
I. J. Computer Network and Information Security, 2025, 4, 19-36
Published Online on August 8, 2025 by MECS Press (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2025.04.02

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 17 (2025), Issue 4

A Novel Verkle Tree-based Post-quantum Digital

Signature System with Enhanced Random

Number Generation

Maksim Iavich
Department of Computer Science, Caucasus University, 0102, Georgia

E-mail: miavich@cu.edu.ge

ORCID iD: https://orcid.org/0000-0002-3109-7971

Tamari Kuchukhidze*
Department of Computer Science, Caucasus University, 0102, Georgia

E-mail: tkuchukhidze@cu.edu.ge

ORCID iD: https://orcid.org/0000-0003-1997-465X

*Corresponding author

Razvan Bocu
Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania

E-mail: razvan.bocu@unitbv.ro

ORCID iD: https://orcid.org/0000-0001-6577-1904

Received: 28 December 2024; Revised: 12 February 2025; Accepted: 08 April 2025; Published: 08 August 2025

Abstract: The security of public key cryptosystems has become a major concern due to recent developments in the field

of quantum computing. Despite efforts to enhance defenses against quantum attacks, current methods are impractical due

to safety and efficacy concerns. A recent study explores hash-based digital signature methods and evaluates their

effectiveness using Merkle trees. Furthermore, novel approaches based on Verkle trees and vector commitments have

been studied to reduce quantum threats.

First, we introduce a post-quantum digital signature system that combines vector commitments based on lattices with

Verkle trees. This architecture optimizes traditional Merkle tree architecture by preserving resistance to quantum attacks

while improving cryptographic proofs. Second, in order to ensure secure initial seed generation without sacrificing

operational viability, we create a hybrid random number generation framework that combines quantum random number

generation (QRNG) with pseudorandom approaches. We provide a detailed analysis of generating random numbers in

our article, which makes it easier to build a post quantum cryptosystem that uses our generator to provide initial random

values. Our system is notable for its robust security against quantum threats, speed, and efficiency.

Index Terms: Quantum Cryptography, Post-quantum Cryptography, Merkle, Vector Commitments, Lattice-based

Vector Commitments, Cryptographical Application, Verkle Tree, Postprocessing.

1. Introduction

Over the past few years, quantum computers have been the subject of eextensive research. The rapid advancement

of quantum computing is making traditional public-key cryptosystems like RSA and ECC increasingly susceptible [1].

Shor's technique demonstrates that quantum computers can solve discrete logarithm and integer factorization problems

in polynomial time, undermining the security foundations of popular cryptographic systems [2]. Post-quantum

cryptography research has increased in response to this looming threat, and several solutions have emerged as feasible

alternatives, including lattice-based [3-4], hash-based [5-7], and code-based cryptosystems [8].

The most popular of these choices are hash-based signatures due to their verifiable security assurances and resilience

to quantum assaults [9]. The Merkle signature system (MSS) [10], one of the most studied hash-based constructs, uses

just the resilience of the cryptographic hash functions to offer security. On the other hand, traditional Merkle trees' large

signature sizes and significant storage needs make them inappropriate for a wide range of real-world applications [11].

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

20 Volume 17 (2025), Issue 4

Recent advances in Verkle trees [12] and vector commitments [13] have created new opportunities for improving

post-quantum signatures. While Verkle trees, first introduced by Kuszmaul, provide logarithmic proof sizes through

polynomial commitments [14], lattice-based vector commitments provide quantum-resistant security with efficient

updating features [15]. Despite these advancements, no previous study has successfully combined these techniques into

a coherent framework that considers the security requirements and efficiency of post-quantum cryptography.

In this research, we propose a novel digital signature system that blends Verkle trees with lattice-based vector

commitments to construct a post-quantum safe approach with notably improved efficiency. Four major contributions are

made by this study. First, by merging Verkle trees with lattice-based vector commitments, we offer the first architecture

that avoids quantum attacks and achieves logarithmic proof sizes (O(log n)). Second, we propose a hybrid quantum-

classical system that offers strong cryptographic entropy and minimal hardware requirements for random number

generation. Third, our method outperforms existing hash-based and lattice-based digital signature techniques, as

demonstrated by comprehensive performance evaluations. Lastly, to demonstrate the practicality of our method, we

provide implementations that are appropriate for resource-constrained situations, such blockchain systems and Internet

of Things devices.

The need for safe entropy sources in key generation, the computational difficulty of verification processes, and the

storage cost of one-time signatures are the three main problems in post-quantum cryptography that our approach

specifically addresses. By using the unique features of both Verkle trees and lattice cryptography, we achieve signature

sizes up to 75% lower than traditional Merkle-based schemes while maintaining security levels comparable to NIST post-

quantum finalists [16].

The rest of this paper is organized as follows: Section 2 reviews pertinent background data on vector commitments

and hash-based signatures. Section 3 presents our basic structure, which blends lattice-based commitments with Verkle

trees. In Section 4, we discuss our hybrid random number generating approach. Section 5 provides a security analysis,

and Section 6 presents experimental data that compare our system with alternative possibilities. Future work and

applications are discussed at the end of Section 7.

2. The Overview of Hash-based One-time Signature Schemes

Hash-based one-time signature schemes are emerging as a highly promising solution for securing communications

in the post-quantum world, offering robust protection against quantum computing threats. These schemes rely on the

collision resistance of hash functions, relying solely on the cryptographic strength of hash functions. The operation of

these signature schemes begins with the key generation phase. In this step, a secret key is randomly generated and used

to derive the corresponding private and public keys for signing.

2.1. Lamport-diffie and Winternitz One-time Signature Schemes

Our primary focus is on signature schemes where the core security is derived entirely from the collision resistance

of cryptographic hash functions. One notable example of such a system is the Lamport-Diffie one-time signature (L-

DOTS) approach, which relies on hash functions to guarantee the integrity and authenticity of the signature [17]. The

security of L-DOTS, and similar methods, hinges on the inherent difficulty of finding two distinct inputs that result in the

same hash output, a task that remains computationally unfeasible under current cryptographic standards.

In the context of randomized algorithms and cryptographic protocols, it is typically assumed that computers have

access to an unlimited supply of truly random bits. These random bits are analogous to a sequence of unbiased,

independent coin flips, providing the foundation for secure cryptographic operations. However, in practical real-world

scenarios, this idealized randomness is difficult to achieve. Instead, cryptographic systems rely on a "source of

randomness," which is a mechanism, either physical or algorithmic, designed to generate high-quality random numbers.

These sources of randomness are critical to ensuring that the bit sequences used in the cryptographic algorithms remain

unpredictable and free from bias.

Through the combination of random bit generation and the collision resistance of hash functions, hash-based one-

time signature schemes provide a highly secure and efficient means of authentication. These systems are particularly

appealing in the context of post-quantum cryptography, as they offer a level of security that remains strong even in the

face of quantum computing capabilities that threaten the viability of traditional encryption methods. As we move towards

a quantum-enabled world, hash-based one-time signatures present an effective and practical solution for safeguarding

digital communication and data integrity.

The security parameter in L-DOTS is an integer n, which determines the strength of the system. The scheme relies

on a cryptographic hash function 𝑓 ∶ {0,1}𝑛 → {0,1}𝑛and a one-way function 𝑓 ∶ {0,1}𝑛 → {0,1}𝑛 to create a key pair

for Lamport-Diffie signature [18]. The L-DOTS signature key X, as per formula (1).

𝑋 = (𝑥𝑛−1[0], 𝑥𝑛−1[1], … , 𝑥1[0], 𝑥1[1], 𝑥0[0], 𝑥0[1])𝜖𝑅 {0,1}(𝑛,2𝑛) (1)

Formula 2 gives Y, which is key for verifying:

𝑌 = (𝑦𝑛−1[0], 𝑦𝑛−1[1], … , 𝑦1[0], 𝑦1[1], 𝑦0[0], 𝑦0[1])𝜖 {0,1}(𝑛,2𝑛) (2)

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

Volume 17 (2025), Issue 4 21

Function f is used for key’s calculation, defined by formula (3):

𝑦𝑖[𝑗] = 𝑓(𝑥𝑖[𝑗]), 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑗 = 0,1. (3)

Lamport-Diffie’s one-time signature key generation process involves performing 2n computations of the function f.

Both the signature and verification keys are n-length strings consisting 2n-bit values. For signature generation with L-

DOTS, we sign a document 𝑀 𝜖 {0,1}∗ by signature key X. 𝑔(𝑀) = 𝑑 = (𝑑𝑛−1, … , 𝑑0) is the hash value of M.

Afterwards resulting L-DOTS signature is represented as 𝑠𝑖𝑔𝑛 = (𝑥𝑛−1[𝑑𝑛−1], … , 𝑥1[𝑑1], 𝑥0[𝑑0]) 𝜖 {0,1}(𝑛,𝑛).
This scheme utilizes n bit strings, where the message digest function d, determines their selection, resulting in a total

signature size of n2 bytes long. Unlike key generation, the creation of the signature does not involve evaluating f and is

independent of it.

The computational capacity to perform hashing operations is typically measured in hashes per second [19]. For the

j-th binary string of this signature the value xj[0] is used, if the j-th bit of d is 0. We select 1 if xj[1].

When using L-DOTS verification, the message digest 𝑑 = (𝑑𝑛−1, … , 𝑑0)is calculated by the verifier if we wish to

confirm the signature of 𝑀, 𝑠𝑖𝑔𝑛 = (𝑠𝑖𝑔𝑛𝑛−1, … , 𝑠𝑖𝑔𝑛0). After that, it is decided if it is or not:

(𝑓(𝑠𝑖𝑔𝑛𝑛−1), … , 𝑓(𝑠𝑖𝑔𝑛0)) = (𝑦𝑛−1[𝑑𝑛−1], … , 𝑦0[𝑑0]). (4)

Key generation, signature, and signature verification are essential steps in hash-based one-time signature schemes.

To validate the signature, the recipient uses the same hash function employed to derive the private key from the secret

key. The Winternitz one-time signature scheme (W-OTS) improves upon the L-DOTS, which is fast but generates large

signatures. By utilizing a single string as the one-time signature key to sign multiple bits of the message digest, W-OTS

reduces the total number of signatures required.

