
I. J. Computer Network and Information Security, 2025, 1, 1-16
Published Online on February 8, 2025 by MECS Press (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2025.01.01

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 17 (2025), Issue 1

Enhancing Adversarial Examples for Evading

Malware Detection Systems: A Memetic

Algorithm Approach

Khadoudja Ghanem*
University Constantine 2, Abdelhamid Mehri, Faculty of New Technologies of Information and Communication,

Department of Computer Science, 25000, Algéria

E-mail: khadoudja.ghanem@univ-constantine2.dz

ORCID iD: https://orсid.org/0000-0003-4401-4554

*Corresponding Author

Ziad Kherbache
University Constantine 2, Abdelhamid Mehri, Faculty of New Technologies of Information and Communication,

Department of Computer Science, 25000, Algéria

E-mail: ziad.kherbache@univ-constantine2.dz

Omar Ourdighi
University Constantine 2, Abdelhamid Mehri, Faculty of New Technologies of Information and Communication,

Department of Computer Science, 25000, Algéria

E-mail: omar.ourdighi@univ-constantine2.dz

Received: 26 August 2023; Revised: 25 October 2023; Accepted: 27 December 2023; Published: 08 February 2025

Abstract: Malware detection using Machine Learning techniques has gained popularity due to their high accuracy.

However, ML models are susceptible to Adversarial Examples, specifically crafted samples intended to deceive the

detectors. This paper presents a novel method for generating evasive AEs by augmenting existing malware with a new

section at the end of the PE file, populated with binary data using memetic algorithms. Our method hybridizes global

search and local search techniques to achieve optimized results. The Malconv Model, a well-known state-of-the-art

deep learning model designed explicitly for detecting malicious PE files, was used to assess the evasion rates. Out of

100 tested samples, 98 successfully evaded the MalConv model. Additionally, we investigated the simultaneous evasion

of multiple detectors, observing evasion rates of 35% and 44% against KNN and Decision Tree machine learning

detectors, respectively. Furthermore, evasion rates of 26% and 10% were achieved against Kaspersky and ESET

commercial detectors. In order to prove the efficiency of our memetic algorithm in generating evasive adversarial

examples, we compared it to the most used evolutionary-based attack: the genetic algorithm. Our method demonstrated

significantly superior performance while utilizing fewer generations and a smaller population size.

Index Terms: Malware Detection, Adversarial Examples, Memetic Algorithms, Genetic Algorithm, Malconv Model,

Machine Learning.

1. Introduction

In the context of malware detection, adversarial examples (AEs) can be used to create malicious code that evades

detection engines, thus posing a significant threat to cyber security. AEs are specifically crafted inputs designed to fool

machine learning (ML) models by exploiting vulnerabilities in their decision-making process[1].

While ML-based classifiers have shown improved efficacy in detecting malware, adversaries have proposed

countermeasures to bypass detection, necessitating the development of effective countermeasures in response[2].

Generating AEs through adversarial attacks is considered a powerful technique for evading the detection of carefully

perturbed malware samples. Malware can be modified by different types of manipulation functions, the existing

literature indicates that few researchers have analyzed the specific features that adversaries can modify in malwares to

generate adversarial samples [3], this highlights a research gap in understanding the feature frequency and modification

mailto:khadoudja.ghanem@univ-constantine2.dz
mailto:ziad.kherbache@univ-constantine2.dz
mailto:omar.ourdighi@univ-constantine2.dz

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

2 Volume 17 (2025), Issue 1

techniques that attackers can employ to create adversarial malwares. Furthermore, the generation of adversarial

malwares that preserve functionality and the original maliciousness semantics of the malwares and can evade various

state-of-the-art detection techniques is another challenge that needs to be addressed [4].

Few surveys focusing on the adversarial attacks in the context of malware [5,6] are presented in the literature. In [7]

authors provide a comprehensive review on the state of-the-art research efforts of adversarial attacks against Windows

PE malware detection as well as corresponding defenses to increase the robustness of existing PE malware detection

solutions.

The Portable Executable (PE) file format is used by Microsoft Windows operating systems for executables, object

code, DLLs (dynamic-link libraries), FON (font) files, and others. Malware developers often use the PE format to

distribute their malicious software, while security researchers use the same format to analyze and detect it [8,9]. There

are many possible and simple solutions to perform manipulations on PE files [10], but, there are few special cases in

which it is possible to directly perform changes to the executable without compromising its functionality.

The focus of this study will be on generating AEs with the aim of evading detection in the context of malware

analysis. When we have limited knowledge of the targeted model, the use of genetic algorithms as an optimizer in

adversarial attacks has shown promising results[11]. However, premature convergence is an inherent characteristic of

such classical genetic algorithms that makes them incapable of searching numerous solutions of the problem domain. A

memetic algorithm is an extension of the traditional genetic algorithm. It uses a local search technique to reduce the

likelihood of the premature convergence.

The novelty of the proposed solution in this paper is that it is the first work that hybridize global search (GA)with

local search(MA:Hill Climbing) to generate successful AE. Indeed, all proposed methods in the category Evolutionary-

based attack use only genetic algorithm, a global search method. The proposed solution in this paper leverage memetic

algorithms, and the MalConv model to explore the effectiveness of these techniques in creating adversarial malware

samples.

The main contributions in the current paper are:

• Exploring the potential of memetic algorithms in modifying malware to evade detection and generate

successful evasive AE.

• Evaluating the effectiveness of the MalConv model, a state-of-the-art architecture, in detecting and classifying

adversarial malware samples.

• Comparing the performance of memetic algorithms and genetic algorithms in generating adversarial examples

to evade ML detectors (KNN, DT), and commercial Anti virus engines (Kaspersky, ESET).

• Investigating the impact of adversarial learning on enhancing the detection mechanisms employed by security

systems within the context of malware analysis.

The paper is structured as follows: Section 2 presents the related works and the basics of used materials. Section 3

describes the mechanisms of the proposed method for generating executable adversarial malware samples. The results

of the conducted experiments are reported in Section 4. Finally, the conclusion and future works are provided in section

5.

2. Related Works

Numerous research papers have addressed the generation of AEs to bypass malware detection systems. These

studies delve into the inherent vulnerabilities of malicious code detection engines and propose improved methods using

artificial intelligence (AI) to generate adversarial samples that can evade detection [8,12-16]. These studies highlight the

significance of the problem and the need to develop robust defenses against adversarial attacks on malware detection

models.

Many Attack strategies are proposed in the literature[7], gradient-based attack, Reinforcement Learning based

attack, randomized attack, evolutionary-based attack and Generative adversarial attack are some examples of these

strategies. In this study, we aim to find an optimized attack, thus, we focus on recent evolutionary-based attacks.

In [17], the authors propose AIMED a method to minimize malware scores. The approach consists of eight main

components, including the Manipulation Box, which injects byte-level perturbation such as Padding, Section Injection,

API Injection, and Header Fields into the malware sample to create the population of a genetic algorithm based attack.

The approach is tested against four malware classifiers, with Kaspersky chosen for its good performance, and the

impact of evasive mutations among different black box classifiers is also compared. The approach has a fast

convergence and the cross evasion rate is high(82%). The problem with this method is that 76% of input files are

unmodifiable,thus it will be interresting “to gain a better understanding about how to convert unmodifiable files into

modifiable ones”[17].

Similarly, in [18] authors propose MDEA to retrain the MalConv model. To generate the adversarial malware

samples, MDEA adjusts 10 kinds of format -preserving manipulations as the action space and employs a genetic

algorithm to optimize different action sequences by selecting manipulations from the action space until the generated

adversarial malware bypasses the target malware detectors. MDEA limits each manipulation with a parameter set to

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

Volume 17 (2025), Issue 1 3

make the adversarially trained models converge within an acceptable time. However, the generated adversarial malware

samples by MDEA are not tested for functionality.

