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Abstract: This paper proposes an intrusion detection system to prevent malicious node attacks that may result in failure 

links in wireless body area networks. The system utilizes a combination of Optimized Convolutional Neural Networks 

and Support Vector Machine techniques to classify nodes as malicious or not, and links as failure or not. In case of 

detection, the system employs a trust-based routing strategy to isolate malicious nodes or failure links and ensure a 

secure path. Furthermore, sensitive data is encrypted using a modified RSA encryption algorithm. The experimental 

results demonstrate the improved network performance in terms of data rate, delay, packet delivery ratio, energy 

consumption, and network security, by providing effective protection against malicious node attacks and failure links. 

The proposed system achieves the highest classification rate and sensitivity, surpassing similar methods in all 

evaluation metrics. 

 

Index Terms: Wireless Body Area Network, Malicious Nodes, Failure Links, Security, Trust Value, Modified RSA 

Cipher, Optimized Convolutional Neural Network-support Vector Machine. 

 

 

1.  Introduction and Related Work 

In recent years, the wireless body area network has become one of the fastest-growing areas due to its use in a 

wide range of applications such as sports, social networking, gaming, military, and telemedicine. The network 

comprises portable biosensors that attach to different parts of the body to collect vital signs. This data is wirelessly 

transmitted to a clinical help service where physicians analyze it periodically to prescribe suitable treatment. 

The global wireless body area network has a three-tier architecture. The first tier involves sensitive data collected 

by a set of biosensors, which is stored in the sink biosensor. In the second tier, the biomedical data is wirelessly 
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forwarded to the remote base station by the sink biosensor. Finally, in the third tier, the biomedical data is securely 

stored on a hospital server, and only authorized personnel can access it. The architecture of the global wireless body 

area network is illustrated in Fig. 1. 

 

 

Fig.1. A global architecture of WBAN 

The distributed architecture of the network can be vulnerable to different types of attacks that can disrupt 

communication tiers. This study specifically examines Blackhole attacks that target the first communication tier through 

biosensors. These attacks take advantage of weaknesses in routing protocols' route discovery process by sending false 

routes to the receivers. When receiving a route request packet (RREQ), the attacker biosensor sends a fake route replay 

packet (RREP) with a higher sequence number to the sender biosensor, indicating that it has the most recent and 

shortest route to the receiver. Once the sender biosensor selects this route (which includes a malicious biosensor), the 

malicious biosensors disregard all packets instead of forwarding them to the intended receiver [1], as seen in Fig. 2. 

 

 

Fig.2. Blackhole attack 

Intrusion Detection Systems (IDS) are a common security measure for detecting and isolating network intrusions. 

Typically, an IDS is composed of six blocks, each with a specific functionality. The monitoring block observes 

neighboring biomedical sensor nodes, while the analysis block stores records of normal and suspicious biosensor 

activity. The detection block uses a modeling algorithm to analyze network behavior and determine the legitimacy of 

actions. 

The remaining three blocks of an IDS offer different procedures, including logging, alarming, and prevention. The 

logging block records every packet in a log file for later analysis by the security administrator. The alarm block 

generates an immediate response in the event of intrusion detection, potentially alerting authorities to suspicious 

biosensor activity. The prevention block is an advanced feature that can remove unauthorized biosensors from the 

network once they are detected [2]. 

The Fig. 3 describes the Intrusion Detection System: 

 

Monitoring block Analysis block Detection block

Logging block

Alarming block

Prevention block
 

Fig.3. An intrusion detection system component 

Previous studies have delved into utilizing Artificial Intelligence methods based on machine and deep learning 

techniques in creating intrusion detection systems for classifying illegitimate medical biosensors and damaged links 

within wireless networks, routing algorithms to avoid them, or cryptographic algorithms to secure the communication 

between medical sensors. Nevertheless, these systems often offer only a singular solution and carry out only one task to 

fight against illegitimate sensors and damaged wireless links. Furthermore, the convolutional techniques utilized by 
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intrusion detection systems frequently consume a considerable amount of time and yield suboptimal accuracy, which 

are the primary limitations. 

Our research is centered on preventing malicious node attacks in wireless body area networks that can lead to link 

failures. To accomplish this, we've developed a hybrid intrusion detection system that combines Optimized 

Convolutional Neural Networks with a non-linear SVM classifier. The CNN extracts node and link characteristics from 

a vast database created using data collected from sensors, as well as link traffic patterns simulated by Network 

Simulator software. The SVM algorithm functions as a binary classifier by classifying nodes as malevolent or trusted 

and links as damaged or normal wireless links. If an attack is detected, a trust-based routing strategy is employed to 

isolate malicious nodes or failure links and ensure a trusted path. Moreover, sensitive data is encrypted using a modified 

RSA encryption algorithm to secure communications between nodes. 

Our proposed system provides three solutions to combat malicious nodes and failure links while addressing the 

shortcomings of previous conventional algorithms. Experimental results demonstrate that our system delivers effective 

protection against malicious node attacks and failure links by achieving the highest classification rate and sensitivity. 

Additionally, the network performance, concerning data rate, delay, packet delivery ratio, energy consumption, and 

network security, is improved compared to previous methods. 