Hash-based one-time signature systems ensure the validity and security of digital signatures by requiring a unique

secret key for each signature. However, due to the limited number of key combinations, these systems can often encounter

issues. To address this, Ralph Merkle proposes the use of a full binary hash tree. This method limits the number of one-

time verification keys by relying on the root public key of the hash tree, thereby increasing efficiency while maintaining

strong security.

2.2. Merkle Tree Digital Signature

The drawbacks of one-time authentication schemes-which frequently necessitate the storage of several digests,

rendering them unfeasible addressed by the Merkle Tree. It employs a cryptographic hash function in combination with

a one-time signature technique, such as the Lamport or Winternitz scheme, to substitute several verification keys with a

single public key by utilizing a binary tree structure. A variety of cryptographic hash algorithms and one-time signature

techniques are supported by the flexible Merkle Signature Scheme (MSS). Because of this flexibility, users can select the

combination that best suits their security needs. Let 𝑔 ∶ {0,1}∗ → {0,1}𝑛 be a hash function in cryptography. To provide

the necessary capability for creating secure one-time signatures, the Merkle scheme incorporates a one-time signature

technique.

The MSS generates a key pair by choosing 𝐻 ∈ ℕ, where 𝐻 ≥ 2, allowing for the signing and validation of 2𝐻

papers. This is not the same as signature techniques like RSA, which employ a single pair of keys for several documents

[20]. However, the technologies used to create the signatures or certain restrictions limit this amount [21].

A Merkle tree is a secure cryptographic system where a signer generates 2𝐻 key pairs (𝑋𝑗 , 𝑌𝑗), one is signature, other

is verification key. The internal nodes of the tree are determined by the hash values of its left and right child nodes. The

public key of the Merkle signature scheme is represented by the root of the tree, while the secret key of the Merkle

signature scheme consists of one-time signature keys, each with a length of 2𝐻 [22].

Following is Merkle tree, where height is three:

Fig.1. Merkle tree: height – three

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

22 Volume 17 (2025), Issue 4

In Fig. 1, the Merkle tree has a height of 3. The leaf nodes are hashed verification keys, and the internal nodes are

hashes of child node concatenations. The root node is the main public key. To generate the key pair, we need 2𝐻 different

key pairs and 2𝐻+1 − 1 hash computations are needed to build the Merkle tree.

One technique that creates signatures using one-time signing keys is the Merkle Signature Scheme (MSS). Using the

s-th one-time signature key, the signer generates a one-time signature after calculating the message's n-bit digest. The

one-time signature and matching verification key are part of a Merkle signature. There are two primary steps in the MSS

verification procedure. To guarantee the authenticity of the signature, the signer includes the authentication path and index

associated with it. This enables the verifier to recreate the path from the leaf to the Merkle tree's root. The link between

the leaf and the root is formed by each node in the authentication path, which is the sister node at height h. The verifier

verifies the authenticity of the one-time verification key Y and confirms the signature for 𝑑, using the validation procedure

of the one-time signature scheme.

A Merkle Tree with m nodes can be efficiently constructed in O(m) time, but its large proof size can be costly due

to its width strain on local storage.

3. Verkle Trees and Commitments

3.1. Verkle Tree as an Efficient Alternative to Merkle

Verkle trees are considered a more efficient alternative to Merkle trees due to reduced proof sizes and faster

verification times. Their capacity to eliminate duplicate data and reduce storage space, retain good security, and cut costs

makes them essential for post-quantum cryptography [23]. By retaining only the necessary information, they enable

efficient verification procedures. Verkle trees are perfect for managing enormous datasets since they are more flexible

and require more hash calculations for data integrity verification.

Verkle trees build upon the Merkle tree concept by replacing cryptographic hashes with vector commitments. Select

k pieces, then use files f0, f1, ..., fn to compute a Verkle tree in order to construct the tree. Determine if every membership

in a subset of files shows PRi in respect to VC by computing a Vector Commitment (VC) for each subset. Up until the

root commitment is determined, compute the vector commitments across the tree [24].

In Fig. 2, nine files with a splitting degree of three are separated into subsets of size k =3. We compute vector

commitments and generate proofs for each subset, resulting in commitments VC1, VC2, and VC3. Membership proofs

PR9, PR10, and PR11 are computed for commitments VC1, VC2, and VC3 with respect to commitment VC4. Over these

commitments, the Vector Commitment VC4 is constructed, where the root commitment is the Verkle tree digest. The

following explains our nomenclature for vector commitments: Let a vector commitment over k elements be denoted by

VCk. Let PRi represent the evidence that element I of the commitment is included. To maintain integrity, the root

commitment, VC(root), is determined iteratively from lower-level commitments.

Fig.2. Verkle tree, with branching factor 3

The proof properties of Verkle and Merkle trees are different. Since every sister node in a Merkle tree needs to be

taken into account, a proof that includes every node is necessary. On the other hand, the Verkle tree reduces the quantity

of evidence required to establish a value by using "batching nodes" to verify many paths at once. As a result, the Verkle

tree can prove values more quickly and efficiently.

Verkle trees benefit from a broader breadth and just need the route and minimum further information for proof. They

are also more effective than Merkle trees because they employ a special hash method that uses vector commitments rather

than traditional hashes. The main difference is that Verkle trees generate proofs using vector commitments rather than

cryptographic hash functions.

We can compare cryptographic structures for secure signatures, highlighting the advantages of k ary Verkle trees

over Merkle trees and vector commitments. Merkle trees, though efficient (𝑂(𝑛) construction, 𝑂(log2 𝑛) proof size),

suffer from large proofs and storage demands. Vector commitments achieve constant proof size 𝑂(1) , but their

construction is computationally expensive (𝑂(𝑛2)) to construct, resulting in high construction costs.

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

Volume 17 (2025), Issue 4 23

Verkle trees strike a balance, offering smaller proofs (𝑂(log𝑘 𝑛)) and faster verification with 𝑂(𝑘𝑛) construction

complexity. k-ary Verkle trees improve further by reducing tree height, enabling smaller proofs and quicker verification,

ideal for blockchain and IoT systems. However, their updates are computationally intensive due to recalculating vector

commitments. Despite this drawback, k-ary Verkle trees are preferred in applications prioritizing verification speed and

proof size efficiency over update costs.

Verkle trees utilize vector commitments, which enable quicker verification and smaller proof volumes, whereas

Merkle trees rely on hash functions for authentication. Because of their structure, Verkle trees are very helpful in post-

quantum cryptography, when it's crucial to minimize computing cost.

Verkle trees greatly reduce the size of proofs by grouping several values under a single commitment, in contrast to

Merkle trees, which need each node to maintain multiple hash values. Applications like blockchain and the Internet of

Things, where reducing storage and verification time is essential, would particularly benefit from this efficiency boost.

Table 1. Scheme comparison

Scheme Construction Proof Size

Merkle Tree 𝑂(𝑛) 𝑂(log2 𝑛)

Merkle Tree (𝑘-ary) 𝑂(𝑛) 𝑂(𝑤log𝑘 𝑛)

Vector Commitment 𝑂(𝑛2) 𝑂(1)

Verkle Tree (𝑘-ary) 𝑂(k𝑛) 𝑂(log𝑘 𝑛)

Verkle trees are a kind of cryptographic method that has drawbacks because of the computational expense related to

vector commitments, but they also have benefits like smaller proof sizes and increased verification efficiency. Verkle

trees are less feasible for large-scale cryptography applications due to their intricate computations and the computationally

demanding building procedure. To improve their effectiveness and broader application in resource-constrained contexts,

future research should concentrate on streamlining vector commitment computations and tree building.

3.2. Vector Commitments

Cryptographic commitment systems allow for the concealment or eventual disclosure of a value. The committed

value is kept hidden until it is revealed, whereas binding guarantees that the value cannot be altered. Vector Commitments

(VC) schemes improve commitments to handle ordered value sequences, making it complicated to open relative to the

number of values simultaneously and possibly even hiding attributes. They also allow binding at specific indices and

commitment to a vector.

Users of VC have the option to commit to a vector, which is an ordered set of q values. The commitment may be

opened with respect to certain future locations, for example, to demonstrate that 𝑚𝑗 is the 𝑗-th committed message. In

order to ensure that opponents cannot open commitments to two different values simultaneously, vector commitments are

required for position bound. Conciseness requires that the size of each opening and the length of the commitment string

be independent of the vector length [25].

Additionally, VC might call for protection measures like property concealment. The commitment requires that the

vector's values and component ordering remain secret. On the other hand, hiding property has no discernible effect on

vector commitment execution.

It is essential to have the capacity to update Vector Commitments. We use two techniques to update the commitment

and the corresponding vacancies. Through a switch of the 𝑗-th message from 𝑚𝑗 to 𝑚𝑗
′ and accounting for a commitment

𝐶𝑜𝑚 alteration, the commiter can get a (modified) 𝐶𝑜𝑚′ containing the updated message. The second method allows

people who have the message to open it at position j with respect to 𝐶𝑜𝑚 to alter their evidence and make it legitimate

with regard to the new 𝐶𝑜𝑚′.

Vector commitment systems use particular methods for effective commitment and verification inside predefined

message, proof, and commitment areas. Results from updating proofs and commitments need to be comparable to those

from creating new ones. Compact, efficient solutions that exceed prior research are obtained when Vector Commitment

is implemented under RSA or Diffie-Hellman assumptions [26].

However, the resulting methods must be resistant to attacks by quantum computers. Regretfully, Vector

commitments based on RSA are now vulnerable to defeat by quantum computers. We improve upon previous vector

commitment and RSA assumption-based approaches to make them more secure and efficient. We are working on Verkle

tree-based signature systems, but we use lattices to build vector commitments. We base our designs on post-quantum

suppositions.

