Performance Analysis of 5G New Radio LDPC over Different Multipath Fading Channel Models

Mohammed Hussein Ali*
Electrical Engineering Department, Faculty of Engineering, Mustansiriyah University, Baghdad, Iraq
E-mail: eeph005@uomustansiriyah.edu.iq
ORCID iD: https://orcid.org/0000-0002-2516-4066
*Corresponding author

Ghanim A. Al-Rubaye
Electrical Engineering Department, Faculty of Engineering, Mustansiriyah University, Baghdad, Iraq
E-mail: g.a.m.al-rubaye@uomustansiriyah.edu.iq
ORCID iD: https://orcid.org/0000-0001-5412-5157

Received: 18 September 2022; Revised: 12 December 2022; Accepted: 01 March 2023; Published: 08 August 2023

Abstract: The creation and developing of a wireless network communication that is fast, secure, dependable, and cost-effective enough to suit the needs of the modern world is a difficult undertaking. Channel coding schemes must be chosen carefully to ensure timely and error-free data transfer in a noisy and fading channel. To ensure that the data received matches the data transmitted, channel coding is an essential part of the communication system's architecture. NR LDPC (New Radio Low Density Parity Check) code has been recommended for the fifth-generation (5G) to achieve the need for more internet traffic capacity in mobile communications and to provide both high coding gain and low energy consumption. This research presents NR-LDPC for data transmission over two different multipath fading channel models, such as Nakagami-m and Rayleigh in AWGN. The BER performance of the NR-LDPC code using two kinds of rate-compatible base graphs has been examined for the QAM-OFDM (Quadrature Amplitude Modulation-Orthogonal Frequency Division Multiplexing) system and compared to the uncoded QAM-OFDM system. The BER performance obtained via Monte Carlo simulation demonstrates that the LDPC works efficiently with two different kinds of channel models: those that do not fade and those that fade and achieves significant BER improvements with high coding gain. It makes sense to use LDPC codes in 5G because they are more efficient for long data transmissions, and the key to a good code is an effective decoding algorithm. The results demonstrated a coding gain improvement of up to 15 dB at 10^{-3} BER.

Index Terms: QAM-OFDM, NR-LDPC, Nakagami-m Fading Channel, BER Performance, Rician Fading Channels, Turbo Codes (TCs), 3rd Generation Partnership 5G NR, Rayleigh Fading Channel, Line of Sight (LOS), AWGN.

1. Introduction

The AWGN noise, multipath fading, and interference, all contribute to a communication channel’s error rate. The original data flow is corrupted by channel impairments, thus the data received is not identical to the data supplied. Channel coding is employed to mitigate the defects that occur during information transfer. This indicates that the original flow of information is subjected to a sequence of algorithmic processes on the transmitter side (channel encoding). Channel decoding on the recipient side is done by implementing various processes that are designed to correct errors. The selection of an appropriate coding system is clearly critical to the speed and reliability of transmitting data. The coding system should be flexible, have minimum complexity of computation, low latency, provide good reliability, and taken in account the low cost [1,2].

In the 1960s, Rober Gallager [3] presented LDPC for the first time in his Doctoral dissertation at MIT. As a result of its many attractive features, LDPC codes have gained considerable interest in recent years. Real-time, high-throughput connections are possible thanks to the selection of these codes. One, the LDPC-based technique is capacity-approaching; two, these codes may be efficiently decoded by parallel iterative decoding algorithms with minimal delay [4]. Researchers are now looking into LDPC to assess its capabilities for future software design [5]. The LDPC codes feature a completely parallelizable decoding implementation and are structurally simpler than other iterative code such as turbo codes [6]. Generally, turbo codes (TCs) have complex code structure, and large delay in the process of decoding and that make TC unsuitable for 5G. LDPC codes use less bandwidth and perform better for larger lengths of
blocks. LDPC codes are also more efficient than other codes [7]. The encoding difficulty of LDPC codes is larger than that of turbo codes and is inherently quadratic in the code dimension, however it is possible to lower this complexity. It has been shown that LDPC codes may get very near to the channel capacity. In particular, MacKay demonstrated via his study of random coding that LDPC code ensembles may rapidly approach the Shannon capacity limit as a function of the code's length, and that errors in such codes are almost undetectable [8,9]. Studies on LDPC codes have been found to have irregular and coding at multiple levels. There are just a few studies of the topic of Rayleigh and Rician fading channels [7, 10]. LDPC codes with iterative soft-decision decoding achieves performance very close to the Shannon limit, lower decoding complexity and it is easy to modify the code rates with better BER performance than TCs [11]. When compared to LDPC codes, TCs have many advantages, including reduced encoder complexity, fewer decoder iterations, and less connectivity in the trellis graph, all of which may have a beneficial effect on latency. In addition, puncturing in the TC encoder may further reduce complexity. Tanner graphs with no cycle-four girths may be formed by LDPC codes built using either random or algebraic construction methods. So, until it finds the right code, the decoding algorithm must do numerous iterations (large latency). It follows that the LDPC code's will have better BER performance in comparison to that of the TC [11, 12].