2.  Review of Previous Studies 

Rajesh Kumar D et al. [3], employed a Simulated Annealing Black-hole attack Detection-based Enhanced 

Gravitational Search Algorithm to identify and isolate illegitimate biosensors in WBANs. The performances of the 

suggested algorithm are evaluated in terms of the detection probability rate of illegitimate biosensors attack, consumed 

energy, illegitimate biosensors attack detection time, and Packet delivery ratio. Experimental results demonstrate that 

the EGSA-SABD reduces energy consumption by 21% and outperforms the detection probability rate of illegitimate 

biosensor attacks by 13%. Dinesh Kumar Anguraj et al. [4] have proposed a confidence-based intrusion detection model 

designed to identify unauthorized biosensors within WBANs (Wireless Body Area Networks). They have introduced a 

set of trust parameters, including energy, data, and communication trusts. When detecting illegitimate biosensors, the 

remaining biosensors within the network are gathered to form clusters. Each cluster is led by a cluster head (CH), 

selected through the multi-objective firefly algorithm. The primary goal of this system is to reduce transmission delays, 

increase broadcast energy, and enhance the data bit rate. Multiple biosensors are responsible for collecting physiological 

data, which are then transmitted to the CH. The CH subsequently forwards the gathered biomedical data to a sink and 

relays it to the system via a base station. To secure the data, a hybrid encryption algorithm is utilized, ciphering the 

information before it is transmitted to the medical server. The decryption process occurs on the server side to extract the 

original data. This proposed technique is implemented using an NS-2 simulator. Simulation results demonstrate that the 

suggested system outperforms the actual system in terms of data bit rate, transmission delay, packet delivery ratio, recall, 

and precision. Ali Raza Bhangwar et al. [5], suggested a trust and thermal-aware routing protocol for WBANs that takes 

trust and temperature of biosensors into account for isolating malicious biosensors. This innovative routing approach 

aims to identify and isolate malicious biosensors by factoring in trustworthiness and thermal conditions. By employing 

this multifaceted routing technique, the network can establish a secure and well-balanced environment, minimizing the 

inclusion of untrustworthy sensors within trusted paths. Simulation results indicate that this protocol exhibits superior 

performance in terms of temperature management, data transmission rates, packet latency, and packet drop rates, even 

when subjected to varying traffic conditions. Sangeetha Ramaswamy et al. [6], suggested a confidence system for 

secure communication in WBAN based on biosensor confidence and data confidence. Sensor confidence is computed 

utilizing direct confidence calculation and sensor comportments. Data confidence is computed utilizing data aging and 

consistent data success. The performance is evaluated using an existing protocol such as Body Area Network 

(BAN)-Trust and Trust Evaluation (TE)-WBAN which isn’t a cryptographic strategy. The protocol is lightweight and 

has low overhead. The performance is rated best in terms of minimum delay, packet delivery ratio, and data bit rate. 

Through extensive simulation selfishness attacks, data suppression attacks, on-off attacks, and sleeper attacks were 

precluded. Damanpreet Kaur et al. [7] have introduced a security technique for safeguarding patient data within 

WBANs, utilizing Elliptic Curve Cryptography (ECC). In this method, a Trusted Third Party (TTP) leverages the 

K-anonymity parameter along with K-1 dummy query users to ensure both data confidentiality and user location 

privacy. The results of their study highlight ECC as an encryption approach with a compact key size, delivering rapid 

encryption, and providing higher security compared to RSA. ECC effectively maintains user location privacy in 

real-time and demonstrates greater scalability, making it a more suitable choice for wearable devices equipped with 

enhanced storage and computing capabilities than RSA. Their experimental findings encompassing encryption and 

decryption times, message sizes, and their variation with respect to the K-anonymity metric value underscore the 

performance advantages of this proposed scenario. Sangwon Shin et al. [8] have introduced a WBAN system designed 

for space applications, incorporating message authentication through pre-processed symmetric RSA encryption. This 

system enables biosensors to achieve reliable data authentication through RSA while minimizing the impact on 

processing time. By allowing user-controlled pre-processing, it generates a wider array of potential combinations of 

RSA-encrypted authentication data. pre-processed symmetric RSA may be predicted to result in the minimization of a 

key size, up to 256 bits, while producing more total combinations compared to 1024-bit RSA with the non-effect on 
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speed. A. Basnet et al. [9] have proposed a system that incorporates a hybrid approach combining the Advanced 

Encryption Standard (AES) and Elliptic Curve Cryptography (ECC) within WBANs. This system offers a 

straightforward, swift, and highly robust cryptographic solution for data security. In this scheme, ECC is employed to 

secure AES encryption keys, while the AES algorithm is used for the encryption and decryption of text. The choice of 

encryption method is determined based on the energy availability, particularly in a scenario where biosensors 

continuously harness solar power as their energy source. The results of this study demonstrate that the suggested 

EEHEE algorithm significantly enhances data file encryption. Furthermore, the EEHEE system encrypts data files 

rapidly while reducing energy consumption. The primary focus of this system is to minimize energy consumption 

within WBANs while simultaneously increasing cryptographic strength through the use of a hybrid symmetric and 

asymmetric encryption algorithm. As a result, this research offers an efficient scheme for enhancing security in 

real-time data transmission within telemedicine applications. Gurbeer Kaur et al. [10] have introduced an Enhanced 

Cost-effective, Energy-efficient, and Secure Routing (CESR) protocol for WBANs. This protocol is an enhancement of 

the reliable Adhoc On-demand Distance Vector (AODV) protocol found in the literature. One of the key improvements 

is the incorporation of RSA encryption for data encryption, enhancing overall security. To enhance energy efficiency, a 

cost function is developed to select the sender sensor with the lowest cost value, thus optimizing energy consumption. 

The performance of the CESR protocol is rigorously assessed using MATLAB, and the results demonstrate a notable 

increase in both reliability and security as a result of these enhancement techniques. Mohammed Ramadan et al. [11] 

have proposed an effective and secure identity-based encryption scheme based on the RSA assumption, which includes 

an equality test feature. They conducted a comprehensive security analysis of their scheme, demonstrating its resilience 

against chosen-identity and chosen-ciphertext attacks within the framework of the random oracle model. The 

experimental results demonstrate the scheme's effectiveness, due to its ability to provide a relatively low computational 

burden and seamless compatibility with WBAN applications. K. Kalaiselvi et al. [12] have designed a system to 

identify unauthorized biomedical nodes within a WBAN environment and to detect link failures caused by suspicious 

biomedical nodes. The approach involves two distinct subsystems: Suspicious Sensor Classification Sub-System: This 

system employs a coactive adaptive neuro-fuzzy inference algorithm based on machine learning techniques to classify 

suspicious sensors. The proposed illegitimate biomedical sensor classification system in WBAN achieved a packet 

delivery ratio (PDR) of 99.80% for a single unauthorized biomedical sensor and a PDR of 95.60% for 10 unauthorized 

biomedical sensors. It accomplished this with a detection latency of 0.50. 10-3 seconds for a single suspicious biosensor 

and 1.89. 10-3 seconds for the detection of unauthorized biomedical sensor nodes. Link Failure Classification 

Sub-System: For detecting link failures in the WBAN, a convolutional neural network algorithm based on deep learning 

techniques is employed. This system consumed 1.60. 10-3 seconds to detect a single link failure and achieved a PDR of 

91.70%. When detecting 10 link failures in the WBAN, it consumed 2.20. 10-3 seconds. 