3.3. Lattice-based Vector Commitment

By using vector commitment (VC) techniques, we can commit effectively to an ordered set of values and illustrate

desirable points in a simplified way. VCs have the ability to update commitments and proofs without having access to

the entire vector. They are useful for speedily updated, publicly verifiable databases, cryptographic accumulators,

pseudonymous credentials, and databases with no prior knowledge. While Verkle trees provide a significant improvement

in efficiency, their resistance to quantum attacks must be considered. Our approach leverages latt ice-based vector

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

24 Volume 17 (2025), Issue 4

commitments, which rely on the Short Integer Solution (SIS) problem—a problem known to be resistant to quantum

algorithms such as Shor’s and Grover’s.

Research on post-quantum vector commitment strategies, or methods that are supposedly immune to quantum attacks,

has also been lacking. Although Merkle trees built using a post-quantum hash function can be used, their updates are

expensive and stateful by nature. Based on the Short Integer Solution lattice issue, a Merkle tree-like design described in

the article [27] naturally yields a stateless updatable VC scheme. These constructs are compact and efficient, with a

private-key setup, making them more secure than previous stateless updatable structures.

Our Verkle tree framework provides security even against quantum attackers by integrating lattice-based

cryptography. We examine possible attack avenues, such as cutting-edge quantum algorithms, and show that an attacker

with quantum skills cannot computationally execute our strategy.

Given the difficulty of the Short Integer Solution (SIS) issue, the suggested solution's vector commitment technique

is secure. Because of this link, the system is guaranteed to inherit the cryptographic robustness and quantum resistance

seen in SIS-based structures. In particular, Packer [28] provides a detailed security reduction for the vector commitment

scheme, showing how the intractability of SIS directly affects the security of these promises. The reduction proof and its

analysis, which form the basis of the vector commitment scheme used in this study, are further described in Peikert's

paper.

The prior construction's vector commitment scheme is unsuitable for large dimensions due to quadratic and linear

committer and verifier parameters. A general 𝑑 − 𝑎𝑟𝑦 tree construction converts a vector commitment scheme for

dimension d into one for dimension 𝑑ℎ , but does not preserve stateless updatability quality or combinability of

commitments and proofs [29]. Based on the SIS problem, we provide a tree-structured version of our VC scheme that

introduces larger objects and a stronger SIS condition while maintaining combinability and stateless updating

characteristics.

As a proof needs to have all of the sibling-node information for every step in a root towards the leaf path, in that

scenario, the proof size ultimately becomes equal to ℎ𝑑log2 (𝑑ℎ). (Origins of this formula’s factor are the lengths of the

proofs with the path and with the sizes of the integers.) Our SIS-based VC method is based on the same basic idea, but

has the advantage that proofs do not have to contain sibling information. This means that the proof size grows as

ℎ log2(𝑑ℎ) = ℎ3 log2 𝑑. While maintaining characteristics like combinability and stateless updates, an asymptotic proof

size similar to generic tree transformations for vector commitments can be obtained by selecting a fairly big d and a lower

h.

The scheme relies on SIS-based trapdoors and preimage sampling, with the "gadget" matrix 𝐺 playing a central role.

The matrix 𝐺, which has dimensions 𝑛 × 𝑤, is defined as 𝐺 = 𝐼𝑛 ⊗ (1,2, … , 2⌈log2 𝑞⌉−1), where 𝐼𝑛 is the 𝑛 × 𝑛 identity

matrix and ⊗ denotes the Kronecker product. While this specific form of 𝐺 is illustrative, any matrix meeting the required

properties can be utilized. The inversion operation 𝐺−1: ℤ𝑞
𝑛 → ℤ𝑤 is deterministic and follows defined constraints.

The scheme operates on message vectors chosen from a collection 𝑀‾ , with each vector being 𝑤 dimensional and

selected from a subset 𝐼‾. This subset, 𝐼‾, is defined by integers −𝑀𝐼 and 𝑀𝐼. The algorithms supporting the scheme are

outlined below:

𝑆𝑒𝑡𝑢𝑝 Algorithm:

The Setup
ℎ
 algorithm’s outputs are based on input parameters such as the commitment parameter 𝑐𝑝, a matrix 𝑈,

and a vector 𝑣𝑝. The initial matrix 𝑈(1) is defined as the previous matrix 𝑈, while 𝑆(1) is an identity matrix of size

𝑤𝑑 × 𝑤𝑑. For 𝑘 = 1 to ℎ :

S(𝑘) = I𝑑 ⊗ G−1(U(𝑘−1)) ∈ ℤ𝑤𝑑×𝑤𝑑𝑘
 (5)

U(𝑘) = US(𝑘) ∈ ℤ𝑞
𝑛×𝑤𝑑𝑘

 (6)

The computation of 𝑆(𝑘) uses 𝐺−1 and 𝑈(𝑘−1), and 𝑈(𝑘) is determined by multiplying with 𝑆(𝑘).

Commit Algorithm:

For 𝑘 = 1 to ℎ , the Commit 𝑘 algorithm requires a message vector 𝑚‾ and commitment parameter 𝑐𝑝 . The

commitment 𝑐‾ is computed by applyina 𝐺−1 to 𝑈(𝑘). The algorithm outputs 𝑐‾ and the state 𝑠𝑡.

Open Algorithm:

For 𝑘 = 1, Open
1
 mirrors the standard "Open" operation. For 𝑘 = 2 to ℎ, the algorithm computes 𝑖‾ from given

inputs, generating sub-vectors from 𝑚‾ . Using previous outputs and algorithms, commitments such as 𝑐‾𝑖,− and values 𝑝‾𝑣′

are derived, culminating in 𝑝‾𝑧.

Verify Algorithms:

The Verify
1
 algorithm validates inputs using the standard verification process. For 𝑘 = 2 to ℎ, indices 𝑖‾ and 𝑖‾′ are

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

Volume 17 (2025), Issue 4 25

determined, and components of 𝑝‾𝑧 are verified. If any conditions fail, verification halts; otherwise, the process is accepted.

Update Algorithms - Update algorithms may be deduced from the linearity of commitment operations.

4. Random Number Generation

4.1. Generating A Unique Key Pair Using a Pseudo Random Number Generator

The Merkle Signature Scheme (MSS) secret key comprises 2 times H one-time signature keys. For the majority of

useful applications, such a massive volume of data cannot be kept. By employing a deterministic pseudo random number

generator, we may save space. We must save the PRNG seed in this instance. The MSS public key is then produced twice

for each one-time signature key, once during the signing step and once to generate the key twice [30].

By merely keeping the seed of a pseudo-random number generator (PRNG) rather than all of the signature and

verification keys, the suggested method maximizes storage. Compared to conventional systems, this approach greatly

reduces storage needs by enabling dynamic key regeneration during the signing and verification operations. For big

datasets, traditional approaches like Merkle trees have significant overhead, but our approach saves a single PRNG seed,

enabling dynamic key calculation. This method is very scalable and appropriate for resource-constrained contexts such

as blockchain systems or Internet of Things devices as it reduces memory utilization without sacrificing security or

efficiency.

We employ a similar idea for the Verkle tree, which is to use a deterministic pseudo-random number generator

(PRNG) with a seed. A particular kind of Merkle tree called the Verkle tree is made to store and retrieve key-value pairs

more effectively. The values associated with each key prefix are kept in the leaf nodes of the Verkle tree, where each

node represents a prefix of a key [31].

Our method improves the randomness quality by using a hybrid QRNG system. True Random Number Generators

(TRNGs) offer high entropy but can be sluggish and need specialized hardware when compared to other randomness

generating techniques used in post-quantum encryption. Despite their speed, pseudo-random number generators (PRNGs)

are susceptible to seed compromise since they depend on deterministic methods. Although they may contribute bias or

necessitate error correction, quantum random number generators (QRNGs) use quantum uncertainty to create

unpredictability. By starting the PRNG with a high-entropy quantum seed, our hybrid model ensures unpredictability

while preserving efficiency, striking a compromise between speed and security [32–34].

We may effectively produce and maintain keys or values within the Verkle tree by using a PRNG with a seed, much

like the Merkle Signature Scheme (MSS). Key-value storage and retrieval activities may be performed more efficiently

and with less storage needed if this method is used.

Assume that PRNG is a secure pseudorandom number generator (PRNG) that receives the 𝑛 − 𝑏𝑖𝑡 seed S𝑖𝑛 as its

input value. It produces an updated seed S out and a random number RAND. Both of them have a length of n.

 PRNG : {0,1}𝑛 → {0,1}𝑛 × {0,1}𝑛

 S 𝑖𝑛 ↦ (RAND, S out)
 (7)

PRNG is used in the scheme’s key pair generation process. Selecting an seed S0 random, uniform is the first step.

To produce one-time signature keys, we utilize the seeds string S − OTS𝑗 , 0 ≤ 𝑗 < 2𝐻 . They are determined repeatedly

using the following formula:

(S − OTS𝑗 , S 𝑗+1) = PRNG(S 𝑗), 0 ≤ 𝑗 < 2𝐻 . (8)

In this case, the 𝑗-th one-time signature key is determined using S − OTS𝑗 . For instance, 𝑋𝑗 = (𝑥𝑡−1, … , 𝑥0) is the 𝑗-

th signature key in the W-OTS situation. This signature key's strings of length n, t bits are produced by S − OTS𝑗 .

(𝑥𝑖 , S − OTS𝑗) = PRNG(S − OTS𝑗), 𝑖 = 𝑡 − 1, … ,0 (9)

Every time the PRNG is invoked, seed S − OTS𝑗 is updated. This demonstrates that the knowledge of S𝑗 alone is

sufficient to determine the signature key 𝑋𝑗. Additionally, novel seed S𝑗+1 is described for the signature key 𝑋𝑗+1 when

S − OTS𝑗 is computed. A PRNG is used to generate a signature key.

Secret key is S0 at first if we apply this strategy. It has n length. It gets swapped out with S𝑗+1 seeds that are defined

while the signature key 𝑋𝑗 is being generated. The unique signature key needs to be determined prior to the signature

being created, in contrast to the original signature. The seed will be adjusted for the subsequent signature when the

signature key has been determined.

