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Abstract: Cloud computing refers to a high-level network architecture that allows consumers, authorized users, owners,
and users to swiftly access and store their data. These days, the user's internal risks have a significant impact on this cloud.
An intrusive party is established as a network member and presented as a user. Once they have access to the network,
they will attempt to attack or steal confidential information while others are exchanging information or conversing. For
the cloud network's external security, there are numerous options. But it's important to deal with internal or insider threats.
Thus, in the proposed work, an advanced deep learning with optimized missing value imputation is developed to mitigate
insider thread in the cloud system. Behavioral log files were taken in an organization which is split into sequential data
and standalone data based on the login process. This data was not ready for the detection process due to improper data
samples so it was pre-processed using Multivariate Imputation by Chained Equations (MICE) imputation. In this
imputation process, the estimation parameter was optimally chosen using the Golf Optimization Algorithm (GOA). After
the missing values were filled, the data proceeded to the extraction process. In this, the sequential data are proceeded for
the domain extractor and the standalone data are proceeded for Long Short-Term Memory-Autoencoder (LS-AE). Both
features are fused to create a single data which is further given to the detection process using Jordan Neural Network
(JNN). The proposed method offers 96% accuracy, 92% recall, 91.6% specificity, 8.39% fall out and 8% Miss Rate. The
results showed that the recommended JNN detection model has successfully detected insider threads in a cloud system.

Index Terms: Cloud Computing, MICE, Behavioral Log Files, Golf Optimization Algorithm, LS-AE and Jordan Neural
Network.

1. Introduction

Cloud computing is becoming more and more popular, but security concerns are the main thing holding it back [1].
Security was the first major cloud difficulty, according to a recent Right Scale poll done in 2015; compared to the previous
year's survey, there is now more worry regarding this challenge [2]. Furthermore, the INFOSEC Research Council asserts
that insider threats present some really difficult difficulties. In the era of cloud computing, insider danger has started to
affect this industry as well. The Cloud Security Alliance studies, which rank insider attacks among the worst dangers to
cloud computing, corroborate this observation [3]. Insider threats are turning into a significant security risk for a lot of
businesses. It is commonly understood to be described as malevolent insider acts carried out in a secure setting, frequently
resulting in information theft, electronic fraud, and system sabotage. As a result, it could be detrimental to people,
institutions, and national security.

Insider assaults fall into three basic categories: fraud, disruption of IT resources, and theft of intellectual property or
secret information [4]. The manner in which insider assaults are carried out varies based on numerous variables, which
contain the nature of the attack and the insider's degree of access. An insider who wants to steal intellectual property will
attack in a different way than someone who wants to undermine business resources. Additionally, because insider attacks
differ in execution and aim, there are several kinds of signs of insider danger [5]. Examples of telltale signs of insider
fraud include atypical or regular access to personnel and financial data. However, the download of executable files and
the deletion or manipulation of files (data integrity) are signs of possible IT sabotage. A shift in an insider's typical conduct
is a common indicator of insider danger. The maximum amount of false positives as well as the inclusion of non-technical,
human elements of the issue are two of the primary hurdles in identifying insider threats [6]. Threat detection techniques
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can be used to identify malicious or incorrect nodes within the business, but doing so becomes a very difficult and complex
operation. Here are the explanations. Initially, insiders utilize their trusted access to perform illicit actions. As such,
firewalls, intrusion detection, and anti-virus software do not identify the attacks using external network security devices
[7]. Second, there are several ways that an insider attack can appear, including when a dissatisfied worker plants a logic
bomb to cause system disruptions or steals intellectual property for their own benefit. The variety of insider attacks makes
identifying insider threats more difficult. Last but not least, insider threats are frequently carried out by insiders during
business hours, leading to abnormal insider behaviors sporadically distributed throughout a significant portion of typical
working behaviors. As such, it makes insider threat identification more challenging. Every method now in use has certain
drawbacks, and many of the methods are unable to identify precise insiders [8]. As a result, it's essential to research the
shortcomings of the internal attack algorithms that are now in use and find solutions.

Deep learning and machine learning approaches have recently been able to solve most cloud network security
problems. Identifying user behavior from many angles is one of them that is extremely motivating to find a better solution.
Organizations want real-time solutions, but conventional methods like Artificial Neural Networks (ANN) [9], Deep Belief
Networks (DBN), Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) [10] are inadequate.
Moreover, given the variety of attack types, there is a strong need for machine learning algorithms that are both quick and
efficient. Consequently, identifying, categorizing, and countering these insider threats calls for an efficient and successful
strategy. So in the proposed work, an optimized neural network-based insider threat detection strategy is introduced to
overcome the above-mentioned impacts. The collected organized data’s missing data are filled using optimized
Multivariate Imputation by Chained Equations (MICE) missing value imputation. Then using LSTM-autoencoder (LS-
AE) and domain knowledge to extract the features, which is further concatenated to give the Jordan Neural Network
(JNN). In this case, the JNN context units are also called the state layer, and they receive their feed from the output layer
rather than the hidden layer. In this way, the proposed model was utilized to detect the insider threat in cloud computing.
The main objectives of the proposed model were shown as follows;

«  An advanced Jordan neural network with an optimal MICE framework was developed to detect insider threads
in cloud systems.