3.  Proposed Methods 

Our objective in this study is to simulate an EEG network similar to a real EEG network. We aim to guarantee its 

dependability by applying an IDS that classifies the nodes as malicious or not and links as failure or not, then detects 

and isolates unauthorized biosensors as well as failure links caused by unauthorized biosensors in the network by 

establishing a trusted path. After, it encrypts the communication between biosensors. To achieve this purpose, we placed 

several biomedical EEG sensors in the human brain. Fig. 4 illustrates the distribution of biomedical EEG sensors in the 

human brain, according to a star topology where the sink is located in the center of the brain. 

 

 

Fig.4. Distribution of EEG sensors 

3.1.  The Intrusion Detection System 

We developed a hybrid intrusion detection system comprising three distinct blocks. The initial block effectively 

categorizes nodes and links within WBAN (Wireless Body Area Network) by utilizing a combination of an Optimized 

Convolutional Neural Network and a Support Vector Machine. It classifies nodes as malicious or not and links as 

damaged or not. The second block expertly detects and isolates malicious nodes and failure links in WBAN by 

employing a trust-based routing strategy, calculating the confidence value and hop counts to guarantee an optimal path 

while avoiding malicious nodes and failure links. The final block is responsible for ensuring the privacy of  

communication between nodes by providing data encryption through a modified RSA encryption algorithm.  



A Hybrid Intrusion Detection System to Mitigate Biomedical Malicious Nodes 

Volume 16 (2024), Issue 2                                                                                  121 

Fig. 5 displays the flowchart of the suggested IDS example. 

 

WBAN installation

Running the node and link 

classification process in WBAN

Classification rate of 

malicious nodes and failure 

links >0

Running the malicious nodes 

and failure links detection and 

isolation process in WBAN

Establishment of trustedroute 

between the source and the 

destination

Running the data encryption process

YesYes

YesYes

NoNo
NoNo

 

Fig.5. Flowchart of the suggested intrusion detection system  

A.  Nodes and Links Classification Process 

The WBAN node and link classification process utilizes a hybrid approach that blends an optimized convolutional 

neural network with a support vector machine. By combining the best features of SVM and Optimized CNN classifiers, 

this hybrid model can accurately classify nodes and links. The optimized convolutional neural network automatically 

extracts features, while the support vector machine functions as a binary classifier. Fig. 6 illustrates the diagram of the 

detection system. 

 

Data Selection and Collection 

Process from known WBAN

Data Selection and Collection 

Process from Uknnown WBAN

Features ExtractionProcess

(OCNNmodel)

Ligitimate medical sensors 

Or Normal link

Illegitimate medical sensors 

Or Damaged Wireless link

Classification Process

(SVM classifier)

 

Fig.6. Block of classification of nodes and links in WBAN 

In the process of feature extraction, an optimized Convolutional Neural Network (CNN) model was utilized. The 

key benefit of using an optimized CNN is its ability to automatically detect important features without requiring human 

intervention. It functions similarly to humans and can learn local invariant features very well, extracting the most 

distinctive information from sensor nodes. 

The optimized CNN architecture used in the proposed detection system is a modified version of the VGG16 model. 

It is composed of two blocks placed horizontally in parallel and five blocks placed vertically in series. The first two 

parallel blocks have four layers each, including one Convolutional Layer with 64 filters, a kernel size of 3 and padding 

equal to the same, one Max-Pooling layer with a pooling size of 3, stride of 2, and padding equal to the same, and two 

Batch-Normalization layers. The second two parallel blocks have the same architecture but with one Convolutional 

Layer with 128 filters. The third and fourth parallel blocks have one Convolutional Layer with 256 filters, and the last 

two parallel blocks have three Convolutional Layers with 512 filters and six Batch-Normalization layers. 

Every two blocks are concatenated with a concatenation layer. This suggested optimized CNN architecture uses a 

set of convolutional layers with a determined count of filters for map extraction, a set of Max-Pooling layers to 

minimize the dimensionality of the network by taking the highest value in a particular filter area, and a set of 

Batch-Normalization layers that are placed after each layer of the optimized CNN architecture to make the training of 

deep learning faster and more stable. After the last concatenation layer, three fully connected layers with 4096 neurons 

are placed and utilized to aggregate data from the final feature map and generate the final classification. 

The first layer's input is a flattened version of the previous layer's output. Except for the final layer, all layers 

employ the rectified linear unit (ReLU) activation function. The input is processed by the first convolutional layers of 

the first two blocks with a set of filters that extracts superior-level characteristics of dimensionally minimized feature 

maps. 

For the classification process, we employed the SVM classifier, which is a linear technique that can handle 

non-linear problems by projecting the data to a higher dimensional space. SVM works well for binary classification. In 

the optimized CNN-SVM algorithm, we replaced the last layer of the optimized CNN network, which uses the sigmoid 

activation function for final classification, with an SVM classifier. The CNN classifier's sigmoid layer is substituted 

with a nonlinear SVM for binary classification. 
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In simpler terms, we suggest using the hybrid optimized CNN-SVM classifier to classify illegitimate biosensors 

and failure links in the EEG network. The optimized CNN uses self-learning for feature map extraction, which is sent to 

the SVM for binary classification. We built the model over 1000 epochs with 1000 batch sizes, using the binary "cross 

entropy" function to determine the model's loss in binary classification. 

The proposed architecture of the hybrid CNN-SVM model is shown in the fig. 7. 