In [19], authors introduced GAMMA a black-box attack framework, where, the generation approaches of

adversarial malware are limited to two types of functionality-preserving manipulations: section injection and padding.

Specifically, benign contents are extracted from the goodware as adversarial payloads to inject either into some newly

created sections (section injection) or at the end of the file (padding). Gamma optimizes the probability of evading

detection and penalizes the size of the injected adversarial payload as a regularization term. It employs genetic

algorithm to bypass the malware detector with few queries as well as small adversarial payloads.

In [20], authors optimize code caves in malware binaries to evade ML detectors. By dynamically introducing

unused blocks in malware binaries while preserving their original functionality, the authors generate AEs using artificial

neural networks. Genetic algorithms are employed to determine the content to place in code caves for achieving

misclassification. Evaluation of the proposed model is conducted in a black-box setting using MalConv architecture, it

achieves a result of 97.99% successful evasion rate from 2k tested malware samples. Additionally, the transferability of

the proposal is successfully tested on commercial Anti virus engines available at VirusTotal, demonstrating a reduction

in the detection rate for the crafted AEs.

The authors in [21] have explored the susceptibility of deep network-based malware detection methods to evasion

attacks, they propose a gradient-based attack that can evade Malconv architecture designed for this purpose by making

small changes to the input data. They have demonstrated that their adversarial malware binaries can evade the targeted

network with a 60% success rate, even when less than 1% of their bytes are modified, while maintaining their intrusive

functionality. They used 200 malware samples, were the smaller input file size is 106k., but they found that appending

bytes to the end of the file reduces the effectiveness of the gradient-based approach.

Genetic programming has also been introduced in the mobile domain. In [22], authors present a method that

evolves automatically variants of malwares from the ones in the wild by using genetic programming.

In [23] the authors propose a testing framework for learning-based Android malware detection systems for IoT

Devices. They introduce genetic algorithms to generate effective adversarial samples and can perform black-box testing

on the system. And in [24], the authors propose GenDroid, a framework for crafting Android AEsin black-box scenarios.

They adopt an evolutionary strategy and introduce Gaussian process regression to guide the evolution, which

substantially improves the attack efficiency. They demonstrate their attack on two state-of-the-art Android malware

detection schemes, Drebin (Arp et al., 2014) and MaMaDroid (Mariconti et al., 2016) . GenDroid has a higher

misclassification rate compared to some state of the art attack.

A synthesis of the presented works reveals that the most attacked model is the Malconv model, a state-of-the-art

deep learning model specifically designed for detecting malicious PE files.

The Malconv architecture Fig.1 is a meticulously designed deep learning model specifically designed for detecting

malicious PE files[25].

Fig.1. Malconv model architecture[25]

The model starts with an input layer that takes the raw byte sequences of PE files as binary content. It then

includes an embedding layer to transform the byte sequences into a continuous vector representation, capturing essential

semantic information. Convolutional layers are employed to extract meaningful features from the embedded byte

sequences. These layers utilize filters that slide over the input data, capturing local dependencies and patterns. Two

convolutional layers with 128 filters each are utilized, learning hierarchical representations of the data. In addition to the

convolutional layers, the Malconv architecture incorporates an attention layer, assigning importance weights to different

segments of the byte sequences. This enables the model to focus on relevant parts of the input data. The outputs of the

convolutional and attention layers are combined using an element-wise multiplication operation called gating,

selectively emphasizing informative patterns. A global max pooling layer is applied to aggregate relevant features

across the entire sequence, capturing the essential characteristics of the PE files while reducing dimensionality. The

pooled features are then passed through fully connected layers, performing nonlinear transformations and extracting

high-level representations. A dense layer with 128 units and a rectified linear unit (ReLU) activation function is utilized.

The final layer of the Malconv model is a dense layer with a sigmoid activation function, producing a single output

representing the probability of the input file being classified as malicious. During training, the model's weights are

updated using the stochastic gradient descent (SGD) optimizer with specific hyperparameter. The model is trained using

a binary cross-entropy loss function, which measures the discrepancy between predicted probabilities and true labels.

In another hand the synthesis of the presented evolutionary based attacks reveals that most of these methods

employ genetic algorithms. However, the main problem of genetic algorithm when generating adversarial malwares, is

that it fail to generate an adversarial example from most of the original malwares even over a high number of

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

4 Volume 17 (2025), Issue 1

generations, these original malwares are judged unmodifiable. To address this problem, we investigate the harness

power of Memetic algorithms (MAs), a hybrid optimization technique that combines global search of evolutionary

algorithms with local search methods[26].

MAs embody the principles of natural selection and evolution, mimicking the processes observed in biological

systems[27]. By employing genetic algorithms, which serve as the global search component, memetic algorithms can

explore a wide range of solutions within the search space. Genetic algorithms leverage evolutionary operators such as

selection, crossover, and mutation to generate diverse and promising candidate solutions. However, genetic algorithms

alone may struggle with fine-tuning and can be prone to premature convergence where the algorithm gets trapped in a

local minimum or fails to explore the entire search space thoroughly. In order to reduce the likelihood of premature

convergence, different local search methods, such as simulated annealing, Tabu search or hill climbing can be used. In

this paper, we propose a Memetic algorithm that hybridize genetic algorithm with a Hill Climbing Algorithm in order to

generate for each malware a successful adversarial example.

3. Proposed Approach

The proposed approach to modify the PE file with the aim of generating AEs is depicted in Fig. 2, it provides a

workflow chart of the main steps of the developed Memetic algorithm, while Algorithms 1,2,3,4 below the workflow

chart, outline the detailed process and operations involved in our proposed approach.

Hill climbing is incorporated within our proposed Memetic algorithm framework as a local search method to

enhance its ability to refine and optimize the generated adversarial examples.

Malconv model is used to evaluate the effectiveness of the generated AE, thus, before generating any AE from PE

malwares, we trained and evaluated the Malconv model to produce a model that will be used in the prediction of any

input file as a malware or a goodware. The objective function of the MalConv model is the binary cross-entropy loss

eq.(1):

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ [𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)]𝑁

𝑖=1

Where:

- N is the number of data files.

- yi is the true label for the ith file, where (yi = 1) for malware and (yi = 0) for goodware.

- (pi) is the predicted probability that the i th file is malware according to the MalConv model.

The objective is to minimize this loss function during the training process. This means that the model aims to make

predictions (pi) that are as close as possible to the true labels (yi). The loss quantifies the dissimilarity between the

predicted probabilities and the true labels. The MalConv model is trained using this loss function and backpropagation

to update its parameters (the weights and biases) to improve its classification performance and enhance the detection of

malicious files. The model is trained on over 1000 known labeled malware samples, and over 1000 known labeled

goodware samples.

Fig.2. Workflow diagram

Algorithm 01: Pseudo code of Generating AE with MA

Initialisation:

m: input PE malware;

ngen : number of generations(25);gen=0;

N: population size(10);

Undetected=’False’;

best_individual,best_pred=None;

i*: best_individual;

https://en.wikipedia.org/wiki/Premature_convergence
https://en.wikipedia.org/wiki/Premature_convergence

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

Volume 17 (2025), Issue 1 5

m*:Generated AE;

Begin

Prediction1=predict(input PE malware); //with malconv model;

If (Prediction1<0.5) Then Print(‘PE not detected as malware’) Else:

Create initial binary population (i1..i10 randomly) ;

While (gen<=25) AND (Not(Undetected)) Do

 Add-sections to PE malware (i1..i10) (Algorithm 02);

 Evaluate Fitnesses of all new PE files with added sections (Algorithm 04);

 Select two individuals with tournament operator(tournsize=3);

 Apply Crossover;

 Apply Mutation;

 Evaluate Fitnesses of (offsprings);

 Apply Local search:Hill climbing on offsprings (subset=50) (Algorithm03);

 Keep best individuals from new pop;

 gen=gen+1;

Endwhile

If Undetected Then : logging.info(‘PE Not Detected as malware!’) Else: Restore best_individual(i*);

m*=Add-section to input PE malware m (i*);

End.