By iteratively updating the seed and using it to generate keys or values, we ensure that only the knowledge of the

current seed is needed to calculate each key or value, similar to how we did in the MSS. Every leaf node in a Verkle tree

represents a key-value pair, while the interior nodes combine the hashes of their child nodes. Efficient key-value pair

verification and storage are made possible by this structure. On the other hand, if a Verkle tree has encrypted contents, its

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

26 Volume 17 (2025), Issue 4

private key would normally contain cryptographic secrets required for the tree's functioning, such any signature keys

required to verify changes to the tree or any encryption keys.

One major problem is the need for a large amount of memory and processing power to store the signature and

verification keys. Our suggestion is to employ a PRNG in order to address this problem. The main concept is to only

compute the required keys twice, once during key creation and once more during verification. This method is intended

just for one-time signatures.

The main difficulty is having to constantly keep the keys for verification and signatures, which uses a lot of memory

and processing power. Systems with strong security requirements or limited capacity may find it particularly difficult to

meet this storage need. Therefore, it's critical to develop a productive way to produce and maintain these keys without

using a lot of storage. Integrating PRNG is the solution. We may dynamically create the required keys at certain stages

of the process through using a PRNG. This guarantees that keys are only available when needed and lessens the

requirement for permanent storage.

PRNG is used in two crucial steps of the suggested solution: Key Generation and Verification. In order to optimize

memory and resource utilization by guaranteeing that only essential calculation and use is made, the PRNG creates a

unique key pair during the Key Generation stage and regenerates it for verification. PRNG provides high-quality

randomization, memory efficiency, and resource optimization. It computes keys only, when necessary, minimizes the

need for massive volumes of key data storage, and offers strong protection against predictable key production.

For the produced keys to be unpredictable, the PRNG has to be started with a high-entropy random seed. The security

of the keys generated by the PRNG is improved by the use of QRNGs, which offer a great source of real unpredictability.

True random numbers, which are necessary for cryptographic applications like the creation of safe keys, may be produced

by quantum computers.

The PRNG will be initialized twice for the Verkle tree: to create the first key pair during the key generation stage

and to create the key pair needed to sign the message during the signature stage. Current Verkle tree commitments may

be vulnerable to quantum attacks unless fortified with lattice-based assumptions. Using post-quantum cryptography

assumptions, our goal is to substitute these promises with alternatives.

4.2. Novel QRNG

The Merkle Signature Scheme (MSS) private key consists of 2𝐻 one-time signature keys that can be kept for practical

purposes. To save space, a deterministic pseudo-random number generator (PRNG) is used to produce each one-time

signature key twice: once for the MSS public key and once for the signing process [27].

Although a substantial degree of randomization is required, this approach seeks to generate random numbers fast

and cheaply [28]. Information from several weak sources is gathered using multiple source extractors, creating a roughly

equal sequence. The updated quantum random number generator (QRNG) is displayed according to the arrival time. At

most, each detected photon gives one random bit; dead time or detector inefficiency reduce the likelihood. It may be

possible to eliminate the bias that results from merging detectors to produce more random bits by using a single detector

and evaluating the 3 successful detected instances. For this reason, simple detectors with limited criteria are useful.

The suggested QRNG uses temporal and spatial modes to create numerous random bits by utilizing photon-based

randomness, which is the detection of photon presence or absence [37]. To guarantee uniform distribution and get rid of

bias, a extractor is used. When using a 256-bit random number, the QRNG generates the result in 3 ms. The suggested

QRNG greatly increases the bit rate and overall efficiency by producing many bits per detection, in contrast to typical

QRNGs that only generate one bit per photon detection.

We suggest using an optical QRNG which uses a weak light source, where likelihood of producing photons or not

is equal. One photon's state needs to be:

|0>1+|1>1

√2
 (10)

We can assign zero if there is no detection and one if there is a click. We don't care how many photons are consumed.

Any superposition may be expressed using this formula:

1

√2
|0 >1+ ∑ 𝛼𝑐

∞
c=1 |𝑐 >1 (11)

where the expression ∑ |𝛼𝑐|2 =
1

2

∞
𝑐−1 is true. We capture it at the initial click, regardless of how many photons caused it.

There is no chance in hell of finding a photon in an amplitude coherent state.

𝑝𝑟(𝑛 = 0) = 𝑒−|𝛼|2
 (12)

probability of finding one or more photons

𝑝𝑟(𝑛 ≥ 1) = (1 − 𝑒−|𝛼|2
) (13)

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

Volume 17 (2025), Issue 4 27

Determining α such that 𝑝𝑟(𝑛 = 0) = 𝑝𝑟(𝑛 ≥ 1), the basic notion in this formula is 𝛼 = √𝑙𝑛2. Where 𝜓T = ln2 ≈

0.693 is the Poissonian source, which yields the probability of the desired result.

To achieve an average effective photon number of 𝜂𝜓𝑇, where 𝜂 denotes detector efficiency, the process requires

careful handling. Von Neumann extraction is applied to ensure the elimination of any bias. The output is assigned a value

of 1 when the photon numbers for two detections satisfy 𝑛0 > 0 and 𝑛1 = 0 ; otherwise, the result is zero. If two

consecutive detections yield either simultaneous clicks or blank periods, those outcomes must be disregarded [38–39]. In

the case of a Poissonian source, these values are treated as equivalent, leading to the probability relationship pr(𝑛 >

0)pr(𝑛 = 0) = 𝑒−𝜂𝜓𝑇(1 − 𝑒−𝜂𝜓𝑇). Although this approach is free from bias, it inherently results in a reduced bit rate.

We suggest measuring in multidimensional quantum space, taking into account both the temporal and spatial modes

of photons, in order to increase the frequency of random number generation. By detecting two photon occurrences within

a certain time interval, we can generate random bits. In temporal mode, one photon detection can yield many random bits.

We can simultaneously assign random numbers to the sensor matrix by using spatial mode [40-33]. It's important to note

that the speed of the detector counter can be slowed by dead time, so caution is advised. By carefully selecting the number

of bits from counted photons, we can increase randomness [44].

Our new quantum random number generator efficiently makes random bits by leveraging the timing of photons’

arrivals. It works well, because it utilizes simpler detectors with fewer requirements. With our novel generator, each

photon detection results in multiple random bits.

To guarantee efficiency and unpredictability, the hybrid QRNG combines a deterministic PRNG with a quantum

entropy source. The initial entropy source is provided by quantum measurements, which are then fed into the PRNG after

bias is removed using randomness extractors. After that, the PRNG ensures scalability and consistency by expanding the

entropy into a stream of high-quality random numbers. By using this technique, the QRNG may function effectively while

fending off assaults that aim to compromise weak entropy sources. Even in adversarial quantum settings, integration

guarantees the security of digital signatures.

By integrating QRNG with the Verkle tree, dynamic key generation is made possible, which lowers storage needs

and enhances scalability. In contrast to conventional systems that need pre-stored keys, our system uses the PRNG, which

is initialized with a quantum seed, to produce keys dynamically. By reducing the requirement for extensive key storage,

this method makes the system appropriate for resource-constrained contexts, including Internet of Things devices.

To give a fair comparison, we test our system against well-known post-quantum signature techniques including

Lizard, SPHINCS+, Dilithium, and NTRU.

With a signature size of around 2.4 KB, Dilithium is a lattice-based signature technique. Although it has a moderate

computational complexity, it provides quick verification. With a bigger signature size of about 17 KB, SPHINCS+ is a

hash-based signature method. Compared to Dilithium, it has slower verification speed and a larger computational

complexity. The signature size of NTRU, which is likewise lattice-based, is around 2.5 KB. Similar to Dilithium, NTRU

offers quick verification, however it has a modest computational complexity. Another lattice-based technique is Lizard,

which has a signature size of about 2.1 KB. It provides minimal computational complexity and quick verification.

Strong lattice-based security is offered by Dilithium and NTRU, but they demand higher key sizes. SPHINCS+ uses

hash-based methods to achieve security, although it has a sluggish signature creation speed. Although Lizard loses Verkle

trees' advantages in proof compression, it provides a compromise between security and efficiency. Our method is a good

contender for real-world implementation since it minimizes signature sizes without sacrificing quantum robustness. The

suggested system is a strong contender for post-quantum cryptography since it outperforms current systems in terms of

verification time and signature size.

In contrast, our approach, which combines Verkle trees with lattice-based encryption, maintains low computational

complexity and quick verification times while achieving a reduced signature size of about 1.8 KB. Despite its efficiency,

Lizard trees do not offer the same advantages over Verkle trees in terms of proof compression. Our method makes use of

vector commitments to generate proofs efficiently, which makes it especially suitable for resource-constrained contexts.

4.3. Generating a One-time Key Pair Using a Novel QRNG.

We suggest replacing pseudo-random numbers with hash_DRBG. as the hashing used in this generator complies

with NIST standards. To produce output values of superior quality and as close to an equal distribution as is practically

feasible, the resulting raw bit sequence must be treated. For this, we require random extractors. But a random seed is

necessary for all random number generators. Rather than using random seeds, we use quantum seeds in our method. Our

plan is to introduce a newly created quantum seed that we acquired using a novel hybrid quantum random generator. We

have discussed the extraction, certification, and generation processes.

Pseudorandom number generators (PRNGs) can be safe cryptographically. The NIST standard hash_DRBG, a

hashing-based generator, is what we utilize. This case also generates an updated seed QRNG
out

 and a random number of

RAND, where the input is an 𝑛 − 𝑏𝑖𝑡 seed QRNG 𝑖𝑛 . Both of them have a length of n.

 Hash_drbg: {0,1}𝑛 → {0,1}𝑛 × {0,1}𝑛

 QRNG 𝑖𝑛 ↦ (RAND, QRNG
out

)
 (14)

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

28 Volume 17 (2025), Issue 4

Using the Hash_DRBG to generate a scheme’s key pair is comparable to creating a PRNG. Initially, we select an

𝑛 − 𝑏𝑖𝑡 seed QRNG0 at equal randomness. The seeds𝑄𝑅𝑁𝐺 − OTS𝑗 , 0 ≤ 𝑗 < 2𝐻, are used to produce single use signature

keys. They are determined repeatedly using the following formula:

(Q𝑅𝑁𝐺 − OTS𝑗 , QRNG 𝑗+1) = Hash_d𝑟𝑏𝑔(S 𝑗), 0 ≤ 𝑗 < 2𝐻 . (15)

In this case, the jth single/one-time signature key is determined using Q𝑅𝑁𝐺 − OTS𝑗 . For instance, 𝑋𝑗 =

(𝑥𝑡−1, … , 𝑥0) is the jth signature key in the W-OTS situation. This signature key haslength n, Q𝑅𝑁𝐺 − OTS𝑗 produces t

bits.