 

 

Fig.7. Optimized CNN-SVM architecture of a modified VGG16-SVM version 

B.  Process for Detecting and Isolating Malicious Nodes and Failure Links in WBAN 

The process of detecting and isolating malicious nodes and failure links in a WBAN involves a trust-based routing 

strategy, as shown in Figure 8. The network was originally designed to function autonomously with a standard routing 

protocol, allowing for a baseline observation of normal network behavior. This knowledge enables us to distinguish 

between normal and abnormal network activity. In the event of a Blackhole attack, where malicious nodes drop packets 

to prevent them from reaching their destination biosensor and wireless failure links occur, IDS is deployed on each 

network biosensor. At runtime, each IDS biosensor monitors the confidence levels of its closest neighbors using three 

metrics to compute confidence metrics:   

 

• The Positive Conviction factor quantifies a node's confidence in the normalcy of its neighbor, calculated by 

analyzing successful packets sent and received during communication. The formula for this factor is as 

follows: 

 

𝑃𝐶 = (𝑆𝑃𝑠 + 𝑆𝑃𝑟) (𝑃𝑑 + 𝑆𝑃𝑠 + 𝑆𝑃𝑟 + 3)⁄                              (1) 

 

• The Negative Conviction factor measures a node's belief that its neighbor is abnormal, determined by 

examining dropped packets during communication. The formula for computing this factor is: 

 

𝑁𝐶 = 𝑃𝑑 (𝑆𝑃𝑠 + 𝑆𝑃𝑟 + 𝑃𝑑 + 3)⁄                                 (2) 

 

• The Uncertainty factor reflects a node's level of uncertainty regarding its neighbor's status (normal or 
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abnormal). This factor starts at one when a biosensor first detects its neighbors before any communication 

occurs. To calculate the Uncertainty factor, the following formula is used: 

 

𝑈 = 3 (𝑆𝑃𝑠 + 𝑆𝑃𝑟 + 𝑃𝑑 + 3)⁄                                   (3) 

 

As a result, these three factors are always considered in the following manner: 

 

𝑈 + 𝑃𝐶 + 𝑁𝐶 = 1                                       (4) 

 

Where: 

𝑷𝑪: Positive Conviction factor 

𝑵𝑪: Negative Conviction factor 

𝑺𝑷𝒔: Successful Packets sent 

𝑺𝑷𝒓: Successful Packets received 

𝑷𝒅: Packets dropped (unsuccessful packets transmitted or received) 

𝑼: Uncertainty factor 

 

Before transmitting data, a biosensor's conviction values are both 0, and its neighbor's uncertainty value is 1. 

During transmission, these values are updated based on packet sending, receiving, and dropping. The confidence value 

is regularly computed, and if the negative conviction surpasses a threshold, a system abnormality is detected. 

At this point, identification rules are applied to recognize attacks like the Black Hole Attack, while considering 

network congestion. If a node is identified as an attacker, it is treated as malignant and not allowed in the network. 

The threshold value is established by computing the mean packet delivery ratio under normal circumstances 

without malicious nodes. These measurements serve as a threshold to detect abnormal activity. 

Trust values are regularly updated to detect an intrusion like the Black Hole Attack. If an illegitimate biosensor is 

identified, it is isolated and not allowed to participate in routing. The biosensor looks for another trusted route to reach 

its destination after removing the malicious node. 

In other words, since every biosensor will be executing IDS, every biosensor can track the behaviors of its close 

neighbor. Every biosensor monitors the positive conviction, negative conviction, and uncertainty factors of its neighbor 

biosensors. If the negative conviction factor of some neighbor sensor exceeds the computed threshold value, the 

following acts are required: 

 

• Identification of the attack and attacker to distinguish between a routing attack and network congestion, it is 

crucial to identify both the attack and the attacker. To determine if a black hole attack is occurring, a specific 

formula is used:           

 

𝑃𝑇𝑅 = 𝑃𝑟(𝑆) 𝑃𝑟(𝑆𝑆)⁄                                      (5) 

 

Where: 

𝑷𝑻𝑹: Packet Transmission Rate 

𝑷𝒓(𝑺): Number of received packets by a sensor S  

𝑷𝒓(𝑺𝑺): Number of sent packets by S’s neighbors that aren’t destined for S 

 

The malicious sensor (S) is detected and identified as an attacker, If (S) continues falling packets for a sufficient 

period. Specifically, if the Packet Transmission Rate is equal to one and the denominator is not equal to zero, then the 

sensor is considered to be the attacker. 

 

• Isolation of the illegitimate biosensors from WBAN: once the malicious node has been identified, the sensor 

that detected it will isolate it from the WBAN. 

 

Each biosensor in the WBAN is responsible for maintaining a trusted routing table that contains the identification 

numbers of legitimate neighboring biosensors. This creates a complete network in which all the biosensors can 

communicate with each other, while the illegitimate ones are isolated.  

C.  Data Encryption Process Using Modified RSA Cipher-based Algorithm 

The RSA public-key cryptosystem is the most extensively utilized algorithm for public-key cryptography [13]. It 

was the pioneering algorithm of its type and continues to be a popular choice today. The technique of encrypting data 

involves a modified version of the classic RSA cipher algorithm. The following equations can be used to represent 

encryption and decryption: 
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Fig.8. Block of detection and isolation of malicious nodes and failure links in WBAN with data encryption block 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑅𝑆𝐴 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛: 𝐶𝑇 = 𝑃𝑇𝑒𝑚𝑜𝑑 𝑁                            (6) 

 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑅𝑆𝐴 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛: 𝑃𝑇 = 𝐶𝑇𝑑𝑚𝑜𝑑 𝑁                            (7) 

 

Where: 

𝑷𝑻: refers to Plain-Text.  