«  Collected behavioural log files are categorized into standalone activities and sequential activities.

. Filling the missing values in the gathered data using an optimized MICE approach, thus improves the prediction
accuracy of the classifier.

. Extract the features from the pre-data using two methods domains based and LS-AE and these extracted data
are concatenated to single data.

« A JNN classifier is utilized to detect the insider thread based on the extracted data.

The manuscript's remaining sections are broken down into the following sections: Section 2 reviewed a recently
created insider thread forecast. A description of the suggested insider thread prediction process is provided in Section 3.
Section 4 contains the findings and analysis of the suggested work, and Section 5 defines the proposed work's conclusion.

2. Literature Review

Due to their existence below enterprise-level security defences and their frequent privileged network access, insider
assaults are challenging to detect and prevent. Several thread detection models were introduced based on the growing
technology, and a few techniques were reviewed as follows.

Le and Zincir-Heywood [11] developed a solution for many data granularity levels of abnormal behavior and insider
threat identification based on user-centred machine learning. The goal is to support the cyber-security predictor during
every stage of data observation and evaluation for insider threat forecast, including detection, pre-processing, and
identification of behaviour based on machine learning, and result analysis. They could, however, also result in an average
of the actual malevolent acts and necessitate a lengthier reaction time in the event that insiders are discovered. Muhammad
Mehamood, et al. [12] suggested an ensemble machine learning-based system for insider threat detection and
classification. Additionally, it created a methodical way to recognize different abnormal events that could indicate
anomalies and security issues related to privilege escalation. That dataset is subjected to the application and analysis of
four machine learning algorithms: Random Forest (RF), Adaboost, XGBoost, and LightGBM.

Suganya, M., & Sasipraba, et al. [13] developed the detection and prevention of unwanted cloud access using a
combination of blowfish encryption and stochastic gradient descent long short term memory. The three stages of the
proposed system were user registration, intrusion detection, and intrusion control. In addition to preventing unwanted
cloud access, the SGD-LSTM classifier forecasts cloud data access. Cloud data access was controlled during the data
access phase by using the Blowfsh encryption technique to verify the identity of the permitted user. Elmrabit et al. [14]
suggested a method to estimate the likelihood of malevolent insider threats before a breach occurs. First, a fresh paradigm
that incorporates organizational, technical, and human aspect viewpoints for insider threat risk prediction. Second, model
and apply the suggested framework using a Bayesian network. But this strategy isn't a complete fix for the issue.

Meng et al. [15] represented to identify potentially harmful devices in MSNs and create an intrusion detection method
based on behavioral profile and trust. By determining the variation in Euclidean distance among two behavioral profiles,
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a node's reputation can be assessed. One way to assess a node's reliability is to find the differences between its previous
and current profiles. However, their method relies on the assumption that peers can be trusted, which leaves room for
insider attacks. Bu and Cho [16] introduced a database intrusion detection system using a Convolutional Neural-Based
Learning Classifier System (CN-LCS) depending on the RBAC principle. The integration of modelling procedures and
rule generation in CN-LCS has been quantitatively compared using paired sampled t-test analysis and 10-fold cross-
validation tests. However, this model had high computational needs and required a significant quantity of labelled training
data.

Hong et al. [17] represented a comprehensive feature engineering system that combines manually chosen and
automatically derived features, all based on everyday actions. A residual hybrid network with CNN and GNN is also
suggested, in addition to an organizational graph with nodes representing a user-day mixture, in order to enhance detection.
But improving performance doesn't just mean putting parts on top of one another. Le et al. [18] developed a machine
learning-based approach to user-centered insider threat prediction. In order to identify hostile insiders as well as malicious
activities, data is analyzed at various degrees of granularity under realistic situations using ML. Organizational contexts
can yield a vast array of data in a number of formats and sources. However, the model causes overfitting when the
parameter value is really low.

Chadwick et al. [19] suggested a cloud-edge data sharing system with a five-tiered trust architecture. The data owner
can choose a suitable trust level and CTI refinement strategy to alter the CTI data already making it available for
investigation. The techniques can include homomorphic encryption, pseudonymization, and anonymization, as well as
plain text. Sheykhkanloo and Hall [20] introduced insider threat detection using a widely used balancing method called
spread subsample on a dataset that is very imbalanced. It consists of several steps, each with a different set of duties,
including data cleaning, transformation, integration, reduction, and discretization. However, there hasn't been a thorough
enough investigation into the significance of an unbalanced dataset.

