

locked up and required restarting. The Apache server 

access logs during these tests demonstrated that some of 

the requests for analysis data from the webserver access 

control modules were being denied due to increasing load; 
at the same time, however, the Apache web server was 

still accepting and queuing new client connections. In 

summary, the testing failure of the ABACUS Framework 

was due to the difficulty in controlling server resources: 

in particular of effectively limiting the incoming client 

connections in the face of increased concurrency and 

therefore increased response time per request. In order to 

remedy this, a rate limiting mechanism was built into the 

ABACUS Framework v2 whereby once a certain number 

of requests are queued, the server begins to deny 

incoming requests for risk data until more worker 

processes become available (to avoid forking too many 

processes to serve requests). A normal webserver 

performs the same function only it is able to determine 

the point at which to limit requests based solely on server 

resources whereas the mechanism built into the ABACUS 

framework did so based on the number of requests 
waiting for risk data. It was expected that there would be 

some performance penalty due to the additional 

processing required to achieve context-sensitive policy 

evaluation: it is an important finding to be able to 

quantify that penalty. 

With that said, the peak transaction rate for the 

ABACUS Framework v2 was still 15.53 transactions per 

second at a response rate of 5.73 seconds. This roughly 

equates to 931.8 transactions a minute, 55,908 

transactions an hour and 1,341,792 transactions per day.  
 

 

Figure IV: Estimated Peak Performance of ABACUS Framework With 

Current Hardware 

Transactions/Sec Response 
Rate (sec) 

Transact/Hr Transact/Day 

15.53 5.73 55,908 1,341,792 

 

Based on this data, we can conclude that the proposed 

approach could be implemented in a large, high traffic 

website - particularly with dedicated server hardware 

providing increased performance. 
The data also demonstrates that failure of a similar 

nature occurs for the Apache web server in isolation. 

Because there was a slower growth in response time per 

request, the Apache server in isolation was able to handle 

a greater number of client connections before failure, but 

when the failure happened, it manifested with much the 

same behavior as was displayed when testing the final 

version of the ABACUS Framework. 

 

VIII. CONCLUSION AND FUTURE WORK 

Extensive testing and multiple iterations of the 

ABACUS framework led to the conclusion that although 

the process of context-aware or adaptive decision making 

may be abstracted into three processes (data acquisition, 

analysis and application), the instantiation of those 

processes into actual software modules is highly 

application dependent. The best performance was 
achieved with an implementation that virtually joined the 

acquisition and analysis phases, such that all of the 

analysis tasks were performed as new data was acquired. 

The initial strategy of generating the analysis data when it 

was requested by the client proved to be prohibitively 

slow given the amount of data being generated in the 

system and the frequency of requests.  

Another key challenge was how to design an attack 

response that was tempered and still effective. We chose 

to use a strategy of restricting access permissions as the 

response to likely intrusive behavior by attaching risk 

thresholds to permissions on the controlled resources. A 

risk assessment was synthesized from the provided data 

on vulnerability exploitation attempts in order to provide 

a quantifiable measurement of the changing state of 

system entities in relation to their prospect of being 

attacked. Because the risk assessments were calculated 
for individual system entities, the assessment data also 

allowed for more granular responses. 

The actual results of the attack simulations showed a 

marked improvement for the ratio of intrusive requests 

that were denied using the risk assessments. In the 

scenario that simulated an attacker performing 

vulnerability probing against the webserver, 99% of the 

intrusive requests were denied, while only .7% of the 

normal requests were denied. In the case of multiple 

intruders for one target attack, the framework denied 93.5% 

of the intrusive requests while only denying 9.2% of the 

non-intrusive requests. Even in the scenario of multiple 

intruders on multiple resources, where authentication was 

employed as a response, more intrusive requests were 

authenticated than non-intrusive ones (93.5% to 87.9%, 
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respectively), leading to a more efficient use of resources 

over the approach of authenticating all requests in 

situations of elevated risk. 

This approach also proved feasible from a performance 

perspective. The testing results showed that the 

framework, given less than optimal server resources, was 

able to receive and process requests at a rate equivalent to 

over 1.3 million per day, exceeding the processing 

requirements for many high traffic domains and web sites. 
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