In this work, we design and constructed an NR-LDPC-QAM-OFDM system, and we assess and compare its BER performance to that of uncoded QAM-OFDM systems over a Multipath Rayleigh environment, and a Multipath Nakagami-m environment in AWGN. The obtained results demonstrate that the NR-LDPC-COFDM system outperforms the uncoded OFDM system in a multipath channel situation where the channels gradually degrade. The number of iterations needed for LDPC-OFDM to converge is bigger, which is a major drawback, the NR-LDPC can reducing up to 16–24 % of the decoding iterations required to correct the channel errors at relatively low signal-to-noise ratio. The throughput varied from 20 to 200 Gbps across all of the analyzed submatrix sizes, which is more than enough to fulfill the throughput requirement of the 5G New Radio (NR) standard.

2. Related Works

According to 3rd Generation Partnership 5G NR standardization project (3GPP), LDPC a coding strategy for data channels is being considered [13]. For improved mobile broadband (MBB), LDPC codes have recently been selected as the 5G New Radio (NR) channel coding method [14].

Error-correction performance of 5G LDPC codes has been improved by several techniques in recent years [15–19]. In [15], adjusted minimum sum (MS) and generalized approximate-min algorithms were presented in [16]. By taking into consideration the approximate-min method [17]. Non-linear functions, like the BP decoding, need a substantial amount of implementation complexity. To simplify the non-linear functions in the BP method, the authors of [18], presented a hybrid decoding technique. To improve the accuracy of the calculations, the authors of [19] insert the offset and normalization factors into decoding at different times, with values that are adjusted using machine learning.

In order to make the most of the available spectrum, the OFDM communication system is a useful technique. In this setup, using M-QAM might greatly boost the spectrum utilization rate. However, high-order modulation can lead to a significant error rate for low-power transmission systems in some situations. Forward Error Correction (FEC) are frequently used to reduce the number of errors in an OFDM system [20]. OFDM is often used along with a cyclic prefix (CP), in order to remove inter-symbol interference (ISI), which transforms the frequency-selective multipath into narrow band frequency-flat channels [21].

Channel models for multipath propagation are described in Section III. In Section IV, we present our model of NR-LDPC - OFDM system. Details of the BER computation over Nakagami-m fading channel In Section V. The simulation results used to assess LDPC- OFDM systems' performance are shown in Section VI. We have compared the computational complexity as well. The conclusion and references are provided in the last section.

3. Communication Channel Models

The assumption of some level of noise distortion in transmitted signals is central to the study of communication theory. Typically, it is assumed that the noise is additive, white, and follows a Gaussian distribution. The availability of many paths between transmitters and receivers is a more real scenario for wireless links. These paths can be either direct or created by reflection, diffraction, or scattering. Vectors of independent delayed signals, each with a different frequency and amplitude and delay, compose the total received signal. [22, 23].

The fading envelope of wireless signals may be described using the Rayleigh and Rician distributions for localized or temporary fades, and the lognormal distribution for more widespread phenomena. However, Nakagami's m-distribution [24], is a more flexible statistical model that can simulate not only the Rayleigh but also the one-sided Gaussian fading environment. In addition, the Nakagami distribution may provide a good approximation to the lognormal and Rician distributions for certain ranges of mean rating scale [11, 21, 25].