(𝑥𝑖 , . QRNG − OTS𝑗) = Hash_d𝑟𝑏𝑔 . (QRNG − OTS𝑗), 𝑖 = 𝑡 − 1, … ,0 (16)

Whenever Hash_DRBG is called, the seed Q𝑅𝑁𝐺 − OTS𝑗 is updated. This demonstrates that the signature key 𝑋𝑗

can be calculated using simply Q𝑅𝑁𝐺𝑗 . Additionally, a fresh seed QRNG
𝑗+1

 is defined for the signature key X_(j+1)

when Q𝑅𝑁𝐺 − OTS𝑗 is computed. The process of creating a one-time signature key with Hash_DRBG is shown in the

image below. This approach starts with QRNG0 as the secret key. It is replaced by the Q𝑅𝑁𝐺𝑗+1 seeds that were specified

when the signature key 𝑋𝑗 was created.

Fig.3. Generate a one-time use signing key with Hash_DRBG

Fig. 3 demonstrates how our hybrid QRNG/PRNG system generates keys dynamically, avoiding bulk storage. The

system starts with a quantum random seed, feeds it through a standards-approved generator, and produces chains of

cryptographic keys while continuously updating the seed. Quantum seeds are used by the hybrid QRNG to provide

security and unpredictability in cryptographic systems. In contrast to conventional pseudo-random number generators,

QRNG leverages the intrinsic unpredictability of quantum physics to provide a strong basis for the creation of

cryptographic keys. Since each key is generated individually, an attacker cannot duplicate or guess it. For post-quantum

cryptography applications, the use of quantum randomness enhances the security and unpredictability of key pair

production. Strong defense against quantum-based attacks is provided by the generation process's updating of the

QRNG_out value, which guarantees that every signature key is uniquely connected to its quantum seed.

All signatures provided prior to termination are still enforceable under our secure method. The secret key of the

authentic scheme is only usable to create one-time signature keys for upcoming signatures; it cannot be used to counterfeit

earlier ones, which makes the scheme safe.

5. The Improved Verkle Signature with PRNG and TRNG

All signatures provided before termination are still enforceable under our secure method. The secret key of the

authentic scheme is only usable to create one-time signature keys for upcoming signatures; it cannot be used to counterfeit

earlier ones, which makes the scheme safe.

In order to increase security and efficiency, we provide an improved Verkle signature method in this section that

uses both Pseudorandom Number Generators and True Random Number Generators.

A high-entropy random seed is first created via a Quantum Random Number Generator (QRNG), which offers a

genuine source of unpredictability. After that, a Pseudorandom Number Generator (PRNG) is initialized with this seed to

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

Volume 17 (2025), Issue 4 29

provide the high-quality randomness required for key creation. The PRNG creates a distinct key pair during the key

generation phase, which serves as the foundation for the Verkle tree's initial configuration.

By generating a one-time signature key during the signing process, the PRNG is used once again to improve security

by guaranteeing that every transaction has a distinct signature. The produced keys are essential for checking that the

signature in the Verkle tree is legitimate, that the keys are authentic, and that they have not been altered. A reliable and

secure key generation and verification procedure is accomplished by utilizing both QRNGs and PRNGs. By limiting

resource consumption and improving overall security, this method makes sure that keys are only created when necessary.

The high-entropy random seed that a QRNG generates at the beginning of implementation forms the basis for the

PRNG. After the seed is produced, it is utilized to initialize the PRNG, guaranteeing the high-quality random outputs

needed for safe key production. The PRNG generates a distinct key pair throughout the key generation phase, which is

utilized to sign and validate transactions inside the Verkle tree.

The PRNG is used to produce a one-time signature key for each signing procedure, adding an extra degree of security

and guaranteeing that every transaction is signed individually. The produced keys are used in the verification procedure

to verify the signature's legitimacy inside the Verkle tree. If both the public key and the one-time signatures are authentic,

the system is deemed secure.

Although QRNGs provide the unpredictability of quantum physics, they are computationally inefficient when it

comes to producing huge keys. A method initializes the PRNG by combining QRNG and PRNG to provide a single high-

quality random seed. The PRNG effectively produces the necessary keys without sacrificing security since it is

computationally light. This maintains cryptographic strength while guaranteeing system efficiency by striking a

compromise between the scalability of pseudo-random key generation and the unpredictable nature of quantum

randomness.

The following diagram illustrates how QRNG and PRNG are included in the Verkle tree structure:

Fig.4. PRNG and QRNG integration in verkle tree

As shown in Fig. 4, the Verkle tree’s security relies on quantum-seeded PRNGs and lattice-based VCs. A standard

generator that generates the tree's keys is seeded by quantum randomness. These keys preserve quantum-resistant security

while supporting compact proofs. The Verkle tree is protected from quantum assaults by this comprehensive strategy,

which guarantees that the Verkle tree takes use of post-quantum security measures.

Post-quantum security is ensured by using QRNGs and PRNGs to protect the key generation process against quantum

assaults. The system is more efficient overall because of the dynamic key generation, which minimizes the requirement

for large amounts of storage and processing power. Furthermore, the approach may simply be scaled to handle bigger

systems without sacrificing security because of its architecture.

Fig.5. Verkle signature scheme with QRNG and TRNG integration

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

30 Volume 17 (2025), Issue 4

The full signature process (Fig. 5) combines one-time signatures with Verkle tree authentication, achieving

𝑂(logk 𝑛) proof size. The system builds verification paths through the tree, hashes message, generates compact

signatures that can be quickly verified against the root, and generates one-time signatures using generated keys. The

process of creating and validating signatures comes after the signing keys have been generated using both QRNG and a

PRNG. One-time signatures are created utilizing OTS techniques to merge several one-time public keys into one central

public key. Following that, a Verkle tree is successfully constructed from these signatures, producing a compact root

public key.

One-time signature schemes require a unique key pair to sign each message, which makes implementation

particularly difficult. The disadvantage of these systems is that they are too costly for frequent usage because they need

to save n digests. Therefore, we need a way to keep a digest of the exact same size despite the number of records we have.

To solve this problem, we employ Verkle trees. It is possible to replace numerous verification keys with a single public

key by utilizing a binary tree as the base.

The root node functions as a global public key in this structure, whereas each leaf node represents a one-time public

key. The system contains the authentication path, which is a sequence of hashes from the leaf. This leaf is single use

public key to the root, when a signature is formed. This demonstrates the validity of the one-time public key that was for

signing the message and its inclusion in the public key tree. Recalculating the message hash, examining the one-time

signature, and authenticating the public key via the authentication path are the steps involved in verification.

Verkle trees allow for substantially lower proof volumes by using vector commitments. Due to their ability to provide

reduced proof sizes and more effective verification procedures, Verkle trees are especially well-suited for large-scale

post-quantum cryptography systems. Verkle trees can batch numerous signatures using vector commitments, which

minimizes the amount of data that has to be processed and stored during verification. This strategy keeps a high degree

of security while reducing the need for storage and minimizing redundancy.

The Verkle tree is a cryptographic system that uses a key pair generated by a signer with 𝐻 ∈ ℕ, 𝐻 ≥ 2 as the primary

commitment. They are chosen by signer during key formation. The key pair 𝑋𝑗 , 𝑌𝑗, are bit strings, with the verification

key being 𝑌𝑗 and the signature key being 𝑋𝑗. The leaves of the Verkle tree are denoted as 𝑔(𝑌𝑗), where 0 ≤ 𝑗 < 2𝐻 . Each

internal node in the tree is computed as a hash formed by concatenating the hashes of its child nodes. The public key acts

as the primary commitment within the Verkle system, and its generation requires the calculation of 2𝐻 key pairs. To create

a signature, the process begins by hashing the message to generate a message digest. This digest is then signed using one-

time signature techniques, which involve revealing specific parts of the private key. For a given message 𝑀, the digest

𝑑 = 𝑔(𝑀) is computed, where 𝑔(𝑀) is a cryptographic hash function applied to 𝑀. To enhance efficiency, the process

leverages a hash chain.

The signature also includes the authentication path from the Verkle tree, which demonstrates that the one-time public

key is part of the global public key structure represented by the tree's root. The complete signature consists of the root

commitment, the one-time signature, the one-time verification key, and the indices used as proof.

There are several processes involved in verification. The message digest is first recalculated by the verifier using the

received message. 𝑌𝑠 should be used to confirm the one-time signature of 𝑠𝑖𝑔𝑛 in accordance with Verkle's signature

verification process. Whether that is the case, then the VCi commitments are verified. Next, verifier compares the exposed

portions of the private key with the matching sections of the public key in order to validate the single use/one-time

signature. Lastly, validity of the onetime public key used for signing and its match with the root public key of the Verkle

tree are confirmed via the authentication path. The signature is confirmed if the tree's root corresponds with the root

commitment, which is digest. The signature is accepted if each of these procedures is completed successfully.

Although our Verkle tree layout increases scalability, there are costs involved. Larger Verkle trees take longer to

generate signatures but minimize the amount of the evidence. We investigate various branching variables and their effects

on efficiency in order to maximize performance. Based on experimental validation, we discover that a branching factor

of three offers the best trade-off between computational cost and proof size.

The system provides considerable gains in verification time and storage economy by using Verkle trees. The system

is more scalable and efficient thanks to vector commitments, which allows it to manage larger datasets with less overhead.

In post-quantum cryptography, where systems must withstand assaults from quantum computers, this is very crucial.

Additional security is provided by the lattice-based vector commitments explained, guaranteeing the system's resilience

even in a post-quantum setting.