Algorithm 02: Pseudo code of Add-section to PE malware (individual)

Parse the binary from the input PE malware;

Create a new section with a random name;

Set the contenent (individual) to the new section;

Set the virtual adress of the new section to the end of the existing sections of the input malware;

Add the new section to the binary;

Write the modified binary to the output file (the new PE malware =AE);

Return the output file.

Algorithm 03: Pseudo code of Hill climbing(Individual,50)

Evaluate Fitness of the individual :current fitness;

Repeat from 1 to 50 :

 Generate neighbor: Generate neighboring solution by making modification (1/0) to the individual ;

 Select the best neighbor: Evaluate Fitness for the modified individual and select the one with the highest value:

 If new fitness > current fitness Then :

 Move to the best neighbor and update the current solution with the new solution:

current fitness= new fitness; Else cancel individual modification.

Go back to step 3 and continue the process;

Return individual (the best one).

Algorithm 04: Pseudo code of Evaluate Fitness (individual)

a=Add-section to PE malware (individual);

pred=predict(a) with Malconv model;

If (pred <= best_pred) Then: update and save the best_individual and best_pred;

 If (best_pred < 0.5) Then : undetected =True.

End ;

Fitness = 1-pred;

Return Fitness.

• Parsing the PE File

In this step, the PE file is read and parsed into our program. The input and output directories are defined, and a list

of PE files in the input directory is obtained. Each PE file will go through the subsequent steps of the adversarial

example generation process.

• Initial Prediction using the Malconv Model

The Malconv model is utilized to make an initial prediction on the original PE file. This prediction serves as a

baseline for evaluating the effectiveness of the generated adversarial examples. The prediction result is logged for

reference.

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

6 Volume 17 (2025), Issue 1

• Initializing the Population

A population for potential AEs is created. The population size is set to 10, and the length of each individual in the

population is defined as 2056, this length represents the virtual size of the PE file.

• Adding a New Section and Evaluating Fitness

For each individual in the initial population, a new section is added to the end of the PE file (Algorithm 02). The

binary data, is represented by 0s and 1s, the strategic placement of binary data within the added section plays a vital role

in our approach. There are many possible and simple solutions to perform manipulations on PE files but, there are few

special cases in which it is possible to directly perform changes to the executable without compromising its

functionality. Anderson et al. [10] are the first researchers who study how to automatically manipulate the original PE

malware such that the modified PE malware are no longer detected as malicious by Black-box Adversarial Attacks

while do not break the format and functionality. They demonstrate that one of the possible manipulations that preserve

functionality is to add binaries at the end of the PE file. For the sake of simplicity, in this paper we only refer to byte

appending after the end of the file as modification strategy.

After adding this section, the fitness of the modified PE file is evaluated using the Malconv model (Algorithm04).

The fitness value represents the likelihood of the malware being detected. The fitness is to minimize the probability of a

modified PE binary being classified as malware by the Malconv model, as (Fitness = 1-probability), thus, higher fitness

values indicate a lower chance of evading detection.

• Selection Phase

In the selection phase, two different selection operators: elitism and tournaments were explored to select

candidates solutions, as a result, the tournament operator has been adopted. With this style selection mechanism, the

population is divided into groups of three (03) individuals when the population size is equal to 10 and into groups of six

(06) individuals when the population size is equal to 50, and the best-performing individual from each group is selected

for the next generation. This selection process favors individuals with lower fitness values.

• Crossover Phase

The crossover operation is performed on the selected individuals. Crossover introduces genetic diversity by

exchanging genetic information between parent individuals to produce offspring, in our study, the probability of the

crossover operation is set to 50% to favoritize the diversity because the population size is only 10 so it do not

compromise the speed up process.

• Mutation Phase

Mutation helps to introduce new genetic material and potentially discover more effective adversarial examples. A

mutation operation is applied to the offspring, each index in the individual has a 20% probability of flipping its value (0

to 1 or 1 to 0). The probability rate of mutation has been chosen experimentally over different values to further enhance

diversity and explore different variations.

• Local Search using Hill Climbing

In this step, a local search technique (Hill climbing) is applied to a subset of the individual(Algorithm 3). The size

of the chromosome is 2056, but only a subset of 50 indices is selected for the hill climbing operation.

Hill climbing algorithm is a well-known local search algorithm, it complements the exploration capabilities of

genetic algorithms in memetic algorithms[27]. It focuses on making incremental improvements by iteratively moving

towards the best neighboring solution. Neighboring solution is generated by making modification (1 to 0 or 0 to 1) to an

index of the individual , then, the fitness of the current solution is evaluated and updated until a local optimum that

improves the adversarial example's effectiveness is reached.

• Reevaluating Fitness

After the hill climbing phase, the fitness of the individuals that underwent local search is reevaluated using the

Malconv model. This step ensures that the modifications made during hill climbing have improved the adversarial

examples' evasion capabilities.

• Fitness Threshold and Termination

Like it has been assumed in many proposals [20,21,28], we consider that prediction values larger than 0.5 indicate

that a sample must be classified as malware, elsewhere, the sample must be classified as goodware. Thus, after the

fitness evaluation of each individual(Algorithm 4), we determine the success of the adversarial example. If the

prediction is below 0.5 (or fitness is above 0.5), indicating that the malware successfully evades detection, we consider

it a successful adversarial example.

However, if the prediction is above 0.5 (or fitness is bellow 0.5), the malware is considered unsuccessful in

evading detection. In this case, we continue to the next generation, repeating the process from step 4 onwards. The

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

Volume 17 (2025), Issue 1 7

individual which generated the unsuccessful malware is discarded, and new offspring are generated through selection,

crossover, and mutation operations.

This iterative process allows us to refine and improve the AEs over multiple generations. The goal is to find AEs

that consistently evade detection by the Malconv model leading to potential insights into the vulnerabilities of the model

and other models from the same family namely deep neural network models, and the robustness of malware detection

systems. The termination condition for this process is defined as a combination of the number of generations and the

fact that the malware is detected as goodware (this corresponds to a prediction value below 0.5).

4. Experiments and Results

4.1. Dataset Description

The dataset we used in our approach is the DikeDataset[29], a meticulously curated collection of labeled benign

and malicious PE and OLE files, it counts 9000 malware and 1000 goodware. The primary objective of this dataset is to

train and evaluate artificial intelligence algorithms for predicting the maliciousness of files and determining their

membership in specific malware families. The dataset labels in the DikeDataset are represented numerically, with

values ranging from 0 to 1, indicating the degree of malice associated with each file. The lowest size of malware used in

our experiments is about 80kb and the highest is about 600kb.

All our experiments were performed on a computer with the following configuration: CPU: Intel Core i5-4210M,

2.60GHz, RAM: 8GB, x64-bit, Graphics Card: Intel HD Graphics 4600.

4.2. Parameters Settings

Used parameters with our methods are in table1:

Table 1. Parameters of all used algorithms

Algorithm Pop. Nb Gen Selection Crossover Mutation

AG 50/10 25+ Seltournament (6/3)
cxtwopoint crossover operator

with probability = 50%

mutflipbit mutation operator

with probability =20%

Memetic 10 25 Seltournament (3)
cxtwopoint crossover operator

with probability = 50%

mutflipbit mutation operator

with probability= 20%

Hill climbing Subset size of 50

4.3. Results

To evaluate the performance of the proposed method, many experiments were conducted on a variety of malwares

and goodwares. To omit the problem of imbalanced data, we select randomly 1000 malware and 1000 goodware from

the 9000 malwares of the dataset to train Malconv network. In another hand we select randomly 100 malwares from the

remaining unselected malwares to generate Adversarial examples.