𝑪𝑻: refers to Cipher-Text 

𝒆: refers to the public key of the encryption process 

𝑵: represents part of the public-key 

𝒅: refers to the secret key of the decryption process 

 

The modulus N utilized to perform modular arithmetic is the product of six large prime numbers symbolized by p, 

q, u, v, w, and z. In addition, a mathematical relationship exists between e and d, represented by the following formula:  

 

𝑒 = 𝑑−1𝑚𝑜𝑑 𝜙(𝑁)                                         (8) 

 

Where: 

𝝓(𝑵): Eleur’s Phi function, and is computed as follows: 

 

𝜙(𝑁) = (𝑝 − 1)(𝑞 − 1)(𝑢 − 1)(𝑣 − 1)(𝑤 − 1)(𝑧 − 1)                      (9) 

 

If the public key N can be factored into p, q, u, v, w, and z, it would be possible to calculate ϕ(N) and the secret 

decryption key d using the following formula: 

 

𝑑 = 𝑒−1𝑚𝑜𝑑 𝜙(𝑁)                                     (10) 

 

The security of the modified RSA algorithm depends on the difficulty of factoring the modulus N. If the modulus 

N is large enough, it cannot be factored, making it impossible to obtain d. Thus, the modified RSA cipher uses 2048-bit 

keys and performs all arithmetic on 2048-bit numbers to ensure that a brute-force attack cannot easily break it. 

The suggested modified RSA composed of seven steps are: 

 

• Selection of six prime numbers to calculate the N parameter using the following equation: 

 

𝑁 = 𝑝. 𝑞. 𝑢. 𝑣. 𝑤. 𝑧                                      (11) 
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• Calculation of Eleur’s Phi function 𝜙(𝑁) using the equation (9).  

• Selection of an integer e with gcd(𝑁, 𝑒) = 1 and 1 < 𝑒 < 𝑁  

• Calculation of an integer d using the equation (10). The public key is: (N, e) and the secret key is: (N, d).  

• Encryption operation is done using the equation (6). 

• The decryption operation is done using equation (7). 

• An update of the public and private keys is performed at each communication.  

3.2.  Features Selection and Extraction Process 

During the characteristics extraction phase, a set of features is extracted from a vast database created based on 

network simulation outcomes using NS2v2.35 software. These features are utilized to solve classification problems.  

This paper focuses on selecting four sufficient features from a large dataset to classify malicious nodes. These four 

features include distance metric, trust value, latency, and energy consumption. Another five sufficient features are 

selected from a large dataset to classify failure links. These five features include distance metric, weight factor, path 

loss, sensor mobility index, and residual energy.  

Finally, these eight features are calculated as follows: 

 

• Distance metric feature [14]: this metric determines the medical biosensor localization in the network, and is 

calculated by the following formula:  

 

𝐷𝑖𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐(𝑀𝑠𝑛𝑖 , 𝑀𝑆𝑖𝑛𝑘) = √(𝑋(𝑀𝑆𝑖𝑛𝑘) − 𝑋(𝑀𝑠𝑛𝑖))
2

+ (𝑌(𝑀𝑆𝑖𝑛𝑘) − 𝑌(𝑀𝑠𝑛𝑖))
2

              (12) 

 

𝐷𝑖𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐(𝑀𝑠𝑛𝑖 , 𝑀𝑠𝑛𝑗) = √(𝑋(𝑀𝑠𝑛𝑖) − 𝑋(𝑀𝑠𝑛𝑗))
2

+ (𝑌(𝑀𝑠𝑛𝑖) − 𝑌(𝑀𝑠𝑛𝑗))
2

                (13) 

 

• Mobility index feature [14] gauges the medical sensor's motion over time, utilizing both its velocity and a 

weight factor. It’s calculated as follows: 

 

𝑀𝐼𝑓(𝑀𝑠𝑛𝑖 , 𝑀𝑠𝑛𝑗 , 𝑀𝑆𝑖𝑛𝑘) = (𝑉𝑖 × 𝑊𝑓) (𝑉𝑖 × 𝑊𝑓⁄ )                        (14) 

 

• Confidence value characteristic [14] is computed by analyzing the transmission and reception of packets 

among sensor nodes. The calculation of this feature is outlined by the following equation: 

 

𝐶𝑉𝑓 = 𝑃𝐶𝑇 (𝑃𝐶𝑇 + 𝑃𝐶𝐷⁄ )                                  (15) 

 

• Latency feature [14] determines the elapsed time for the packet to reach its destination. The formula used to 

compute this metric is as follows: 

 

𝐿𝑓 = ∑ 𝑇𝑅𝑒𝑐(𝑃) − ∑ 𝑇𝑡𝑟𝑎𝑛(𝑃)                                  (16) 

 

• Weight Factor Characteristic helps to differentiate between legitimate and illegitimate medical sensors. 

Illegitimate sensors discard transmitted packets from or to source or destination sensors, while legitimate 

sensors transfer packets to or from source or destination sensors. This characteristic is computed based on the 

behavior of the sensors: 

 

𝑊𝑓
𝑓

= (𝑇𝑟𝑎𝑛 + 𝑅𝑒𝑐) [(1 − 𝑇𝑟𝑎𝑛) ∗ (1 − 𝑅𝑒𝑐)]⁄                           (17) 

 

• Path loss feature is related to signal attenuation. It occurs when wireless medical sensors move outside or 

inside the body, which can affect the conveyed signal. Attenuation varies with frequency and distance. This 

metric is calculated using the following formula: 

 

𝑃𝐿𝑓 = (4𝜋. 𝑓𝑟𝑒𝑞 . 𝐷𝑖𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐) 𝑐2⁄                              (18) 

 

• Residual energy feature gauges the amount of energy that medical sensors retain following network data 

transmission, determining the medical sensor lifespan following a given period of data transmission. Medical 

sensors may be deemed illegitimate if they have low residual energy and produce damaged wireless links. The 

sensor residual energy is computed as follows: 

 

𝑅𝐸 = 𝐼𝐸 − 𝐶𝐸                                       (19) 

 

• Energy consumption function which varies depending on the nature of the sensor. An illegitimate medical 
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sensor consumes more power than a legitimate medical sensor. This metric is calculated by the following 

formula: 

 

𝐶𝐸 = 𝑇𝑖𝑚𝑒. 𝑃𝑜𝑤𝑒𝑟                                     (20) 

 

Where: 

𝑫𝒊𝒔𝒕𝒎𝒆𝒕𝒓𝒊𝒄: parameter related to the distance metric between medical sensors. 