Rabbani et al. [21] developed a probabilistic neural network for recognition and detection based on particle swarm
optimization. Using a multi-layer neural network, the initial module for the detection procedure classified and identified
the dangerous behaviors after meaningfully converting the user behaviors into a comprehensible format. Effective linear
feature reduction approach PCA has the advantage of enhancing detection accuracy while needing less processing time,
memory storage, and data transmission than other techniques. But occasionally, the system saw remarkably identical
aberrant behaviors that interfered with its ability to recognize. Bouchama and Kamal [22] suggested a network traffic
patterns can be behaviorally modelled by a machine learning system to improve cyber threat identification. The threat
categories can subsequently be labelled by classifiers using anomalies that unsupervised models have identified. In order
to counteract biases and increase overall forecast accuracy, assembling aggregates the detection results from several
distinct models. That being said, the model is complicated and could lead to black boxes.

The above-mentioned literature has numerous techniques for detecting insider thread in a cloud environment.
However, those models have some shortcomings in terms of achieving better results are longer reaction time [12],
vulnerable for insider attacks [15], Needs a large amount of labelled data [16], imbalanced dataset [20], highly similar
abnormal activities that affected the performance [21], and complex risk design [22]. To overcome these impacts a novel
deep learning with missing data imputation based insider threat detection is proposed. The section that follows provides
the description, operational states, and numerical modelling of the suggested model.

3. Proposed Methodology

Platform as a Service (PaaS), Infrastructure as a Service (IaaS), and Software as a Service (SaaS) are the three service
models available for cloud computing. By offering a platform for application development and execution, the PaaS model
makes life easier for users. Hosting servers, managing networks, and other resources for clients are just a few of the
massive infrastructures that laaS maintains to provide services to users. Installing and managing software services on
one's own computer is a worry-free experience for users of the SaaS model. Attacks known as Denial of Service (DOS)
or Distributed Denial of Service (DDOS) can cause data, applications, and services to become unavailable. So, in this
proposed approach JNN based effective defensive strategy is developed against these kinds of attacks. The overall
working process of the proposed model is illustrated in Figure 1.

Initially, the organization’s behavioral log is collected and split into two groups based on sequential and standalone
activities. These data are pre-processed using MICE imputation values, in this the correct value of the estimation
parameter was optimally chosen using the Golf Optimization Algorithm (GOA). The pre-processed data are further
extracted using two methods, that is the standalone data are extracted using domain knowledge and the sequential data
are extracted using LS-AE. The encoder portion makes up half of the LSTM auto-encoder, while the decoder portion
makes up the remaining portion. The features of the input data were retrieved using symmetrical network of two LSTM
layers. Based on the extracted data the insider threads were detected and aware of the organization using JNN. The
modelling of the proposed insider thread detection is provided in below.
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Fig.1. Architecture of proposed insider thread detection

Data Collection and Splitting

In the proposed work, a behavioral log files were taken for detecting insider thread users in a cloud system. Accurate
data from behavioral log files is available to companies to assist them comprehend user behavior in real time. It is possible
to gather these behavioral records utilizing remote servers and a client computer. Sequential and solo actions are the two
categories into which these collected data are divided. To save processing time and improve prediction accuracy, the
splitting data are pre-processed. Pre-processing process was clearly stated as follows,

Optimized MICE Imputation

A method for multiple imputation is known as Multivariate Imputation by Chained Equations (MICE) is comparable
to fully conditional specification (FCS) for handling missing data. Using informed assumptions and modelling each
variable with missing data based on its distribution is known as MICE [23]. The three steps that make up the
implementation approach are:

«  Imputation phase
« Analysis phase
«  Pooling phase

Several imputed datasets are produced when the imputation process uses imputed missing data (m > 1).
Subsequently, every m imputed dataset undergoes a separate analysis in the analysis phase, employing a conventional
statistical technique to extract parameter values and standard errors. Utilizing the total of the estimates and standard errors
for the m points for each research project, the pooling stage produces a total estimation and average errors. P; can give
the estimated parameter based on the i dataset. Next, by using Eqn. (1), the pooled estimates of the parameter P can be
produced,

= 1
P ==-%i-1nP (1)
The variance within-imputation is shown as V,
= 1
V=—Xi1nV; 2
where the projected variance is averaged for each imputed dataset. The variance estimates obtained from the i dataset

are denoted by V;. Imputation variance W, which is a different values that were imputed for different imputed datasets,
can be expressed using eqn. (3).

W =YL (P, — P)? 3)

n-1

The variance of the combined estimate is the weighted sum of two imputation variances (V), among imputation
variance (W), and can be written as Eqn. (4).