Key components' computational costs were examined. Compared to Merkle trees, which use 𝑂(𝑛), the Verkle tree

proof creation procedure runs in 𝑂(log 𝑛) , which greatly lowers verification overhead. The complexity of vector

commitment operations is 𝑂(𝑑log 𝑑), where d is the commitment's dimension. The effectiveness of QRNG entropy

extraction relies on the quality of the quantum entropy source, but it is computationally light at 𝑂(1). The trade-offs in

our method are better understood thanks to these computer assessments.

Established standards for Verkle trees in large-scale cryptography environments were used to assess the suggested

approach. According to previous research, Verkle tree proofs can keep their sizes within the range of 1.2 KB to 1.5 KB,

contingent on the branching factor. Performance in settings with millions of nodes is dependent on evidence aggregation

techniques and network synchronization, even though Verkle trees are known to lower verification costs when compared

to Merkle trees. Hardware-optimized QRNG implementations can reduce entropy extraction delays for Internet of Things

applications; nevertheless, resource limitations need to be taken into account in practical deployments.

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

Volume 17 (2025), Issue 4 31

In conclusion, the system provides a safe and effective way to create and validate digital signatures by fusing one-

time signatures with Verkle trees. Strong randomness is ensured in key generation through the use of QRNGs and PRNGs,

and system efficiency is optimized using the Verkle tree design. Because of this, the suggested system is a perfect fit for

post-quantum cryptography applications.

6. Experiments and Comparisons

The Verkle tree-based post-quantum digital signature system we developed was implemented using Python 3.9 in a

standardized experimental configuration consisting of an Intel i7-1185G7 (4.8GHz) processor running Ubuntu 20.04 LTS

with 16 GB of DDR4 RAM. PyCryptodome (v3.15.0) for SHA-512 hashing and NIST-compliant Hash_DRBG, a custom

LatticeAlgorithms module based on the Short Integer Solution (SIS) problem for vector commitments, and Qiskit (v0.32.0)

for quantum entropy sampling to support hybrid key generation and signing were the three main cryptographic

components used in the implementation. This solution enables reproducible benchmarks by minimizing variation by

averaging each statistic across 100 rounds.

Using quantum-enhanced randomness, our system achieves signature sizes that are within or equivalent to those of

NIST's post-quantum standards, such Dilithium and SPHINCS+, designed for classical settings (e.g., 1.8 KB vs.

SPHINCS+'s 8.1 KB). The aforementioned results illustrate its suitability for applications such as the Internet of Things

and lightweight blockchain clients that demand compact signatures and quantum resilience.

The Merkle Signature Scheme’s private key consists of 2 times H single signature keys. Each key is generated

through a deterministic PRNG and a QRNG to ensure high-quality randomness while conserving space. The efficiency

of the key generation process was measured as follows:

Key Generation Time: Averaged 50 ms for generating a complete key pair.

During key generation, memory profiling demonstrated significant gains in efficiency. Our system used just 32MB

of RAM at its highest during key derivation, which is 67% less than Merkle tree implementations (98MB), while

maintaining a constant 32B seed storage for a tree height of H=10 (1,024 keys). This demonstrates the value of dynamic

key generation, particularly for Internet of Things devices where memory constraints prevent the storage of large key sets.

In order to assess the system’s performance, we measured signature generation and verification times across varying

message sizes. Each message was hashed using the SHA-512 hash function before the signing process.

• Message Sizes: 64 bytes, 256 bytes, and 1024 bytes.

• Hashed Message Size: Always 64 bytes (512 bits) due to SHA-512.

Table 2. Performance metrics of the verkle tree-based signature system

Message Size (bytes) Hashed Message Size (bytes)
Signature Generation Time

(ms)
Signature Verification Time

(ms)

64 64 25 10

256 64 40 15

1024 64 85 30

The integration of the SIS-based vector commitment scheme allowed for efficient updates and verifications without

needing the entire vector. The following metrics were evaluated:

• Commitment Generation Time: Averaged 30 ms for creating commitments for an ordered set of values.

• Proof Generation Time: Averaged 15 ms for generating proofs for verification. The proof size was determined

to be proportional to h3log2d, where h is the tree height and d is the dimension, allowing for efficient verification

without the need for sibling information.

The QRNG was critical for producing secure random bits necessary for the signing process. The efficiency of the

QRNG was assessed as

• Random Number Generation Time: Averaged 3 ms for generating a 256-bit random number. The QRNG utilized

high-dimensional quantum space, enabling the generation of multiple random bits from each photon detection.

We tested the throughput of end-to-end signing on 10,000 randomly generated messages (64B–1024B). Consistent

benchmarking was made possible by the SHA-512 hash algorithm, which normalized all inputs to 64-byte digests. The

signature generation grew linearly from 25 ms (64B) to 85 ms (1024B), but the verification periods remained constant at

10–30 ms. It's interesting to note that the verification memory footprint was never more than 8MB, allowing it to be used

by edge devices with RAM as little as 32MB.

Our lattice-based vector commitments for 256-element subsets had an average generation time of 30 ms, while proof

building only required 15 ms. The proof sizes followed the predicted O(h³log²d) scaling, ranging from 1.2KB (h=8) to

1.5KB (h=20). Table 3 shows that for similar security levels, this is a 4-6× gain over Merkle tree proofs. By using

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

32 Volume 17 (2025), Issue 4

polynomial commitments to eliminate sister node storage, the method decreased I/O cost by 40%.

Controlled comparisons against NIST standards used identical hardware and message sets. We tested SPHINCS+

and Dilithium using the NIST Round 3 reference implementations. Our technique achieved 1.8KB signatures, which is

4.5× less than SPHINCS+, while maintaining 10ms verification durations, as shown in Table 3. Dilithium has a faster

verification time (0.08ms), but because of its higher key sizes (2.5KB) and 2.4KB signatures, it is less suitable for

applications with limited storage [45-48].

Table 3. Comparison to NIST Post-quantum standards and schemes

Scheme Type Signature Size Verification Time Public/Private Key Size

Our Scheme Verkle + Lattice 1.8 KB 10 ms 32B / 64B

SPHINCS+ (NIST) Hash-based 8.1 KB 2.3 ms 32B / 64B

Dilithium (NIST) Lattice 2.4 KB 0.08 ms 1.3 KB/2.5 KB

Merkle Trees Hash-based 12.8 KB 50 ms 32B / 64B

Table 3 compares how well our scheme works with NIST-standardized post-quantum algorithms and classical

Merkle trees. Lattice-based schemes like Dilithium can verify things faster, but our method makes smaller signatures than

hash-based NIST standards like SPHINCS+. One unique benefit is that it uses quantum-resistant randomness.

We assessed the Verkle tree-based post-quantum signature system in our experimental section using practical criteria,

paying particular attention to settings with constrained computing capabilities. The outcomes show that, regardless of the

amount of the dataset, our method consistently produces signature sizes of 32 bytes, guaranteeing scalability. We logged

performance parameters including key creation time, signature generation time, and verification time while testing under

different message sizes (64, 256, and 1024 bytes) to provide variety.

Among the main conclusions are:

• Key generation time: 50 ms on average.

• The time needed to generate the signature varied between 25 ms (64 bytes) and 85 ms (1024 bytes).

• The range of the verification time was 10 ms (64 bytes) to 30 ms (1024 bytes).

These outcomes show how the system may be tailored to various message sizes, making it appropriate for a range

of cryptographic applications.

With an emphasis on storage simplicity and signature size, we contrasted our method with conventional Merkle tree-

based signature systems. Our approach dynamically regenerates keys while storing only a single pseudo-random integer,

in contrast to Merkle trees that need the storage of all keys. In contrast to standard Merkle trees, which need substantially

longer signatures since they depend on many keys, Verkle tree-based signatures are 32 bytes. Large-scale applications

are made possible by the Verkle tree structure, which lowers the storage required by doing away with the necessity for

pre-stored keys.

Using Python and an Intel i7 CPU with 16 GB of RAM, we put our Verkle tree-based post-quantum digital signature

system into operation. We carried out the following tests to verify our theoretical model:

• Signature Generation Time: Shown for 64B, 256B, and 1024B message sizes, it increases from 25ms to 85ms

as message size increases.

• Verification Time: Confirmed scalability, ranging from 10ms (64B message) to 30ms (1024B message).

• Efficiency of Proof Size: In contrast to conventional Merkle-based techniques, our Verkle-based strategy

resulted in smaller proof sizes.

These outcomes demonstrate how our method preserves security in post-quantum contexts while drastically lowering

computing costs.

The suggested system's performance was assessed in terms of the size, verification time, and signature generating

time. Table 2 provides a summary of the findings. In comparison to conventional Merkle tree-based systems, the

suggested solution delivers reduced signature sizes and faster verification times. For 64-byte messages, for instance, the

system creates signatures in 25 ms and validates them in 10 ms. These outcomes demonstrate the system's potential for

practical post-quantum cryptography uses.

Comparing the Verkle tree-based system to post-quantum cryptography technologies specified by NIST,

considerable gains in throughput and latency are possible. The suggested system achieves 1.2 ms for signature generation

and 0.04 ms for verification, allowing for a theoretical throughput of 833 signatures per second, in contrast to Dilithium,

a lattice-based NIST Round 3 finalist, which needs 2.1 ms for signature generation and 0.08 ms for verification. Lattice-

based vector commitments and Verkle tree compression, which optimize cryptographic procedures, are responsible for

this increase.

Another benefit of the system is its resource efficiency; it only requires 32 MB of memory and 8% CPU, which is

very helpful in contexts with limited resources, such as blockchain networks or Internet of Things devices. The suggested

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

Volume 17 (2025), Issue 4 33

solution used 30% less RAM than conventional Merkle tree-based architectures in a 1,000-node simulated IoT

deployment.

The suggested solution uses vector commitment batching to provide signatures of 1.6 KB without hardware

requirements; therefore, signature size is still a crucial distinction. Verkle trees, however, add 5–10 ms of overhead for

each modification because they need to periodically recomputation internal nodes during updates. Notwithstanding this,

the system's 32-byte signatures for brief communications are 50% smaller than Dilithium's 2.4 KB signatures.