𝑉𝑖: parameter related to medical sensor velocity. 

𝑷𝑪𝑻: parameter related to the correctly transmitted packets from the medical sink, 𝑀𝑠𝑖, or 𝑀𝑠𝑗 biosensors. 

𝑷𝑪𝑫: parameter related to the correctly dropped packets by illegitimate biosensors. 

𝑻𝒕𝒓𝒂𝒏(𝑷): time taken for packet transmission. 

𝑻𝑹𝒆𝒄(𝑷): time taken for packet reception. 

𝑻𝒓𝒂𝒏: parameter related to packets transmitted from the medical sink, 𝑀𝑠𝑖, or 𝑀𝑠𝑗 biosensors. 

𝑹𝒆𝒄: parameter related to packets received from the medical sink, 𝑀𝑠𝑖 , or 𝑀𝑠𝑗 biosensors. 

 𝒇
𝒓𝒆𝒒

: parameter related to the frequency. 

𝒄: parameter related to light speed.  

𝑰𝑬: parameter refers to initial energy. 

𝑪𝑬: parameter refers to consumed energy. 

4.  Results and Discussions 

In the WBAN environment, we have successfully implemented an intrusion detection system to identify and 

isolate any unauthorized biosensors and failure links. To simulate the network, we utilized the NS2 version 2.35 

Network Simulator tool and employed various metrics listed in Table 1 to construct the EEG network. 

The EEG network simulation incorporates one hundred biosensors, of which twenty-five are illegitimate, and 

fifteen failure links have been introduced. Illegitimate biosensors hinder the transmission of packets from the sender to 

the receiver biosensor, while failure links cause disruption. 

We conducted the network simulation to assess its performance in three distinct scenarios: in the normal case, 

under illegitimate biosensors, and after detecting and preventing malicious biosensors and failure links. We based the 

evaluation on measures such as data bit rate, transmission delay, consumed energy, and packet delivery ratio. 

Table 1. Simulation setup 

Various Metrics Values 

Medical sensors count 16-100 biosensors 

Illegitimate medical sensors count 2-25 biosensors 

Damaged wireless links count  10-15 failure links 

The initial energy of medical sensors 1000 Joul 

Amount of energy consumed by each medical sensor  30 mJoul 

Count of transmitted packets by each medical sensor 300 packets 

Square simulation area 1000m*1000m 

 

Fig. 9 is a screenshot of the EEG network simulation taken at (t) time. The EEG network is simulated in the normal 

case (without malicious nodes) with one hundred sensors installed in a star topology with one sensor sink located in the 

center of the network represented by an ID number of 0, and twelve source or destination sensors located around of the 

sink and represented by ID numbers of 5, 28, 61, 53, 25, 76, 95, 51, 24, 75, 94 and 50. In this example, the sink source 

sends packets to the destination biosensor with an ID number of 53 through intermediate nodes with an ID number of 

38 and 48. It is observed that the sensitive data transmission via the shortest route has been established between the 

sender biosensor and the receiver biosensor based on hop count and sequence number succeeding. 

Fig. 10 is a screenshot of the previous EEG network simulation taken at (t) time. But here, the EEG network is 

simulated under twenty-five illegitimate sensors represented in red color with ID numbers of 2, 3, 6, 7, 10, 11,20, 33, 34, 

37, 38, 41, 43, 47, 57, 58, 62, 63, 65, 66, 73, 82, 85, 87, 88. In this example, it is observed that the illegitimate 

biosensors with an ID number of 37 didn’t forward any packets from the sink with an ID number of 0 to the destination 

sensor with an ID number of 53 and discarded the packets sent to it, in this case, a wireless link linked the source and 

the destination is considered as failure link. 

Fig. 11 is a screenshot of the previous EEG network simulation taken at (t) time. In the present simulation, an 

Intrusion Detection System has been integrated to safeguard the network. The simulation demonstrates that the 

recommended secured routing approach, which is based on trust value and the RSA cipher algorithm, successfully 

enables the source biosensor identified by an ID of 0 to prevent unauthorized access by the biosensor with an ID of 37 

and establish a dependable route to the destination sensor with an ID of 53. The source and destination biosensors can 
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exchange encrypted messages using a modified RSA cipher algorithm. 

 

 

Fig.9. WBAN simulation in normal case 

 

Fig.10. WBAN simulation under illegitimate biosensor attacks 

 

Fig.11. Establishment of trusted and secured route establishment of trusted and secured route
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Table 2 displays the obtained outcomes in terms of data bit rate, transmission delay, packet delivery ratio, and 

energy consumed in the normal case (without suspicious biosensors). 

Table 2. The EEG network performances without illegitimate biosensors 

Malicious nodes Data rates (bit/s) Delay (ms) Packet Delivery Ratio (%) Energy consumption (MJ) 

0 897640 1.4549 92.6013 3.3489 

 

Our findings, as presented in Table 3, illustrate the effects of illegitimate EEG biosensors on transmission delay, 

data bit rate, packet delivery ratio, and energy consumption measures. We noticed that an increase in the number of 

illegitimate EEG sensors directly corresponds to a rise in energy consumption and transmission delay. Conversely, the 

count of illegitimate EEG biosensors has an inverse relationship with the network data bit rate and packet delivery ratio.  

Table 3. The EEG network performances with illegitimate biosensors 

Malicious nodes Data rates (bit/s) Delay (ms) Packet Delivery Ratio (%) Energy consumption (MJ) 

5 896983 1.3469 92.2155 15.783 

10 896884 1.5527 92.2052 16.094 

15 892128 1.8369 91.7162 16.404 

20 887130 1.8893 91.2024 16.405 

25 880950 2.3627 90.5670 16.410 

Average 890815 1.7977 91.58126 16.2192 

 

We analyzed the impact of the intrusion detection system on data bit rate, transmission delay, packet delivery ratio, 

and energy consumption, and our results are presented in Table 4. Our findings indicate that the system significantly 

enhances network performance. We also observed that the system effectively isolates malicious nodes as the 

performance measurements remain constant even with an increased number of illegitimate biosensors. 