Var(P) =V + (1 + %) w 4)
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where (%) is a representation of a correction for the unpredictability linked to a finite number of imputations. V; is chosen

as a constant value in this operation, which results in erroneous missing value filling. This is a statistical inference issue
where the variance of an unknown distribution has to be estimated as a point estimate using a sample. Therefore, it was
best to fill the values as needed. The Golf Optimization Algorithm (GOA) is utilized to select the ideal estimation
parameter value in MICE, which enhances the performance of MICE by reducing error.

Golf Optimization Algorithm

Golf is an outdoor activity or sport that is played on individual or team layouts with specialized clubs that require
skillful management. The fundamental principles of this game demand that it is essentially an artistic endeavor in which
a ball is launched from its starting point in the direction of a faraway hole. This activity, which is played with deliberate
strokes and is subject to a set of rules, is golf's ultimate form. Beneath this seemingly simple exterior, though, the rules
of the game introduce subtleties that create an increased degree of difficulty. The strategic dexterity needed to direct the
golf ball into the waiting hole is essential to this endeavor. This tactical dance, an exercise in intelligence, is a source of
motivation for the development of an innovative metaheuristic algorithm. The GOA was modelled after this exact tactic,
with its features neatly incorporated within a methodical framework. This strategic dance finds embodiment in the GOA,
where its complex movements are outlined and its theoretical foundations are solidified by thorough mathematical
modelling. Utilizing this tendency to determine the variance estimator's ideal solution [24].

Initialization

GOA is a population-based approach that finds relevant solutions to optimization issues by randomly searching
through its members' membership in the problem-solving space. The location of the GOA members within the problem
search space determines the values of the problem variables.

Vi = Vi Viz! 'Vln (5)

1'
Where, n denotes the number of population.

Objective Function

To identify a solution to a specific issue that is almost as good as the desired problem, an objective function known
as a fitness function is employed. The Mean Square Error (MSE) is utilized to measure fitness in this case. A smaller
mistake is nearer the target values of the controller system.

] = Z?:llyr(t) - Pnl (6)

where, P, denotes the observed value of each population set, y,.(t) denotes the reference value, and J represent MSE.
Updation

Following the completion of the algorithm's fitness function phases, GOA starts updating the population members.
The population of GOA is updated in two stages: exploitation and exploration. The best ideal value is determined by
updating each iteration value.

Phase 1: Exploration

The best member's position is referred to as the "hole" in GOA. This approach covers a variety of search spaces,
demonstrating the GOA's capacity for exploration in a worldwide search.

P1 P1 :
Xi={Xi' F/* < F, o

X, else
Where, X! denote the newly determined GOA member's status depending on the exploration stage, F/'* denote
objective function value, and X; is ith position GOA member.
Phase 2: Exploitation
This tactic makes it possible to thoroughly search the area where each GOA member is situated, demonstrating the

GOA's potential for exploitation in local searches.

¥ {X{’Z, FP? < F,
o, else

®)

Where, F[? is its objective function value, X/ indicate the ith GOA member's updated determined status based on
the exploitation phase, and X; is ith position GOA member.
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Termination

It is the last procedure, and it happens once the best solution has been found. After filling the values, both sequential
and standalone activities are extracted using LS-AE extraction.

Feature Extraction

There are two subtle ways that bad insiders could reveal themselves in their behaviour. First, if an activity in a daily
schedule deviates greatly from the norm, it may be a sign of a threat. An example of this would be the first logon time.
Secondly, the tasks completed by an employee would take place in a time series that naturally generates a succession of
events during a single workday. A sequence of activities that has a distinct pattern from others may also be a useful signal
for detecting insider threats.

Domain Extraction

Based on subject expertise, elements of stand-alone activities are chosen for every user-day. The result of this manual
selection is the output feature matrices for every user day from this data stream, which is represented as
X, (X, € R™*4m) where d,, is the amount of manually chosen attributes for each user-day and n is the overall amount

of user-day combinations. The manual feature vector for a given user-day might be written as x,(,? € R4 (ie{1,2,...,n}).

LS-AFE Extractor

Regarding consecutive actions, created an auto-encoder that automatically extracts valuable characteristics using a
popular LSTM model. One must first select a predetermined input sequence length L in order to use the LS-AE; the real
sequence then filled to its length L. Every daily action sequences is encoded as S = {s;,s,, ... 5.} afterwards one-hot
encoded, where S® € R™4s(i € {1,2, ...,n}) and d, denotes encoded activities dimension. This S@ sequence is what
our autoencoder receives as input. The encoder portion makes up half of the LS-AE, while the decoder portion makes up
the other half. Figure 2 shows the Structure of LS-AE extraction.