In order to assess the efficiency of our Memetic based evasive malware:

• First, we tested the genetic algorithm approach with a population size of 50 individuals (Table 2: Columns

6,7,8). An initial prediction is computed for each original malware, and then at each generation, we compute

the prediction rate of the new modified malware. This rate is reduced until it reaches 0.5 or lower, in this case,

the produced malware is judged a successful adversarial malware that can effectively evade the detection. If

the maximum number of generations which is 25 is reached, but the prediction fails to reach 0.5, the original

malware is ignored and is no longer valid to produce new malware variants.

• Second, because the Memetic algorithm is suggested to be slower than genetic algorithm, our objective is to

minimize the number of generations, thus, we tested the Memetic algorithm with 10 individuals (Table 2:

Columns 3,4,5) and conducted the same experiments as with genetic algorithm.

With both algorithms, we deduced the number of the generation in which the prediction rate of 0.5 is reached and

the required time in minutes.

Table (2) presents obtained results for 100 original malwares. This evaluation allows:

To examine the impact of population size on the effectiveness of both algorithms in generating AEs to evade

malware detection, and,

To show the success of Memetic algorithm in generating AEs in contrast of the genetic algorithm in doing so.

• -Third, to study the impact of population size in generating adversarial examples, we tested the genetic

algorithm approach with a population size of 10 individuals (Table 3).

Table (3) focuses on comparing genetic algorithm against the Memetic algorithm approach with the same

population size which is 10. We only chose the malwares that succeed to be AEs in table 2 (26 malwares).

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

8 Volume 17 (2025), Issue 1

It is worth noting that in this paper, we estimated that there is no need to implement a sandbox to make sure all

new mutations are functional before checking whether they are also evasive, because the used perturbation consists of

adding a section at the end of the PE file, and in this case, the functionality of the PE file is preserved according

to[7,10].

Table 2. Memetic algorithm with population size 10 and genetic algorithm with population size of 50 in the generation of 100 adversarial malwares

Malware

Name
Initial Prediction

MA Time

(mn)

MA Min Prediction

10 individual

MA

Generations

GA Time

(mn)