Table 4. The EEG network performances after the detection and isolation of illegitimate biosensors 

Malicious nodes Data rates (bit/s) Delay (ms) Packet Delivery Ratio (%) Energy consumption (MJ) 

5 929600 1.5536 98.0591 2.9955 

10 929600 1.5536 98.0591 2.9955 

15 929600 1.5536 98.0591 2.9955 

20 929600 1.5536 98.0591 2.9955 

25 929600 1.5536 98.0591 2.9955 

Average 929600 1.5536 98.0591 2.9955 

 

We compare the network performance of three simulated cases: an EEG network simulation under normal 

circumstances without illegitimate biosensors, under illegitimate biosensors, and when the suggested IDS is 

implemented. The network performance will be compared based on data bit rate, transmission delay, energy 

consumption, and packet delivery ratio. Table 5 presents the comparison results. The results show that implementing the 

suggested IDS enhances the data bit rate, energy consumption, and packet delivery ratio measures compared to an EEG 

network simulation with or without illegitimate biosensors. 

Table 5. The variation of the network performances in three cases 

Metrics Data rates (bit/s) Delay (ms) Packet Delivery Ratio (%) Energy consumption (MJ) 

Normal case 897640 1.4549 92.6013 3.3489 

With illegitimate biosensors 890815 1.7977 91.58126 16.2192 

Without illegitimate biosensors 929600 1.5536 98.0591 2.9955 

 

Table 6 displays the obtained outcomes in terms of malicious nodes and failure links classification rate, sensitivity, 

and specificity of the suggested optimized CNN-SVM (modified VGG16-SVM version) classifier compared to some 

classifiers such as support vector machine, traditional VGG16, and modified VGG16 models. The suggested optimized 

CNN-SVM (modified VGG16-SVM version) classifier achieved the highest value of malicious nodes and failure links 

classification rate, sensitivity, and specificity compared to other classifiers.   
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Table 6. Classification of malicious nodes and failure links using CNN-SVM 

Classifiers SVM VGG16 Modified VGG16 Modified VGG16-SVM 

Malicious nodes Sensitivity  89.16 % 100 % 90.15 % 90.15% 

Malicious nodes Specificity  94.91 % 88.35 % 88.44% 88.43% 

Malicious nodes Classification 97.60 % 99.00 % 99.52% 99.59 % 

Failure links Sensitivity  94.00 % 100 % 100 % 100% 

Failure links Specificity  94.91 % 93.81% 93.84 % 93.84 % 

Failure links Classification  98.16 % 98.76 % 98.78 % 99.00 % 

 

Compared to other techniques, such as those by Mahuwa Goswami et al. [15] and L. Maheshavel et al. [16], the 

suggested technique provides better outcomes in terms of Data Bit Rate and Transmission Delay without the presence 

of malicious nodes, as shown in Table 7. 

Table 7. Comparison with other works in terms of network performances in the normal case 

Techniques Data bit rate (bit/s) Transmission delay (ms) Packet Delivery Ratio 

Suggested IDS 897640 1.4549 92.00 % 

Mahuwa Goswami et al. (2020) [15] 85672 29.3400 92.96 % 

L. Maheshavel et al. (2021) [16] 71380 20.0177 99.38 % 

 

Compared to other techniques, like Mahuwa Goswami et al. (2020), L. Maheshavel et al. (2021), and Biswaraj Sen 

et al. (2018). The suggested technique gives the best outcomes in terms of Data Bit Rate, Packet Delivery Ratio, and 

Transmission Delay under suspicious biosensors (table 8). 

Table 8. Comparison with other works in terms of network performances with malicious node attacks 

Techniques Data bit rate (bit/s) Transmission delay (ms) Packet Delivery Ratio 

Suggested IDS 890815 01.7977 91.58126 

Mahuwa Goswami et al. (2020) [15] 6644.00 75.34800 17.1520 

L. Maheshavel et al. (2021) [16] 18730.0 26.52430 16.8867 

Biswaraj Sen et al. (2018) [17] 124379 2206.9285 20.1275 

 

Compared to other techniques, like Dinesh Kumar Anguraj et al. (2019), Mahuwa Goswami et al. (2020), and 

Biswaraj Sen et al. (2018). The suggested technique gives the best outcomes in terms of Data Bit Rate, Transmission 

Delay, and packet delivery ratio after avoiding illegitimate biosensors and failure links (table 9).  

Table 9. Comparison with other works in terms of network performances without malicious node attacks 

Techniques Data bit rate (bit/s) Transmission delay (ms) Packet Delivery Ratio 

Suggested IDS 929600 1.5536 98.0591 

Dinesh Kumar Anguraj et al. (2019) [4] 0.664 744.000 78.0000 

Mahuwa Goswami et al. (2020) [15] 80810 12.546 88.0880 

Biswaraj Sen et al. (2018) [17] 209310 2664.7463 33.0900 

 

Table 10 shows the performance of the suggested modified RSA cipher algorithm compared to the classical RSA 

cipher algorithm in terms of the strength of the prime number, the prime number calculation time, and the update of 

keys. We distinguished that the suggested modified RSA cipher is more robust than the classical RSA cipher algorithm.   