- (IEN -7 =
Z |0 P BN
a jpo4 N g VoL@
\ ‘o \ x 0 RN
v \ ' \
} \ o \ / vl }
/ \ “ / v/ v \ ,’ / \
2 V! \\ / \ ,’ \y 2
\/ \/ \y ‘\r
1
v A n ,‘( N v
K \ I\ ! \\ I\ o
\ 1 o
! /o ! a °
\ \ / |
i I [ /o ;o ¥
I / b \ [
TN |y [ \ Y RV
/ /- FC AN Vi e
=8 i - 2
| ~_\ -
- FC FC
/ ncod” “‘“Ddt‘f\

Fig.2. Structure of LS-AE extraction

S® ={s,,s,,.. 5.} is each sequence that is fed into the LS-AE throughout the training process. The output S; =
{81, 85, ... §.} in decoder is subsequently contrasted at the raw input sequence. Through reducing the variations among S;
and S;. Given that the trained encoder automatically generates such features, afterwards training at every sequence S®,
the feature that was retrieved from the output of the encoder component will be displayed as x € R%(i € {1,2, ...n}),
where d, stands for automatic feature’s dimension. The automatic feature matrix of sequential activities, or X, is
obtained by summing the involuntary features at all days. Here, n signifies the number of user days, X, € R™*%,

Feature Fusion

At the ultimate phase of feature production, characteristics derived from both automated and manual methods are
combined to create the ultimate behavioural feature,

X, = fusion (X,,,, X,) ©)

Where, X, € R™(@m*da) s 3 final behavior feature matrix in all days. The dimensions of every feature vector are
d,, + dg. The behavioral traits for the ith user-day could be expressed as follows: x; € R(4m*da) where i € {1,2, ..., n}.

Jordan Neural Network

Jordan neural network (JNN) is similar to a feed forward network that only has one hidden layer; the context layer
is added. As opposed to the concealed layer, the context units receive their feed from the output layer. The state layer is
another term for the context units in a Jordan network. They consistently feel a connection to themselves. The output
layer, hidden layer, input layer, and context layer are four components which develop JNN. The information from the
output layer is stored in the context layer due to a first-order delay operator at a link between two layers [25]. Linear and
nonlinear activation functions are the two different forms of activation functions in neural networks. In this study, the
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hidden layer uses a sigmoid nonlinear activation function and the output layer is considered as linear function that is
represented as f(x) = 1/1 + e™*. Figure 3 displays the Jordan neural network topology.

Fig.3. Architecture of NN topology

X(@) = (x(t), x(t — 1), x(t — 27), ..., x(t — (m — 1)1))7 is utilized to denote the input vector of NN, where t =
n,n +1,..,naswellasn; = 1+ (m — 1)t.h(t) = (h,(t), hy(t), ..., h,(t))T denote the hidden layer’s output vector.
(Wiﬁl))(i =1,2,..,r,j=1,2,..,m) signifies weights from the input neuron to ith first hidden layer neuron. (Vl/i](-z))(i =
1,2, ...,7) indicates weights from context layer neuron to ith first hidden layer neuron. (Wi}g))(i =1,2,...,r) denote

weights from ith hidden neuron to output layer neuron. (bi(l) )(i =1,2,...,7) signifies biases of hidden layer neuron.
b@and b® are biases of the output layer and context layer, individually. f @ and f® are activation functions of the
output layer and context layer, individually, and it were usually linear function, while fi(l) (i =1,2,...,r) are hidden layer
neurons and activation function. h;(t)(i = 1,2, ...,r) denote value of the hidden layer neuron. d(t) and y(t) are the

value of the context layer and output layer. The following indicators will be covered in order to write effectively and with
ease:

(W)
wo = (VVi]('l)) = (V'/g(l)) i=12,..,15=12,..,m (10)

)
WD = (2DP)imrz,.r = (@, @F, ., D) (1)
W = (DP)ic1zr = (@, @F, ... BP)T (12)
@O = (WP, Y, .., DT (13)

JNN is obtained as:

h(®) = OPXO + @QPd©) + (D), 1<t<Ti=12,.r (14)
y(©) = FOE WOh@) +b®), 1<t <T (15)
d) = f@(ad(t —1) +y(t —1) +b®),1<t<T, d(0)=d(1)=0 (16)

The Takens embedding theorem yields the following equation:
2+ 1D =y =g(x®), (17
Where 2(t + 1) denote the fitting value of JNN at time ¢t. The smooth mapping g is stated as in
g(X(®) = FOEW® FPWDxE) + WP (ad(t — 1) +y(t — 1) +b®) + b)) +b@)  (18)

Based on the concatenated features, the insider thread was detected. The performance of the proposed JNN based
thread prediction is shown in the below section.
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4. Result and Discussion

In this section, JNN with an optimized MICE model was developed to detect insider thread in a cloud system as per
the behavioral log data. One of the biggest obstacles to protecting computer networks and systems is insider threats. It is
the responsibility of organizations to maintain the security of their network layers and to stop breaches at all levels. So in
the proposed work, behavioral data are gathered from an organization to detect the insider thread to aware the users. The
proposed model was implemented using MATLAB/Simulink 2021b software with Intel Core i7 CPU, NVIDIA GeForce
RTX 3070 GPU, and 64GB RAM. The dataset used to analyze the proposed model was discussed as follows.