GA Min

Prediction

50 individual

GA

Generations

000d1ba 0.999412835 13.61123461 0.452880472 13 4.828982 0.98936367 25+

000d623 0.993823886 7.723150333 0.39293316 7 5.188897 0.70996803 25+

000e731 0.973636925 5.481930563 0.436591864 5 5.166708 0.897034764 25+

002d72a 0.997302771 13.04369545 0.35421133 12 5.223968 0.967905521 25+

00ab1c6 0.997607529 11.0853188 0.439802468 10 5.04205 0.893437207 25+

00dbed 0.993287206 12.26620739 0.347544253 11 4.964102 0.85128814 25+

02ad00 0.998556852 19.98556223 0.211905688 18 5.287467 0.961169481 25+

02b6cfb 0.988032639 8.986126105 0.381986976 8 5.175056 0.758048773 25+

0b06ed 0.97939539 9.90253845 0.420599759 8 5.387898 0.952501178 25+

0b25e6 0.99427563 8.925917108 0.324236035 12 5.22251 0.765558779 25+

0b269a 0.998900294 13.19422797 0.412822217 13 5.492412 0.967009425 25+

0b328c 0.999649346 20.57058286 0.394680083 16 5.659335 0.965153337 25+

0b41fe 0.969264925 11.40305769 0.443954319 8 4.110614 0.447938204 18

0b445 0.961407006 15.87464245 0.458567291 11 3.381857 0.498321176 14

0b575e 0.999579489 26.09760502 0.244422078 19 6.062447 0.954518318 25+

0b626ff 0.992215514 19.51573189 0.475713193 16 5.840186 0.82665652 25+

0b66c3f 0.928288996 79.05951942 0.475568503 16 7.661204 0.673520327 25+

0b673d 0.993508995 10.39063851 0.413135231 8 8.157501 0.987458885 25+

0b7ba7 0.728037477 10.05325291 0.464648604 8 7.148687 0.758048773 25+

0b8ad8 0.991936743 14.58298917 0.379579246 11 4.968175 0.852547288 25+

0b9996 0.999588668 25.35407868 0.27461499 19 4.574189 0.990362763 25+

0bc38d 0.998643875 25.11935322 0.470483989 14 5.09409 0.992877901 25+

0bd575 0.991705775 21.48439821 0.492647409 10 5.086544 0.907415092 25+

0be469 0.993354678 18.32547148 0.418112665 8 5.2439 0.780185044 25+

0bf37d 0.952174366 20.04276294 0.463632643 8 3.494744 0.493274212 16

0bfa7a 0.912130654 19.37016685 0.495369732 7 4.439243 0.48886624 20

0c839f9 0.90747726 8.301146825 0.3259148 3 0.218519 0.391690314 1

0ca892a 0.852082014 3.511094312 0.394941151 3 0.484081 0.330154955 2

0cb1707 0.964990258 8.413723738 0.428128928 8 5.255518 0.829692483 25+

0ccdac 0.98633343 33.38413339 0.496122658 10 6.383397 0.503566444 25

0cd8f5d 0.996880233 10.57553939 0.450523138 10 8.102604 0.976029158 25+

0cdc2fd 0.993904173 11.69725081 0.480871767 10 8.649563 0.937586725 25+

0d148c6 0.996237338 21.61184148 0.433713347 18 5.302816 0.994839847 25+

0d4d4 0.977840602 12.36783206 0.346672982 11 9.437703 0.904402852 25+

0de38 0.980777323 10.99880155 0.469530106 9 5.20164 0.723987103 25+

0e0c 0.97841239 15.7671218 0.410084248 10 5.188034 0.853684068 25+

0e5147 0.888022363 2.224776093 0.453321993 2 0.203077 0.452500671 1

0e545 0.997968674 12.20115267 0.351854712 11 4.110614 0.378388226 9

0e568d 0.99295646 17.19283314 0.454013258 9 5.312664 0.801853418 25+

0e5834a 0.997475266 7.523782227 0.492886633 7 8.061629 0.890783191 25+

0e6552a 0.908392727 3.257904787 0.475143641 3 4.766958 0.433918595 22

0e76364 0.997101903 11.01411014 0.44733876 10 8.87966 0.950139284 25+

0e807899 0.998297393 13.62635151 0.474462569 12 8.37379 0.922519863 40+

0e80947db 0.989724934 9.096953155 0.454938024 7 6.11979 0.460484058 25

0e83016a20 0.998579979 17.51728673 0.280992955 10 8.953578 0.924651861 25+

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

Volume 17 (2025), Issue 1 9

0e876a 0.974769592 3.761154995 0.328944176 2 1.601469 0.350069433 7

0e90505 0.993205428 27.46842651 0.389202327 13 5.345003 0.978252172 25+

0e9159a9 0.995217085 39.92487917 0.445388645 17 6.11979 0.991322637 25+

0ea38c5a 0.999344289 47.11197315 0.313687176 15 5.154608 0.969277918 25+

0ec199c 0.99750644 43.4542839 0.245217428 12 5.492412 0.776708543 40

0ecc 0.937462389 24.43710787 0.386530787 6 5.816572 0.498843789 11

0ecf8a4 0.996136725 9.886277807 0.37090826 9 5.492412 0.830397487 25+

0eddc7a 0.899862289 4.336961035 0.310796797 4 2.423934 0.407560825 5

0f368926 0.889388978 17.13377888 0.335829049 12 1.131349 0.368695855 2

0f571ef0 0.955163479 21.03077984 0.353987753 10 8.673237 0.622172654 25

0fbbf 0.999575436 28.6478361 0.371554047 13 5.188034 0.996301472 40

1a41f358 0.995136738 11.93352423 0.411915153 20 5.405453 0.992308378 25+

1aad4af9 0.956178606 16.00078299 0.43273136 12 25.1713 0.636435151 40

1abde801 0.846284568 1.269326928 0.251989245 1 0.631026 0.256334662 1

1ad26d8e 0.972956121 14.68194296 0.448429853 11 8.034011 0.778618693 25+

1aee80e2 0.997985303 11.48720547 0.479220062 8 8.541651 0.79992193 25+

1b389fa 0.580829024 3.197176643 0.455786765 5 1.135259 0.498354107 5

1ccd12c7 0.993967474 27.79395788 0.45682174 12 5.345003 0.87714982 40

1cd7afd 0.881123066 19.25717144 0.411600381 8 4.65551 0.487330586 23

1dbfbe7 0.998214304 20.74066933 0.405044824 8 9.074766 0.731464028 25+

1fcf55 0.967099965 12.18178064 0.323096752 11 8.673237 0.535451293 25

1fd1d4 0.999581337 23.46870101 0.459344983 19 5.382717 0.997136056 25+

1fda73 0.922158599 11.86566439 0.469772816 10 5.202302 0.790673614 25+

1fda77 0.999606669 18.63499727 0.454215825 14 5.404464 0.98446697 25+

1fe3475 0.847312987 2.742010397 0.406707525 2 2.03475 0.446347713 9

1ff93a9 0.998492658 14.07401216 0.473918766 10 5.345003 0.97271353 25+

1ffd84 0.864335716 1.488715513 0.415620357 1 0.236249 0.337292492 1

2b411b 0.997850358 35.56751657 0.292053044 20 0.997559 0.992228329 25+

2b8274 0.758167863 17.61481672 0.486374974 25 2.952722 0.401086777 14

2b832e 0.994533181 25.23878159 0.34646821 12 5.426925 0.888349891 25+

2b934ca 0.986499846 37.13563555 0.34646821 16 5.303906 0.936501563 25+

2b97ca2 0.999088645 29.52651323 0.471598506 12 5.205182 0.970559061 25+

2dc5531 0.999356687 20.52495456 0.411891967 18 5.516382 0.986080825 25+

2dcaf04 0.9536466 7.686784427 0.226673603 7 1.537329 0.435638368 8

2dd089b 0.999582767 21.42179483 0.381497711 18 5.706327 0.997525096 25+

2df88c9 0.998740911 10.63417082 0.41247955 9 5.557326 0.816071332 25+

2dfe 0.997882009 25.0040904 0.38482058 19 5.283966 0.996241331 25+

2e14d 0.997941911 13.8404796 0.443197846 9 5.318006 0.892261207 25+

2e2a45 0.988497853 43.626 0.535451293 25 5.154608 0.942445457 25+

2e5fb 0.99960649 42.91828385 0.47227934 17 5.232804 0.981294096 25+

2e6e825 0.996190012 29.71324144 0.478178144 11 5.658289 0.943344414 25+

3fa44906 0.999176085 27.79000452 0.481719941 10 5.774209 0.99601692 25+

3fa9c141 0.909792662 5.311738343 0.436534494 2 0.621312 0.426870763 3

3faec1e7 0.907690346 14.18755539 0.496204615 5 1.942501 0.49906978 9

3fb50cf 0.970266283 50.36 0.673520327 25 5.915463 0.830421269 25

4a9e7e2 0.980166137 4.162888417 0.495502084 4 5.32331 0.951628208 25+

4ae1ad6 0.980782568 14.20816338 0.478706539 10 5.478883 0.630299449 25

4b0aaf5 0.985360205 13.11142762 0.471595705 12 5.345003 0.751044154 25+

4b125 0.999469876 21.83711277 0.471595705 12 5.483574 0.980629981 25+

4b769d 0.984389901 11.68125295 0.394959778 11 5.182304 0.846409321 25+

984541e 0.736750126 6.608465762 0.450218827 9 5.6951 0.798329294 25+

bf534f3 0.950698376 6.095476988 0.290416598 5 7.97575 0.505183637 25

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

10 Volume 17 (2025), Issue 1

bf839e 0.769838214 1.268298588 0.356319249 1 0.331381 0.40473628 1

d5c26fed 0.630749285 2.240088618 0.376110941 2 0.61834 0.31850341 2

f8ef3e3b 0.606728137 6.956787637 0.443802714 5 8.147903 0.381122231 22

Table 3. Memetic algorithm vs genetic algorithm with population size of 10 in the generation of adversarial malwares

Malware Name
MA Time

(mn)

MA Min Prediction

10 individual

MA

Generations

GA Time

(mn)

GA Min Prediction

10 individual

GA

Generations

0b41fef68 1.269327 0.251989 1 1.1423 0.903218508 25

0b445bba 2.240089 0.376111 2 1.2094 0.907194257 25

0bf37d24 3.511094 0.394941 3 1.187 0.75009501 25

0bfa7a40 1.488716 0.41562 1 0.7684 0.460218042 16

0c839f90 3.761155 0.328944 2 1.1291 0.619088173 25

0ca892a6 17.13378 0.335829 12 0.0526 0.35329923 1

0e5147b 12.20115 0.351855 11 1.1603 0.516726613 25

0e545292 6.956788 0.443803 5 1.1881 0.982938886 25

0e6552ac 8.301147 0.325915 3 1.1649 0.957994282 25

0e80947d 17.61482 0.486375 25 1.1896 0.925188959 25

0e876ae 1.268299 0.356319 1 1.1521 0.68820709 25

0eccf6ef 4.336961 0.310797 4 1.2424 0.852847397 25

0eddc7ab 5.311738 0.436534 2 1.0993 0.75313884 25

0f3689265 3.257905 0.475144 3 0.7119 0.39843604 14

1abde801a 7.686784 0.226674 7 0.0458 0.260212004 1

1b389fab 2.74201 0.406708 2 0.5404 0.493309379 11

1cd7afd4 11.40306 0.443954 8 1.1232 0.756913006 25

1fe3475 2.224776 0.453322 2 1.2335 0.812570512 25

1ffd84c2 9.096953 0.454938 7 0.0596 0.417993784 1

2b82747 19.25717 0.4116 8 1.2146 0.81317544 25

2dcaf04 19.37017 0.49537 7 1.0941 0.673018873 25

3fa9c1416 20.04276 0.463633 8 1.1515 0.54717207 25

3faec1e7 15.87464 0.458567 11 1.1947 0.537118375 25

bf839e2f 3.197177 0.455787 5 0.429 0.428981602 13

d5c26fed 24.43711 0.386531 6 0.824 0.485638946 18

f8ef3e3b18 14.18756 0.496205 5 1.3631 0.727774918 25

4.4. Discussion

In order to evaluate the generated AEs, we first discuss the obtained results with genetic and memetic algorithms

evading Malconv network. Then to evaluate the generated AEs against other malwares detectors , We implemented four

more options, two top commercial scanners :ESET and Kaspersky , and , two ML models: KNN and Decision tree (DT).

Our aim is to obtain more robust AEs capable of evading all five classifiers, all these classifiers are used to simulate a

black box classifiers.

A. Memetic vs. Genetic Algorithms: Malconv model

• Evading Rate

From table 2, it can be observed that when using a population size of 50 with the genetic algorithm approach, only

26 out of 100 samples successfully bypassed the MalConv model under 25 generation. This indicates limitations in

finding effective modifications to the PE files that can evade detection. In contrast, the memetic algorithm, leveraging

hill climbing, demonstrated a significantly higher success rate with 98 out of 100 samples successfully evading

detection. Averaging 9 generation per each malware sample, the memetic algorithm is able to refine modifications and

navigate the search space effectively contributed to its superior performance compared to the genetic algorithm. We can

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

Volume 17 (2025), Issue 1 11

also notice that malwares that could not be modified with memetic algorithm, could not be modified with genetic

algorithm either.