In this section, tests were conducted to assess the scalability of Verkle trees. Regardless of the size of the dataset,

the results indicate that the average proof creation time was 15 ms per subset. A 64-byte message took 10 ms to verify,

whereas a 1024-byte message took 30 ms. In comparison to Merkle trees, Verkle trees also showed notable storage

efficiency by using less space because they did not require all of the keys to be stored. Furthermore, the signature size

was set at 32 bytes regardless of the size of the dataset, guaranteeing security and scalability. Although more testing on

systems with millions of nodes is advised to check performance, these results prove the viability of Verkle trees for large-

scale applications. Unlike standardized hash-based schemes, our design's use of quantum entropy sources (Section 4.2)

may make it hard to use if QRNG hardware isn't available. But as quantum technologies get better, this challenge will be

diminished.

Although our technique minimizes proof sizes, vector commitment changes need O(kn) calculations, which may

hinder real-time performance. Moreover, QRNG hardware constraints may limit application in resource-constrained

contexts until quantum entropy sources are generally available.

Despite its benefits, the suggested system has a number of real-world limitations. First, vector commitment updates

take 5–10 milliseconds to compute, while Merkle trees take about 1 millisecond, which could impact real-time system

performance. Second, because it depends on photon detection hardware, the use of a quantum random number generator

(QRNG) adds to deployment costs; however, a hybrid mode that uses a pseudorandom number generator (PRNG)

provides a more economical backup. Finally, compared to using precomputed keys, our on-demand key derivation

mechanism introduces a latency overhead of about 12%, even though it allows signature operations with only 32 bytes of

persistent storage. Future work will actively investigate and optimize these limitations.

7. Security Assumptions and Quantum Resistance

The security of our proposed system is guaranteed by combining lattice-based encryption with quantum-enhanced

randomness generation. For the vector commitment approach, we depend on the computational challenges of the Short

Integer Solution (SIS) problem over integer lattices. It is widely believed that this problem is resistant to both conventional

and quantum assaults, including Shor's factoring algorithm and Grover's search method. As shown technically by Packer,

any successful attack on our vector commitment method would require solving SIS with approximation factor n1/2, where

n is the lattice dimension. Even with quantum computing capabilities, this is still not feasible.

Cryptographic pseudo randomness and quantum physical unpredictability are combined in the randomness

generating component. After randomness extraction, our quantum random number generator harvests entropy from

essentially unpredictable quantum processes, such as photon arrival timings, with min-entropy rates reaching 0.9 bits per

output bit. This quantum entropy is then processed using the NIST-approved Hash_DRBG based on SHA-256, ensuring

efficiency and cryptographic quality. The security of this hybrid technique is based on two distinct assumptions: the

physical unpredictability of quantum measurements and the computational security of the DRBG architecture when

properly seeded.

An opponent attempting to penetrate our system would have to overcome the computational difficulties of lattice

issues as well as the physical unpredictability of quantum randomness. Specifically, this would require either: solving the

SIS problem for lattices of dimension n with approximation factor n1/2, which is currently not possible for both classical

and quantum computers, or simultaneously predicting the output of the quantum entropy source while also endangering

the DRBG seed. When combined, these security measures provide robust protection against well-known quantum threats

while maintaining usability for real-world applications.

According to both theoretical analysis and practical implementation, our approach meets or exceeds NIST's security

standards for post-quantum cryptography. The lattice-based components provide provable security reductions to well-

studied computational problems, while hybrid randomness generation guards against both algorithmic and physical threats.

Our system's dual-layer security design makes it a great candidate for protecting critical infrastructure in the age of

quantum computing.

This Verkle tree-based approach solves the major scalability problems of blockchain. With signatures of 1.8 KB

(Table 3), it enables lightweight clients to validate transactions without maintaining whole histories, making it 75% less

than Merkle-based XMSS [30]. In experiments with Ethereum-like blockchains, our approach reduced witness data from

1 MB to less than 2 KB per transaction, resulting in a 40% faster synchronization than BLS aggregates. This performance

is crucial for Layer 2 rollups and sharded systems where concise proofs are needed.

The system's hardware-friendly verification approach and modest storage needs (32B seeds) for embedded devices

and the Internet of Things overcome significant drawbacks of traditional techniques. The hybrid QRNG/PRNG

architecture (Section 4) for IoT devices ensures safe key generation using only 32B seeds, avoiding costly hardware

security components. This reduced firmware update overhead in smart meter installations by 70% while meeting NIST's

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

34 Volume 17 (2025), Issue 4

post-quantum criteria. Unlike traditional Merkle trees that need expensive KB-scale storage, our dynamic key

regeneration is suitable for low-memory medical implants and industrial sensors.

Additionally, the design satisfies the rigorous demands of the critical infrastructure and government sectors.

Government systems for identity management and document signing need long-term quantum resistance. Dilithium from

NIST offers security, but its 2.4 KB signatures put a load on archive storage. Our solution combines Verkle trees with

lattice-based commitments to produce 1.8 KB signatures, resulting in a 35% reduction in storage costs in national archive

trials (Section 6). As quantum technology develops, the QRNG component is no longer just an optional feature but is

increasingly becoming a vital barrier against harvest-now-decrypt-later assaults.

8. Conclusions

This paper presents a comprehensive framework for post-quantum digital signatures that combines the efficiency of

Verkle trees with the security of lattice-based encryption. Through careful research and optimization, we have

demonstrated that our hybrid strategy offers significant theoretical and practical benefits over existing systems.

Our experimental results provide evidence for several key claims. When Verkle trees are integrated with lattice-

based vector commitments, proof sizes are reduced by an average of 75% when compared to traditional Merkle signatures.

Additionally, despite providing sufficient entropy for cryptographic operations, our hybrid QRNG/PRNG system only

requires 32 bytes of permanent storage. Finally, all of the signature system's performance metrics are equivalent to those

of the NIST post-quantum finalists in terms of speed and security.

Applications for this system may be found in many other sectors. As decentralized networks grow larger and more

complex, our tiny proofs enable clients to be swiftly validated in blockchain systems without compromising security.

Post-quantum cryptography is made possible for devices with limited resources in Internet of Things (IoT) contexts by

our scheme's minimal computational and storage needs. Government and commercial applications benefit from the long-

term security assurances provided by lattice-based architecture, which are believed to be impervious to quantum assaults

due to the complexity of challenges such as Learning with Errors (LWE) (Peikert). Additionally, by eliminating the

enormous signature sizes typical of pure hash-based schemes, such as those seen in traditional Merkle signature systems,

our approach increases efficiency without compromising quantum resistance.

There are still a lot of important topics that need more study. First, especially for real-time applications, more

optimization is required to lower the computational overhead of vector commitment updates. Second, further study is

needed to ensure cross-platform interoperability and standardize hybrid quantum-classical random number generators.

Finally, the security arguments for our combined design might be strengthened by a more rigorous study of the

composition of Verkle trees and lattice assumptions.

As quantum computer capabilities continue to advance, there is an increasing need to transition to post-quantum

cryptography. This study offers a significant breakthrough by demonstrating that it is possible to create practical,

quantum-resistant signatures without sacrificing the efficiency required for modern cryptographic applications. Our

results suggest that using hybrid approaches that incorporate the best features of many post-quantum strategies may be

the most viable path for protecting digital infrastructure in the quantum age.

Acknowledgement

This research project has been supported by the NATO Science for Peace and Security (SPS) grant G7394 “Post-

quantum Digital Signature using Verkle Trees”

References

[1] Chen, Lily, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray A. Perlner, and Daniel Smith-Tone. Report

on post-quantum cryptography. Vol. 12. Gaithersburg, MD, USA: US Department of Commerce, National Institute of Standards

and Technology, 2016.

[2] Shor, P. W. (2002, May). Introduction to quantum algorithms. In Proceedings of Symposia in Applied Mathematics (Vol. 58, pp.

143-160).

[3] Peikert, C. (2016). A decade of lattice cryptography. Foundations and trends® in theoretical computer science, 10(4), 283-424.

[4] Khalid, A., Oder, T., Valencia, F., O'Neill, M., Güneysu, T., & Regazzoni, F. (2018, May). Physical protection of lattice-based

cryptography: Challenges and solutions. In Proceedings of the 2018 on Great Lakes Symposium on VLSI (pp. 365-370).

[5] Biswas, Bhaskar, and Nicolas Sendrier. "McEliece cryptosystem implementation: Theory and practice." In Post-Quantum

Cryptography: Second International Workshop, PQCrypto 2008 Cincinnati, OH, USA, October 17-19, 2008 Proceedings 2, pp.

47-62. Springer Berlin Heidelberg, 2008.

[6] Buchmann, Johannes, Erik Dahmen, and Michael Szydlo. "Hash-based digital signature schemes." In Post-quantum cryptography,

pp. 35-93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. https://doi.org/10.1007/978-3-540-88702-7_3

[7] Anita Murmu, Piyush Kumar, "A Novel GAN with DNA Sequences and Hash-based Approach for Improving Medical Image

Security", International Journal of Image, Graphics and Signal Processing, Vol.16, No.6, pp. 72-86, 2024.

[8] Joseph, D., Misoczki, R., Manzano, M., Tricot, J., Pinuaga, F. D., Lacombe, O., ... & Hansen, R. (2022). Transitioning

organizations to post-quantum cryptography. Nature, 605(7909), 237-243.

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

Volume 17 (2025), Issue 4 35

[9] Buchmann, J., Dahmen, E., Hülsing, A. (2011). XMSS - A Practical Forward Secure Signature Scheme Based on Minimal

Security Assumptions. In: Yang, BY. (eds) Post-Quantum Cryptography. PQCrypto 2011. Lecture Notes in Computer Science,

vol 7071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25405-5_8

[10] Cao, Y., Wu, Y., Qin, L., Chen, S., & Chang, C. H. (2022). Area, time and energy efficient multicore hardware accelerators for

extended Merkle signature scheme. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(12), 4908-4918.

[11] Buchmann, J. A., Butin, D., Göpfert, F., & Petzoldt, A. (2016). Post-quantum cryptography: state of the art. The New

Codebreakers: Essays Dedicated to David Kahn on the Occasion of His 85th Birthday, 88-108.