Dataset Description

A group of synthetic insider threat test datasets which offer both malicious actor and background synthetic data. A
set of synthetic insider threat test datasets was created by the CERT Division with support from DARPA 120 and in
collaboration with ExactData, LLC. These datasets offer data from artificially generated harmful actors as well as
synthetic background data. The datasets are organized according to the data generator's release date. Many datasets are
included in most releases (e.g., r3.1 and r3.2). A superset of the data creation capabilities from prior releases is typically
included in later editions. A readme file that includes comprehensive notes about the features of that release is included
with every dataset file [26]. It also uses NSLKDD [27] and UNSW-NBI15 [28] dataset for insider threat detection. The
four distinct clusters that represent the four prevalent assault types are created by analyzing and classifying the NSL-KDD
data set. An extensive analytical analysis is conducted on the training and test data sets. Here is the train and test data set
of 20%. Duration, protocol type, service, flag, src_bytes, dst bytes, land, incorrect fragment, urgent, and hot are the
parameters taken into account when training the classifier. The UNSW-NB15 dataset contains nine different types of
attacks. The IXIA PerfectStorm program in the UNSW Canberra Cyber Range Lab was used to build the raw network
packets for the UNSW-NB 15 dataset. This produced a mixture of real modern normal activities and synthetic
contemporary assault behaviors.

Using this dataset to split the sequential and standalone behavior, then the missing value in the dataset is filled using
an optimized MICE approach. After that, the filling data are extracted individually through the use of domain knowledge
and LSA extractor. The extracted data are further proceed to the INN classifier for predicting the insider thread in the
cloud system. The overall performance of the proposed model was discussed as follows,

Table 1. Parameter for GOA

Parameters Values
Search agents 30
Max iteration 100
Higher limit 50
Lower limit 5
r (Random value) 0.5
1 (situation parameter) 2
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Fig.4. Convergence curve of optimized MICE

The simulation parameters utilized for Golf Optimization Algorithm for this proposed approach is given in Table 1.
Search agents, max iteration, upper and lower limit are considered as a numerical values. r denotes the random value
selected between 0 and 1, here 0.5 shows better outcome. I am the parameter used to simulate the situation whose value
is set at 1 and 2. Value of 2 indicates better exploration ability.
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The convergence curve of GOA with the existing model comparison is shown in Figure 4. It shows the proposed
GOA provide a better solution at a low error of 1.2, but the existing Osprey optimization algorithm (OA) offers at error
of 3 and Black Widow Optimization (BWO) provide an error of 5. Thus demonstrate the overall error values is reduced
to select the optimal solution of the MICE parameter.
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Fig.6. ROC of proposed model

A comparison of accuracy throughout multiple training epochs is displayed in Figure 5 (a). This proposed classifier's
accuracy value is 97% because its epoch is 50. Raise the epoch value to improve the training accuracy of the suggested
model. Similarly, an accuracy comparison over multiple validation epochs was noted. This proposed classifier has 50
epochs, which results in an accuracy value of 96%. Figure 5(b) illustrates the training loss, which is calculated by
deducting the accuracy value from 100. The suggested JNN offers superior training performance, as evidenced by both
accuracy and loss in training period values. After analysis and observation, the validation loss is found to be 0.4% for the
validation period at epoch 50. The suggested NN offers an improved validation performance, as proven by both accuracy
and loss in validation period values.
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A measurement technique for identifying issues and providing insider thread diagnosis is the ROC curve. The
probability curve that contrasts the detection rate with the false positive rate at various threshold levels is displayed in
Figure 6. Consequently, demonstrates that the recommended method performs better when separating insider threads
from normal threads. Thus, demonstrates that the suggested model provides improved prediction performance.

Comparison Analysis

The suggested JNN is contrasted with current classifiers such as deep belief network (DBN), long short-term memory
(LSTM), and Deep neural networks (DNN). Table 2 demonstrates the parameters with its ranges of proposed JNN and

existing approaches.

Table 2. Parameter with its ranges of proposed and existing methods

Parameters Methods Ranges
Activation function tanh
Dropout INN 0.2
Loss function MSE
Activation function tanh
Dropout LST™M 0.3
Loss function MSE
Bath size 5
Learning rate DBN 0.1
Transfer function Sigmoid
Hidden layer 4
Activation function DNN Soft sign
Loss function MSE

The performance metrics utilized for evaluation between proposed and existing classifiers are precision, accuracy,
recall, specificity, error, FOR, FDR, NPV, F1_Score, FNR, MCC, and FPR.