Additionally, from table (3), it can be seen that when the population size was reduced to 10 as shown, the success

rate of genetic algorithm further decreased, with only 8 samples evading detection. However, memetic algorithm with

population size 10, achieves a higher success rate (98%) compared to the genetic algorithm (26%) when the population

size is 50, and (8%) when the population size is 10. These results underscore the memetic algorithm's ability to

iteratively improve modifications and explore the search space more effectively resulted in a higher success rate,

regardless to population size.

Fig.3. Evasion rate against MalConv model

• Number of Generations

Upon comparing the number of generations reached by each approach, a clear distinction emerges. Our memetic

approach demonstrates a notable advantage by requiring significantly fewer generations to generate successful

adversarial examples. In the genetic algorithm with a population size of 50, a substantial rate of 74% of the samples fail

to evade detection even after 25 generations. Similarly, in the genetic algorithm with a population size of 10, a

significant rate of 92% of the samples also fail to evade detection after 25 generations. These results underscore the

limitations of the genetic algorithm in finding effective modifications to bypass detection within the specified

generation constraints. This was the limitation of the work in [17], where the authors state that 76% of PE malware files

are unmodifiable under a greater number of generations. In contrast, our memetic algorithm exhibits a higher efficiency,

enabling a greater number of samples to successfully evade detection within the given 25-generation limit. This

suggests that the memetic algorithm's incorporation of hill climbing and local search techniques facilitates more

effective exploration of the search space, leading to quicker convergence towards successful adversarial examples.

• Processing Time

The memetic algorithm exhibits a wider range of execution times, varying from a minute and 26 seconds to around

50 minutes. Although the average execution time is relatively high, most samples are generated within a reasonable

timeframe averaging 5 minutes. In contrast, the GA with a population size of 10 or 50 demonstrates significantly shorter

execution times, ranging from fractions few second to few minutes. this can be explained by the fact that the MA takes

longer due to the additional computational effort of refining modifications by exploring both global and local spaces.

The choice between the two approaches should consider the trade-off between success rate and generating time based

on specific requirements and constraints. However, it is worth noting that we are about generating successful AEs, and

this is done generally in an offline manner, thus processing time is not always a significatif constraint.

Table 4. Memetic algorithm vs genetic algorithm evasion rate comparison

 GeneticAlgorithm :Evasion rate Memetic Algorithm :Evasion rate

Population Size 50 10 10

KNN 9/100 9% 3/100 3% 35/100 35%

Decision Tree 8/100 8% 2/100 2% 44/100 44%

Kaspersky 8/100 8% 2/100 2% 26/100 25%

ESET 6/100 6% 1/100 1% 10/100 10%

B. Memetic vs. Genetic Algorithms: ML Models and Commercial Antivirus

In Table (4), we present a comparison of the evasion rates between the MalConv model and each of the four

detectors individually: KNN, Decision Tree, Kaspersky, and ESET. This analysis allows us to assess the performance of

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

12 Volume 17 (2025), Issue 1

different algorithms, namely the Genetic Algorithm (GA) with a population size of 50, the GA with a population size of

10, and the Memetic Algorithm (MA) with a population size of 10, in generating AEsthat bypass the detection

mechanisms.

Fig.4. Evasion rate: ml models and antiviruses simultaneously with Malconv

• Evading Machine Learning Models KNN-Decision Tree

In the Genetic Algorithm with a population size of 50, 9% of the samples were able to simultaneously evade both

the KNN detector and the MalConv model, and 8% evaded the Decision Tree detector and the MalConv model. These

results suggest that the algorithm was able to generate AEsthat effectively bypassed both the traditional machine

learning detectors and the MalConv model. However, the success rates were relatively low, indicating room for

improvement. Decreasing the population size to 10 reduced the success rates against these detectors, with evasion rates

of 3% and 2%, respectively. These results suggest that a smaller population size may limit the algorithm's ability to

generate highly effective adversarial examples. In contrast, the Memetic Algorithm achieved significantly higher

quantities of successful AEsand higher evasion rates. With a population size of 10, 35% were able to evade both the

KNN detector and the MalConv model, and 44% evaded the Decision Tree detector and the MalConv model. The

Memetic Algorithm's ability to refine modifications using hill climbing and local search techniques contributed to its

improved evasion rates, effectively exploiting the weaknesses of the KNN and Decision Tree detectors, while

simultaneously bypassing the MalConv model. These results suggest that the Memetic Algorithm has a stronger

capability to generate AEsthat can evade both the traditional detectors and the MalConv model, highlighting its

potential in developing more robust evasion strategies.

• Evading Commercial Antivirus

The experiments conducted to compare the performance of the Genetic Algorithm (GA) and the Memetic

Algorithm (MA) with different population sizes have provided valuable insights. The GA with a population size of 50

achieved evasion rates of 8% for Kaspersky and 6% for ESET. These evasion rates represent the percentage of samples

capable of evading both the MalConv model and either Kaspersky or ESET antivirus systems simultaneously. Reducing

the population size to 10 resulted in evasion rates of 2% for Kaspersky and 1% for ESET. In contrast, the Memetic

Algorithm with a population size of 10 outperformed both versions of the GA in terms of evasion rates. It achieved

higher evasion rates of 25% for Kaspersky and 10% for ESET, indicating that a larger proportion of samples generated

by the Memetic Algorithm were capable of simultaneously evading Malconv and Kaspersky and ESET antivirus

systems. These results highlight the stronger capability of the Memetic Algorithm in generating AEsthat can bypass

both the commercial antivirus systems and the MalConv model. The findings suggest that further optimization and

improvement of the Memetic Algorithm could lead to the development of more robust evasion strategies against such

systems.

• Evading Both Machine Learning Models and Commercial Antivirus

In order to obtain more robust adversarial examples, we tested all successfully generated AEs from Malconv model

with the other four classifiers: KNN, DT, Kaspersky and ESET.

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

Volume 17 (2025), Issue 1 13

Table 5. Memetic algorithm vs genetic algorithm evasion rate against all four detectors at the same time

 Genetic algorithm Memetic algorithm

Population size 50 10 10

All four detectors 1/100 1% 4/100 4%

The results in Table (5) indicate that the Memetic Algorithm outperformed the Genetic Algorithm in terms of

generating examples that could successfully evade all four detectors. In the case of the GA, regardless of the population

size (50 or 10), only one example out of 100 instances was able to bypass all detectors. On the other hand, the MA with

a population size of 10 produced four examples out of 100 that evaded all detectors. This suggests that the MA was

more effective in finding solutions that were able to evade the detection mechanisms of the four algorithms being tested.

It implies that the MA, with its combination of genetic and local search techniques, potentially provided a better

exploration and exploitation of the solution space, resulting in a higher success rate in evading the detectors compared

to the GA.

C. Assessing the Effectiveness of our Method with Other State-of-the-Art Techniques

Finally, we compared the results of the proposed method with those obtained by algorithms in the literature. In

Table (6) we recorded the results of two methods for the evasion rates with different sizes. These methods are:

Optimization of code caves [20] and Gradient-based attack that can evade Malconv model. The results of the three

approaches as shown in Table 6, taking into consideration the sample size factor, reveal interesting insights. The

Memetic Algorithm, applied to a sample size of 100, achieves an impressive evasion rate of 98% when tested against

the Malconv Model. This suggests that the algorithm performs well in generating adversarial samples that can

successfully bypass the detection capabilities of the model. Similarly, the optimization of code caves in malware

binaries, with a larger sample size of 2036, demonstrates a high evasion rate of 97.99% when tested against the same

Malconv Model. This indicates the efficacy of this approach in generating evasive malware samples on a larger scale.