Table 10. Comparison between a modified RSA and a classical RSA cipher 

Cryptographic algorithms The strength of the number N Prime numbers calculation time Key update 

Our modified RSA Depends on six prime numbers Before algorithm starts Yes 

Classic RSA Depends on two prime numbers During the data transmission No 

Modified RSA (2013) [18] Depends on three prime numbers Before algorithm starts No 

Modified RSA (2015) [19] Depends on four prime numbers During the data transmission No 

 

To assess the efficacy of our enhanced CNN-SVM approach in classifying malicious nodes, we conducted a 

comparative analysis with other methodologies, including those introduced by Katakam Tejaswini and Yannam 

Adilakshmi (2020), as well as Mahin Syeda Hajra et al. (2019). Our proposed techniques surpassed these approaches 

and attained the highest classification rate for malicious nodes, as evidenced by Table 11. 
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Table 11. Comparison with other works in terms of classification rate for detecting malicious nodes 

Authors Algorithms Classification rate 

Our classifier (2023) 

SVM 

VGG16 

Modified VGG16 

Modified VGG16-SVM 

97.60 % 

99.00% 

99.52% 

99.59 % 

Katakam Tejaswini et al. (2020) [20] SVM 82.35 % 

Mahin Syeda Hajra et al (2019) [21] SVM 97.50 % 

 

To evaluate the efficiency of our optimized CNN-SVM method in classifying failure links, we conducted a 

comparative analysis with other techniques, including the one suggested by S. Arockia Jayadhas et al. (2021). As 

presented in Table 12, our proposed approach demonstrated superior performance in terms of classifying failure links.  

Table 12. Comparison with other works in terms of classification rate for detecting failure links 

Authors Algorithms Classification rate 

Our classifier (2023) 

SVM 

VGG16 

Modified VGG16 

Modified VGG16-SVM 

98.16% 

98.76% 

98.78% 

99.00% 

S. Arockia Jayadhas et al (2021) [22] VGG16 98.40 % 

Table 13. Comparison between a modified RSA et al. cipher algorithms 

Cryptographic algorithms Key Size Architecture Security level 

Suggested modified RSA cipher 2048 bits Asymmetric High 

One-Time Password Algorithm (2023) [23] 512 bits Symmetric Low 

Elliptic Curve Cryptography (2022) [24] 512 bits Asymmetric High 

Table 14. Advantages of the intrusion detection systems 

Methods Trusted route Encrypted communication 

Our methods ✓ ✓ 

Rajesh Kumar D et al. (2021) [3] ✓ ✗ 

Dinesh Kumar Anguraj et al. (2019) [4] ✓ ✗ 

Ali Raza Bhangwar et al. (2017) [5] ✓ ✗ 

Sangeetha Ramaswamy et al. (2022) [6] ✓ ✗ 

Damanpreet Kaur et al. (2020) [7] ✗ ✓ 

Sangwon Shin et al. (2019) [8] ✗ ✓ 

A. Basnet et al. (2022) [9] ✗ ✓ 

Gurbeer Kaur et al. (2017) [10] ✗ ✓ 

Mohammed Ramadan et al. (2020) [11] ✗ ✓ 

Mahuwa Goswami et al. (2020) [15] ✓ ✗ 

L. Maheshavel et al. (2021) [16] ✓ ✗ 

Biswaraj Sen et al. (2018) [17] ✓ ✗ 

S. Arockia Jayadhas et al (2021) [22] ✓ ✗ 

Dass, R, et al. (2023) [23] ✓ ✓ 

Kaur, A., et al. (2022) [24] ✓ ✓ 

Sangeetha Ramaswamy et al. (2012) [25] ✓ ✗ 

Swapnil S. Bhalsagar (2019) [26] ✓ ✗ 

Mallikarjuna Anantapur et al. (2021) [27] ✓ ✗ 

Shin, S, et al. (2020) [28] ✗ ✓ 

C. Senthilkumar et al. (2015) [29] ✓ ✗ 

K. N. Ambili et al. (2016) [30] ✓ ✗ 

Alattas, R (2020) [31] ✓ ✗ 
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Table 13 shows the performance of the suggested modified RSA cipher algorithm compared to other cipher 

algorithms in terms of the key size, the algorithm’s architecture, and the security level. We distinguished that the 

suggested modified RSA cipher is more strength than other cipher algorithms.   

Compared to other techniques, like Rajesh Kumar D et al. (2021), Dinesh Kumar Anguraj et al. (2019), Ali Raza 

Bhangwar et al. (2017), Sangeetha Ramaswamy et al. (2022), Damanpreet Kaur et al. (2020), Sangwon Shin et al. 

(2019), A. Basnet et al. (2022), Gurbeer Kaur et al. (2017), Mohammed Ramadan et al. (2020), Mahuwa Goswami et al. 

(2020), L. Maheshavel et al. (2021), Biswaraj Sen et al. (2018), Ambili, K. N et al. (2019), Dass, R et al. (2023), Kaur, 

A et al. (2022), Sangeetha Ramaswamy et al. (2012), Swapnil S. Bhalsagar (2019), Mallikarjuna Anantapur et al. 

(2021), Shin, S et al. (2020), C. Senthilkumar et al. (2015), K. N. Ambili et al. (2016), Alattas, R (2020). The suggested 

intrusion detection system offers both of trusted route and encrypted communication (table 14). 

5.  Conclusions 

Wireless Malicious biosensor attacks can cause failure links and discard data packets, which can degrade the 

performance of wireless body area networks (WBANs). To combat this issue, we have developed a hybrid intrusion 

detection system (IDS) that combines an optimized convolutional neural network (CNN) with a support vector machine 

(SVM), a trust-based routing algorithm, and a cryptographic algorithm based on the modified RSA cipher. 

Our system utilizes the optimized CNN with SVM to classify nodes and links as either malicious or not, and 

failures or not. It then employs a trust-based routing algorithm to detect and isolate malicious nodes by finding an 

alternate and trusted path. Finally, it uses the modified RSA cipher algorithm to ensure sensitive data protection against 

malicious attacks. 

Extensive simulations have shown that our IDS enhances network performance in terms of packet delivery ratio, 

transmission delay, data bit rate, and energy consumption, while also bolstering network security by avoiding malicious 

nodes and failure links. Our approach achieves a 99.13% malicious nodes classification rate using the modified VGG16 

with SVM classifiers, surpassing similar systems with a single SVM classifier that have achieved rates of 82.35% and 

97.5%. Additionally, our approach achieves a 99.97% failure links classification rate using the modified VGG16 with 

SVM classifiers, surpassing a similar system with a single VGG16 classifier that has achieved a rate of 98.40%. 

In the future, we plan to implement our proposed system in the WBAN environment using Arduino and Raspberry 

cards to prevent malicious node attacks. 
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