100 A

Accuracy(%6)
s 8 8

]

Fig.7. Comparison of accuracy

The accuracy of the proposed and suggested approaches is shown in Figure 7. The ratio of precisely predicted points
(predicts) to all of the correct predictions ultimately essential. Its value is in the interval of 0 to 1. The accuracy of the
suggested technique is 96%, whereas that of LSTM is 91.4%, DBN is 86.2%, and DNN is 84.6%. The suggested model
is more effective when compared to current techniques. The Positive Predictive Value (PPV) of the suggested and used
approaches is shown in Figure 8. Because it indicates the likelihood that a positive test would actually represent the
underlying illness, PPV is another indicator of a biomarker's performance. The PPV of the suggested approach is 94%,
while that of LSTM, DBN, and DNN is 86%, 79%, and 83%, respectively. The comparison shows that the proposed
approach outperforms conventional models in terms of PPV.
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Fig.8. Comparison of PPV
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Figure 9 compares recall for suggested and existing methods. T Recall is calculated by dividing the number of
positive samples which were correctly classified as positive by the overall number of positive samples. Compared to other
existing methods like LSTM, DBN, and DNN, which have recall values of 83%, 85%, and 78%, the proposed JNN has a
recall value of 92%. Figure 10 compares the selectivity of recommended and current techniques. The capacity of a model
to forecast true negatives for every category that is accessible is measured by its specificity. Compared to some of the
other existing techniques, such as LSTM, DBN, and DNN, which had comparable specificity values of 88%, 83%, and
91.679%, the recommended method's specificity value was found to be 91.6%.
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Fig.12. Comparison of FOR

Figure 11 illustrates the negative predictive value (NPV), this represents the proportion of individuals who received
a negative diagnosis to all participants who had negative test findings. The new method's NPV is 93.7% that of the current
one. It is 84% for LSTM, 88% for DBN, and 86% for DNN. It is evident from this that the suggested model provides a
better solution than the conventional models. Figure 12 makes the erroneous omission rate of the suggested and current
comparison very evident. The percentage of negative outcomes that are false negatives is known as the false omission
rate, or FOR. In contrast, the JNN has 6.29% FOR, LSTM has 16% FOR, DBN has 12% FOR, and DNN has 14% FOR,

per the comparison. Hence, demonstrates that the suggested model performs more effectively than the conventional
models.
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A comparison between the suggested and current procedures is shown in Figure 13. The quantitative probability of
each positive or negative test result leading to a positive result due to a flaw is computed using the fallout method. The
fallout from the proposed technique is 8.39%, compared to 12% from the current LSTM, 17% from DBN, and 21% from
DNN. As a result, compared to standard models, the suggested model provides better results. Figure 14 displays the
comparison of the Miss Rate (MR) between the recommended and current methods. Positive class labels are incorrectly
predicted by the model as negative, leading to a predicted value of negative but a real value of positive. The MR of the
suggested approach is 8%, compared to 17% for the current LSTM, 15% for DBN, and 22% for DNN. It shows that the
JNN produces superior results than the current methods.
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In Figure 15, the FDR of the suggested and current comparison is displayed clearly. The efficacy of testing numerous
hypotheses simultaneously can be evaluated using the False Discovery Rate (FDR), an accuracy statistic. According to
the comparison, the FDR for JNN is 6%, LSTM is 14%, DBN is 21%, and DNN is 17%. It determines the proposed model
has a lower FDR than conventional methods. The proposed F1 Score and the existing F1 Score are contrasted in Figure
16. The binary kinds of the system and the degree of correctness of the data set are revealed by a statistical analysis of the
F1_ score. The suggested JNN has an F1 Score of 92.98%, LSTM of 84.47%, DBN of 81.89%, and DNN of 80.42%.
According to the evaluation, the recommended model performs better than the other models.
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Computational timing analysis includes timing for testing and training. The amount of time an algorithm needs to
use training data to create a model is known as the training time, as seen in Figure 17. There is a testing phase to determine
whether a trained model will perform as intended. During the testing phase, a classifier makes predictions about the results
using a trained model. The training times for the suggested approach are 0.823 seconds, LSTM 0.104 seconds, DBN 1.18
seconds, and DNN 1.28 seconds. Testing times for the suggested approach are 0.0068 seconds, 0.0095 seconds for LSTM,
0.0295 seconds for DBN, and 0.0639 seconds for DNN. Figure 18 compares the computation times of the suggested and
current models in order to verify the procedure. The answer is provided by the suggested JNN in 0.8298 seconds, however
it is provided by the conventional LSTM model in 0.11349 seconds, the DBN model in 1.2095 seconds, and the DNN
model in 1.3439 seconds. When compared to other models, the comparison gives the suggested model a quicker
processing time and produces better predictions than the conventional methods in Figure 19.