However, it's worth noting that the approach of adversarial malware binaries, with a smaller sample size of 200,

achieves a comparatively lower evasion rate of 60% when tested against deep network-based malware detection

methods.

Table 6. Memetic algorithm vs other state of the art methods

 Memetic Algorithm
Optimization of code

caves[20]

Adversarial Malware

Binaries[21]

Sample size 100 2036 200

Test Environment Malconv Model Malconv Model Malconv Model

Evasion Rate 98% 97.99% 60%

D. Malware detection Enhancement

The implications of our work extend beyond the generation of adversarial examples. By identifying vulnerabilities

in the Malconv model, and, understanding the limitations and weaknesses of machine learning-based defenses, allows

us to develop more resilient and effective detection mechanisms in the face of evolving threats. Indeed, to improve

malware detection systems, we conducted a final experiment where we first trained the two ML models, namely KNN

and DT, on the same initial set of 1000 malwares and 1000 goodwares. Subsequently, we tested all 98 successfully

generated AEs with the malconv model. Next, we trained both ML models on the initial set of 1000 malwares, adding

half of the newly generated AEs from the malconv model (48). Finally, we tested both ML models on the other half of

the generated AEs with malconv model. The objective of this experiment is to study the impact of adding the new

generated AEs during the training step on the improvement of the detection of new malwares. The results obtained

before and after adding generated AEs in the training step are summurized in table (7).

Table 7. KNN and DT performances when training with and without new generated AEs

Model Detection rate (without generated AEs) Detection rate (with generated AEs)

KNN 65% 98%

DT 56% 98%

From table (7), it can be observed that the detection rate of malwares after adding the new AEs has significantly

increased from 65% and 56% for both KNN and DT models to 98%. This can be explained by the fact that when the

new generatd AEs are used to retrain the ML-based malware detector, an improvement in its robustness is guaranted.

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

14 Volume 17 (2025), Issue 1

5. Conclusions and Future Work

In conclusion, this paper has presented a novel approach for generating effective AEscapable of evading malware

detection systems using the Memetic Algorithm. Through a comprehensive step-by-step outline, we have demonstrated

the effectiveness of our approach in generating AEsthat can successfully bypass the detection mechanisms of the

Malconv model as well as other machine learning and commercial detectors. By leveraging evolutionary search

techniques, crossover, mutation, and local search operations, we iteratively refine and improve the AEsover multiple

generations. Our experimental results have shown that the Memetic Algorithm achieves a higher evasive rate of 98%

compared to genetic algorithm with an evasive rate of 26% while utilizing fewer generations and population size.

Additionally, it achieves a comparative evasive rate with works presented in the literature namely Optimization of code

caves wich achieves an evasive rate of 97,9%, and a higher rate compared to Adversarial Malware Binaries wich

achives a rate of 60%. In another hand the proposed approach achieved higher evasion rates against other machine

learning and commercial malware detectors compared to Genetic-Based Algorithms. It implies that the MA, with its

combination of genetic and local search techniques, potentially provided a better exploration and exploitation of the

solution space, resulting in a higher success rate in evading the detectors compared to GA. Ultimately, the generated

AEs are used to retrain the ML detectors, resulting in an enhancement of its robustness from 65% and 56% for both

KNN and DT models to 98% detection rate.

While this work presents significant contribution, it is important to acknowledge its limitations. The experiments

conducted focused on a specific set of malware detection systems and may not capture the full spectrum of potential

vulnerabilities across different models. Therefore, further investigations are necessary to evaluate the generalizability

and scalability of our approach to a wider range of malware detection systems. Moreover, future research should

explore the incorporation of additional optimization techniques and advanced algorithms to further enhance the efficacy

of adversarial example generation. Additionally, the deployment of real-world case studies and the evaluation of the

proposed approach in production environments would provide valuable insights into its practical applicability and

performance under real-world constraints.

References

[1] Ibitoye O., Abou-Khamis R., El Shehaby M., Matrawy A., Omair Shafiq M., "The Threat of Adversarial Attacks Against

Machine Learning in Network Security: A Survey", 2020. DOI.org/10.48550/arXiv.1911.02621

[2] Alotaibi A., Rassam M.A. "Adversarial Machine Learning Attacks against Intrusion Detection Systems: A Survey on

Strategies and Defense". Future Internet, vol.15, No.2, 62, 2023. DOI.org/10.3390/fi15020062

[3] Xiangjun L., Ke K., Su X., Pengtao Q., Daojing H., "Feature selection-based android malware adversarial sample generation

and detection method". IET Information Security, Vol.15,No.6,pp.401-416, 2021. DOI.org/10.1049/ise2.12030

[4] Gupta S., Lamba S., Soni N., Priyadarshi P., "Evading Detection Systems by Generating Adversarial Malware Examples", In:

Agrawal, R., Sanyal, G., Curran, K., Balas, V.E., Gaur, M.S. (eds), Cybersecurity in Emerging Digital Era. (ICCEDE),

Communications in Computer and Information Science, vol. 1436, pp.51-60, 2020. DOI.org/10.1007/978-3-030-84842-2_4

[5] Park D., Yener B., "A survey on practical AEs for malware classifiers", In: Reversing and Offensive-oriented Trends

Symposium, ACM, pp. 23–35, 2020. DOI.org/10.1145/3433667.3433670

[6] Deqiang L., Qianmu L., Yanfang Y., Shouhuai X., "Arms race in adversarial malware detection: A survey", ACM Computing

Surveys (CSUR), vol.55,No1,pp.1–35, 2021. DOI.org/10.1145/3484491

[7] Xiang L., Lingfei W., Jiangyu Z., Zhenqing Q., Wei D., Xiang C., Yaguan Q., Chunming W., Shouling J., Tianyue L.,

Jingzheng W., Yanjun W., "Adversarial attacks against Windows PE malware detection: A survey of the state-of-the-art".

Computers & Security, vol.128, 2023. DOI: 10.1016/j.cose.2023.103134

[8] Yanchen Q., Weizhe Z., Zhicheng T., Laurence T. Y., Yang L., Mamoun A., "Adversarial malware sample generation method

based on the prototype of deep learning detector", Computers & Security, vol.119, pp.102762, 2022.

DOI.org/10.1016/j.cose.2022.102762.

[9] Xiao G., Li J., Chen Y., Li K., "MalFCS: An effective malware classification framework with automated feature extraction

based on deep convolutional neural networks", Journal of Parallel and Distributed Computing, vol.141,pp. 49-58, 2020.

DOI:10.1016/j.jpdc.2020.03.012.

[10] Anderson H.S., Kharkar A., Filar B., Roth P., “Evading machine learning malware detection. In Black Hat” 2017. URL:

www.blackhat.com/docs/us-17/thursday/us-17-Anderson-Bot-Vs-Bot-Evading-Machine-Learning-Malware-Detection-wp.pdf

[11] Alzantot M., Sharma Y., Chakraborty S., Zhang H., Hsieh C.-J., Srivastava M. B., "GenAttack: Practical Black-box Attacks

with Gradient-Free Optimization", Genetic and Evolutionary Computation Conference (GECCO), pp. 1111–1119, 2019.

DOI.org/10.1145/3321707.3321749

[12] Demetrio L., Coull S. E., Biggio B., Lagorio G., Armando A., Roli F., "Adversarial Examples: A Survey and Experimental

Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection", ACM Transactions on Privacy and

Security, vol.24, No.4, Article No.: 27,pp. 1–31, 2021. DOI.org/10.1145/3473039.