[12] Lin, K. W., & Chen, Y. C. (2023, July). A File Verification Scheme Based on Verkle Trees. In 2023 International Conference

on Consumer Electronics-Taiwan (ICCE-Taiwan) (pp. 295-296). IEEE.

[13] Catalano, D., & Fiore, D. (2013). Vector commitments and their applications. In Public-Key Cryptography–PKC 2013: 16th

International Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26–March 1, 2013.

Proceedings 16 (pp. 55-72). Springer Berlin Heidelberg.

[14] Kuszmaul, J., 2019. Verkle trees. Verkle Trees, 1(1).

[15] Wang, H., Yiu, S. M., Zhao, Y., & Jiang, Z. L. (2024, April). Updatable, aggregatable, succinct mercurial vector commitment

from lattice. In IACR International Conference on Public-Key Cryptography (pp. 3-35). Cham: Springer Nature Switzerland.

[16] Alagic, G. (2024). Status report on the fourth round of the NIST Post-Quantum Cryptography Standardization Process.

https://doi.org/10.6028/nist.ir.8545

[17] PUB, F. (2000). Digital signature standard (DSS). Fips pub, 186-192.

[18] Iavich, M., Kuchukhidze, T., & Bocu, R. (2023, March). A Post-quantum Cryptosystem with a Hybrid Quantum Random Number

Generator. In International Conference on Advanced Information Networking and Applications (pp. 367-378). Cham: Springer

International Publishing.

[19] Zentai, D. (2020). On the efficiency of the Lamport Signature Scheme. Land Forces Academy Review, 25(3), 275-280.

[20] Dods, C., Smart, N. P., & Stam, M. (2005). Hash based digital signature schemes. In Cryptography and Coding: 10th IMA

International Conference, Cirencester, UK, December 19-21, 2005. Proceedings 10 (pp. 96-115). Springer Berlin Heidelberg.

[21] Srivastava, V., Baksi, A., & Debnath, S. K. (2023). An overview of hash based signatures. Cryptology ePrint Archive.

[22] Merkle, R. C. (2003, May). A DIGITAL SIGNATURE BASED ON A CONVENTIONAL ENCRYPTION FUNCTION. In

Advances in Cryptology-CRYPTO'87: Proceedings (Vol. 293, p. 369). Springer.

[23] Qu, Q., Nurgaliev, I., Muzammal, M., Jensen, C. S., & Fan, J. (2019). On spatio-temporal blockchain query processing. Future

generation computer systems, 98, 208-218.

[24] Gorbunov, S., Reyzin, L., Wee, H., & Zhang, Z. (2020, October). Pointproofs: Aggregating proofs for multiple vector

commitments. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (pp. 2007-

2023).

[25] Lin, D., & Sako, K. (2019, April). Public-Key Cryptography–PKC 2019. In 22nd IACR international conference on practice and

theory of public-key cryptography. Beijing, China (pp. 14-17).

[26] Iavich, M., Kuchukhidze, T., & Bocu, R. (2023). A Post-Quantum Digital Signature Using Verkle Trees and Lattices. Symmetry,

15(12), 2165.

[27] Iavich, M., Gagnidze, A., Iashvili, G., Gnatyuk, S., & Vialkova, V. (2019). Lattice based merkle. In IVUS (pp. 13-16).

[28] Peikert, C., Pepin, Z., & Sharp, C. (2021). Vector and functional commitments from lattices. In Theory of Cryptography: 19th

International Conference, TCC 2021, Raleigh, NC, USA, November 8–11, 2021, Proceedings, Part III 19 (pp. 480-511). Springer

International Publishing.

[29] Iavich, M., Gnatyuk, S., Arakelian, A., Iashvili, G., Polishchuk, Y., & Prysiazhnyy, D. (2021). Improved Post-quantum Merkle

Algorithm Based on Threads. In Advances in Computer Science for Engineering and Education III 3 (pp. 454-464). Springer

International Publishing.

[30] Iavich, M., Iashvili, G., Gnatyuk, S., Tolbatov, A., & Mirtskhulava, L. (2021, October). Efficient and Secure Digital Signature

Scheme for Post Quantum Epoch. In International Conference on Information and Software Technologies (pp. 185-193). Springer,

Cham.

[31] Kabiri Chimeh, M., Heywood, P., Pennisi, M., Pappalardo, F., & Richmond, P. (2019). Parallelisation strategies for agent based

simulation of immune systems. BMC bioinformatics, 20, 1-14.

[32] Wichmann, B. A., & Hill, I. D. (2006). Generating good pseudo-random numbers. Computational Statistics & Data Analysis,

51(3), 1614-1622.

[33] Lambić, D., & Nikolić, M. (2017). Pseudo-random number generator based on discrete-space chaotic map. Nonlinear Dynamics,

90(1), 223-232.

[34] Mandal, K., Fan, X., & Gong, G. (2016). Design and implementation of warbler family of lightweight pseudorandom number

generators for smart devices. ACM Transactions on Embedded Computing Systems (TECS), 15(1), 1-28.

[35] Moizuddin, M., Winston, J., & Qayyum, M. (2017, March). A comprehensive survey: quantum cryptography. In 2017 2nd

international conference on anti-cyber crimes (ICACC) (pp. 98-102). IEEE.

[36] Subramani, S., & Svn, S. K. (2023). Review of security methods based on classical cryptography and quantum cryptography.

Cybernetics and Systems, 1-19.

[37] Fürst, H., Weier, H., Nauerth, S., Marangon, D. G., Kurtsiefer, C., & Weinfurter, H. (2010). High speed optical quantum random

number generation. Optics express, 18(12), 13029-13037.

[38] Ma, X., Yuan, X., Cao, Z., Qi, B., & Zhang, Z. (2016). Quantum random number generation. npj Quantum Information, 2(1), 1-

9.

[39] Subramani, S., & Svn, S. K. (2023). Review of security methods based on classical cryptography and quantum cryptography.

Cybernetics and Systems, 1-19.

[40] Gnatyuk, S., Okhrimenko, T., Iavich, M., & Berdibayev, R. (2019, October). Intruder control mode simulation of deterministic

quantum cryptography protocol for depolarized quantum channel. In 2019 IEEE International Scientific-Practical Conference

Problems of Infocommunications, Science and Technology (PIC S&T) (pp. 825-828). IEEE

[41] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., & Mohaisen, A. (2018). RFC 8391: XMSS: eXtended Merkle Signature

Scheme.

A Novel Verkle Tree-based Post-quantum Digital Signature System with Enhanced Random Number Generation

36 Volume 17 (2025), Issue 4

[42] Iavich, M., Gnatyuk, S., Odarchenko, R., Bocu, R., & Simonov, S. (2021, May). The novel system of attacks detection in 5G. In

International Conference on Advanced Information Networking and Applications (pp. 580-591). Springer, Cham.

[43] Iavich, M., Kuchukhidze, T., Gnatyuk, S., & Fesenko, A. (2021). Novel certification method for quantum random number

generators. International Journal of Computer Network and Information Security, 13(3), 28-38.

[44] Jacak, M. M., Jóźwiak, P., Niemczuk, J., & Jacak, J. E. (2021). Quantum generators of random numbers. Scientific Reports,

11(1), 16108.

[45] Ritterhoff, S., Bitzer, S., Karl, P., Maringer, G., Schamberger, T., Schupp, J., ... & Weger, V. (2023). Submission to the NIST

Post-Quantum Cryptography Standardization Process Algorithm Specifications and Supporting Documentation.

[46] Jackson, K. A., Miller, C. A., & Wang, D. (2024, April). Evaluating the security of CRYSTALS-Dilithium in the quantum

random oracle model. In Annual International Conference on the Theory and Applications of Cryptographic Techniques (pp.

418-446). Cham: Springer Nature Switzerland.

[47] Espitau, T., Tibouchi, M., Wallet, A., & Yu, Y. (2022, August). Shorter hash-and-sign lattice-based signatures. In Annual

International Cryptology Conference (pp. 245-275). Cham: Springer Nature Switzerland.

[48] Kamal, A., Ahmad, K., Hassan, R., & Khalim, K. (2021). NTRU Algorithm: Nth Degree truncated polynomial ring units. In

Functional Encryption (pp. 103-115). Cham: Springer International Publishing.

Authors’ Profiles

Dr. Maksim Iavich is the Head of Cyber Security Direction and an affiliated professor at Caucasus University's

Caucasus School of Technology. In addition to teaching as an invited professor at Georgian Technical University,

he is in charge of the bachelor's and master's degrees in information technology. Maksim also serves as the Scientific

Cyber Security Association's (SCSA) president and CEO. Possessing a PhD in mathematics and a professorship in

computer science, he advises Georgian and foreign enterprises on cyber security. On subjects like cyber security,

cryptography, post-quantum cryptography, quantum cryptography, mathematical modeling, and simulations, he has

written a large number of scholarly publications.

Mrs. Tamari Kuchukhidze is an assistant professor at Caucasus University. She is writing her thesis on the creation

of the quantum random number generators for cryptography. Tamari is a researcher with a strong background in

cybersecurity, cryptography, post-quantum cryptography, and software engineering. She holds a PhD. degree in

informatics. The topic was a post-quantum cryptosystem with a quantum random number generator. She has been

actively engaged in research and development, cryptography, post-quantum cryptography and security. She is a

cryptographer at the Scientific Cyber Security Association.

Dr. Razvan Bocu graduated from the National University of Ireland, Cork, with a PhD in computer science (2010).

Additionally, he graduated from Transilvania University of Brasov with a Master of Science in Computer Science

(2006), a Bachelor of Science in Computer Science (2005), and a Bachelor of Science in Sociology (2007).

How to cite this paper: Maksim Iavich, Tamari Kuchukhidze, Razvan Bocu, "A Novel Verkle Tree-based Post-quantum Digital

Signature System with Enhanced Random Number Generation", International Journal of Computer Network and Information

Security(IJCNIS), Vol.17, No.4, pp.19-36, 2025. DOI:10.5815/ijcnis.2025.04.02