Table 3. Comparison of performance metrics

Methods Accuracy Recall Precision F1_score
Proposed JNN 0.96 0.92 0.94 0.92
LSTM 0.62 1 0.62 0.76
CNN 0.58 0.90 0.61 0.73
CNN-BiLSTM 0.63 0.99 0.62 0.77
ORC_NN 0.94 0.80 1 0.89

Table 3 demonstrates the comparison of performance metrics at the proposed JNN and existing models. The existing
was taken as LSTM [29] Convolutional Neural Network (CNN) [30], CNN-BiLSTM [31], and Optimized Recurrent
Convolutional Neural Network (ORC_NN) [32]. The comparison shows that the suggested model outperforms the
conventional models in terms of results.

Table 4 shows the comparison of proposed approach with existing algorithms using two various dataset called NSL-
KDD and UNSW-NBI15. These comparison clearly demonstrates that the proposed JNN algorithms produce better results
than other current approaches for two datasets.
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Table 4. Comparison of proposed algorithm using 2 different datasets

NSL-KDD UNSW-NBI5
Performance

INN LSTM DBN DNN INN LSTM DBN DNN
Accuracy 97% 92% 86% 89% 90% 80% 79% 80%
Sensitivity 96% 86% 74% 90% 91% 81% 80% 79%
Specificity 96% 95% 94% 81% 92% 87% 74% 83%
FPR 5% 13% 25% 5% 3% 15% 12% 20%
FNR 6% 5% 3% 14% 4% 10% 20% 17%
Precision 95% 86% 77% 90% 94% 82% 84% 74%
FDR 7% 14% 30% 6% 6% 24% 17% 24%
F1_Score 97% 91% 84% 84% 91% 84% 80% 74%

Discussions

Several existing approaches were developed for insider threat detection in cloud environment. At first, the existing
LSTM algorithm utilized for detecting DDoS in public cloud network. But this approach has low accuracy. Second, hybrid
CNN with grey wolf optimization algorithm was employed for anomaly detection in cloud datacenter networks. High
processing time was taken by this hybrid approach. Finally, hybrid CNN-LSTM approahces are utilized in the existing
papers for detecting insider threat in the cloud environment. But it needs large amount of labelled data. In this proposed
approach, JNN algorithms is developed for effective prediction of threats in cloud. The effectiveness of this proposed
JNN is evaluated by comparing this with various existing approaches. These comparison metrics clearly demonstrates
that the proposed JNN approach produce better outcome than other algorithms.

5. Conclusions

An advanced JNN with optimized MICE configuration was introduced to detect insider thread in cloud computing.
Insider threats are multifaceted and can fit into several categories. This encompasses the malevolent insider, the negligent,
oblivious, unsophisticated, or gullible worker, and the outside contractor. Thus, in the proposed work, detect the insider
thread to mitigate file hacking for unauthorized users. The insider thread was detected based on behavioral log files,
initially this is split into sequential data and standalone data. Then filling the missing places in these data using an
optimized MICE model. In this approach, the n-estimator parameter was set as random thus cause poor value replacement.
So in the proposed model, a GOA is utilized to find the optimal value to improve the performance of the MICE model.
In the realm of the GOA, this strategic dance finds embodiment, its intricate steps delineated, and its conceptual
underpinnings crystallized through rigorous mathematical modelling. In this way, the optimal solution of MICE was
estimated. After filling the missing places, the data is going for the feature extraction process. Both sequential data and
standalone data’s features are extracted individually using a domain extractor and LS-AE extractor. The domain
extractor's output features matrix for every user-day in this stream. It has the automatic feature matrices of sequential
tasks utilizing LS-AE by combining automatic features from every user-days. Then these features are combined to make
a single data that is given to JNN detection model. Elman networks are comparable to Jordan networks. As opposed to
the concealed layer, the context units receive their feed from the output layer. The state layer is another term for the
context units in a Jordan network. A cloud computing organization's thread is identified by the JNN based on its attributes.
The proposed method offers 96% accuracy, 92% recall, 91.6% specificity, 8.39% fall out, 8% Miss Rate, 0.823 sec
training time, 0.0068 sec testing time, and 0.8298 sec overall computation time. This shows the proposed JNN detection
model offers a better solution at all period, however the overall training speed of NN is quite low compared to another
networks. However, the over fitting problem may arise in the JNN which affects the performance proposed approach. In
future, a hybrid techniques or any other deep learning based ensemble model will be preferred for detecting insider thread
in cloud computing.
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