[13] Xintong. L., Qi. L., "An IRL-based malware adversarial generation method to evade anti-malware engines". Computers &

Security, vol.104, No.C,pp. 102118, 2021. DOI: 10.1016/j.cose.2020.102118.

[14] Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P. "Adversarial Examples for Malware Detection". In: Foley,

S., Gollmann, D., Snekkenes, E. Computer Security – (ESORICS),Vol 10493, 2017. DOI.org/10.1007/978-3-319-66399-9_4

[15] Yang, C., Xu, J., Liang, S. et al. "DeepMal: maliciousness-Preserving adversarial instruction learning against static malware

detection". Cybersecurity, vol. 4,Article No.16, 2021. DOI.org/10.1186/s42400-021-00079-5

https://arxiv.org/search/cs?searchtype=author&query=Ibitoye%2C+O
https://arxiv.org/search/cs?searchtype=author&query=Abou-Khamis%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Shehaby%2C+M+e
https://arxiv.org/search/cs?searchtype=author&query=Matrawy%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Shafiq%2C+M+O
https://ietresearch.onlinelibrary.wiley.com/authored-by/Li/Xiangjun
https://ietresearch.onlinelibrary.wiley.com/authored-by/Kong/Ke
https://ietresearch.onlinelibrary.wiley.com/authored-by/Xu/Su
https://ietresearch.onlinelibrary.wiley.com/authored-by/Qin/Pengtao
https://ietresearch.onlinelibrary.wiley.com/authored-by/He/Daojing
https://doi.org/10.1049/ise2.12030
https://doi.org/10.1145/3484491
https://www.x-mol.net/paperList?type=1&journalId=29354
file:///C:/Users/khadoudja/Desktop/New_Papers/references%20paper%20memetic/DOI.org/10.1016/j.cose.2022.102762
https://doi.org/10.1016/j.jpdc.2020.03.012
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/3321707
https://doi.org/10.1145/3321707.3321749
https://arxiv.org/search/cs?searchtype=author&query=Demetrio,+L
https://arxiv.org/search/cs?searchtype=author&query=Coull,+S+E
https://arxiv.org/search/cs?searchtype=author&query=Biggio,+B
https://arxiv.org/search/cs?searchtype=author&query=Lagorio,+G
https://arxiv.org/search/cs?searchtype=author&query=Armando,+A
https://arxiv.org/search/cs?searchtype=author&query=Roli,+F
https://dl.acm.org/toc/tops/2021/24/4
https://dl.acm.org/toc/tops/2021/24/4
https://doi.org/10.1145/3473039
https://doi.org/10.1007/978-3-319-66399-9_4

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

Volume 17 (2025), Issue 1 15

[16] Yuan J., Zhou S., Lin L., Wang F., Cui J., "Black-box adversarial attacks against deep learning based malware binaries

detection with GAN", In: European Conference on Artificial Intelligence IOS Press, vol. 325, pp. 2536–2542. 2020.

[17] Castro R. L., Schmitt C., Dreo G., "AIMED: Evolving Malware with Genetic Programming to Evade Detection", 18th IEEE

International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International

Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 240-247, 2019., DOI:

10.1109/TrustCom/BigDataSE.2019.00040.

[18] Wang X., Miikkulainen R., "MDEA: Malware detection with evolutionary adversarial learning", 2020,

DOI.org/10.48550/arXiv.2002.03331

[19] Demetrio L., Biggio B., Lagorio G., Roli F., Armando A., "Functionality-preserving black-box optimization of adversarial

windows malware", 2020, DOI.org/10.48550/arXiv.2003.13526.

[20] Y. Javier, Pardo G.E., Tapiador J., "Optimization of code caves in malware binaries to evade machine learning detectors",

Computers & Security,vol.116,PP.102643, 2022.DOI.org/10.1016/j.cose.2022.102643.

[21] Kolosnjaji B., Demontis A., Biggio B., Maiorca D., Giacinto G., Eckert C., Roli F., "Adversarial malware binaries: Evading

deep learning for malware detection in executables", In: European Signal Processing Conference, IEEE, pp. 533–537, 2018.

URL: https://www.eurasip.org/Proceedings/Eusipco/Eusipco2018/papers/1570440156.pdf.

[22] Aydogan E., Sen, S."Automatic Generation of Mobile Malwares Using Genetic Programming", In European Conference on the

Applications of Evolutionary Computation, ser. EvoApplications. Springer, vol.9028, pp. 745–756, 2015. doi.org/10.1007/978-

3-319-16549-3_60

[23] Liu X., Du X., Zhang X., Zhu Q., Wang H., Guizani M. "Adversarial Samples on Android Malware Detection Systems for IoT

Systems". Sensors (Basel). Vol.19,No.4, 974, 2019. doi: 10.3390/s19040974.

[24] Guangquan X., Hongfei S., Jingyi C., Hongpeng B., Jiliang L., Guangdong B., Shaoying L., Weizhi M., Xi Z., "GenDroid: A

query-efficient black-box android adversarial attack framework", Computers & Security, vol. 132, 103359, 2023.

DOI.org/10.1016/j.cose.2023.103359.

[25] Raff E., Barker J., Sylvester J., Brandon R., Catanzaro B., Nicholas C., "Malware Detection by Eating a Whole EXE", 2017.

DOI.org/10.48550/arXiv.1710.09435

[26] Ahandani M.A., Vakil-Baghmisheh MT., Talebi M., "Hybridizing local search algorithms for global optimization". Comput

Optim Appl, vol.59, pp. 725–748, 2014. DOI.org/10.1007/s10589-014-9652-1

[27] "Memetic algorithm–An overview "ScienceDirect Topics URL : https://www.sciencedirect.com/topics/computer-

science/memeticAlgorithm #:~:text=Memetic%20algorithms%20(MAs)%20are%20evolutionary, search%20processes%20

to%20refine%20individuals.

[28] Kreuk, F., Barak, A. , Aviv-Reuven, S. , Baruch, M. , Pinkas, B. , Keshet, J. "Deceiving end-to-end deep learning malware

detectors using adversarial examples", 2018. DOI.org/10.48550/arXiv.1802.04528

[29] https://github.com/iosifache/DikeDataset#description-%EF%B8%8F [Dike Dataset]

Authors’ Profiles

Khadoudja Ghanem received her Ph.D. degrees in Institute of Computer Science, Mentouri University. Now,

she is Associate Professor at Abdelhamid Mehri Constantine2, Algeria. Her main research interests include

Artificial intelligence, Machine and Deep Learning, Optimization and malware analysis.

Ziad Kherbach received his Master’s degree in Networks and Distributed Systems from Abdelhamid Mehri,

Constantine2 University, Algeria. His research areas include Optimization, artificial intelligence security,

malware.

Omar Ourdighi received his Master’s degree in Networks and Distributed Systems from Abdelhamid Mehri,

Constantine2 University, Algeria. His research areas include networks, artificial intelligence security, malware.

https://doi.org/10.48550/arXiv.2002.03331
https://doi.org/10.48550/arXiv.1710.09435
https://doi.org/10.1007/s10589-014-9652-1
https://www.sciencedirect.com/topics/computer-science/memetic
https://www.sciencedirect.com/topics/computer-science/memetic
https://doi.org/10.48550/arXiv.1802.04528
https://github.com/iosifache/DikeDataset#description-%EF%B8%8F

Enhancing Adversarial Examples for Evading Malware Detection Systems: A Memetic Algorithm Approach

16 Volume 17 (2025), Issue 1

How to cite this paper: Khadoudja Ghanem, Ziad Kherbache, Omar Ourdighi, "Enhancing Adversarial Examples for Evading

Malware Detection Systems: A Memetic Algorithm Approach", International Journal of Computer Network and Information

Security(IJCNIS), Vol.17, No.1, pp.1-16, 2025. DOI:10.5815/ijcnis.2025.01.01