For small signal-to-noise ratios (SNR), the match between the Nakagami and Rician distributions is more precise than for large SNRs. In addition, the Nakagami distribution is more adaptable than the log-normal and Rician distributions [11, 25-27], and provides a better match to experimental data for a wide variety of physical propagation of
the channels. Fading will have a significant impact on a system’s performance.

3.1. Rayleigh Fading Channel

The most common model for narrowband transmission across wireless and mobile channels is the flat fading channel. The flat fading channel attenuates all components of the signal frequency by the same factor. For the received signal in the complex baseband form may thus be represented as [11, 21]

\[y = ax + w \]
\[(1) \]

where \(y \) is the received symbol and \(x \) is the symbol on the broadcast channel, \(w \) is the amplitude of the AWGN, and \(a \) is the fading amplitude. The amplitude of fade, denoted by “\(a \)”, is a stochastic function. Without any fading at all (\(a = 1 \)), the channel is just AWGN. The symbols \(r = \{ I, Q \} \) represent the real and imaginary parts, respectively.

The Rayleigh fading channel happens when there are several indirect pathways between the transmitting and receiving ends. There is no direct line of sight (LOS). The worst-case scenario is Rayleigh fading. This form of fading may be dealt with analytically, which gives insight into hard conditions in the field of wireless communication, like downtown urbanized settings.

If the magnitude of the fading channel follows the Rayleigh distribution, then the distribution \(P(|a|) \) can be expressed as [28]

\[f(a) = \frac{a}{\sigma_h^2} \exp \left(-\frac{a^2}{2\sigma_h^2} \right) \]
\[(2) \]

In this case, the distribution of the inphase component and the quadrature phase component will follow the Gaussian distribution with zero mean and \(\sigma_h^2 = \frac{1}{2} \) as

\[f_a(a') = \frac{1}{\sqrt{2\pi}\sigma_h^2} \exp \left(-\frac{(a')^2}{2\sigma_h^2} \right), \quad -\infty \leq a' < \infty \]
\[(3) \]

\[f_a(a^0) = \frac{1}{\sqrt{2\pi}\sigma_h^2} \exp \left(-\frac{(a^0)^2}{2\sigma_h^2} \right), \quad -\infty \leq a^0 < \infty \]
\[(4) \]

where \(\sigma_h^2 \) represent the average power of received signal, which is a function of the of path loss as well as shadowing alone.

3.2. Nakagami-m Fading Channel

As a distribution, the Nakagami - m combines the best features of the Rayleigh and Rician distributions. Although Rayleigh and Rician distributions are often employed to characterize the mobile communication channel, the Rayleigh distribution fails to capture long-distance fading effects with satisfactory accuracy [11, 21, 24].

When compared to the Rayleigh and Rician models, Nakagami offers a more thorough justification to both less and more extreme circumstances than the Rayleigh and Rician model, which improves fit to the data from a mobile communication channel. It is considered that Nakagami-m is a generalization of Chi-distribution. It is closely related to chi squared with 2m degrees of freedom in mathematics [29].

Nakagami-m also provides the optimum match for radio wave propagation from satellites to buildings and vice versa. In this scenario, we utilize a parameter known as the m parameter or shape parameter to characterize the level of fading. This parameter gives us an idea of how much fading is caused by scattering and multipath interference. Hence, the magnitude of the fading channel in the time domain follows the Nakagami-m distribution and is defined as [11, 21]:

\[f_a(a) = \frac{2^m}{\Gamma(m)m^m} a^{2m-1} \exp \left(-\frac{ma^2}{\Omega} \right), \quad 0 \leq a < \infty \]
\[(5) \]

Where, \(\Gamma(.) \) is the gamma function and \(\Omega = \text{E}(r^2) = 2\sigma^2 \) is multipath scatter field average power The strength of the signal that was received is denoted by the symbol “\(a \)”. The shape parameter is \(m \) and (\(m \geq 0.5 \)), and when \(m = 1 \), the Nakagami-m distribution degenerates to the Rayleigh distribution, where is the inverse of the normalized variance of \(a^2 \). When modeling Land-mobile and indoor mobile multipath propagation, this distribution is frequently the best match. In this case, \(a = a' + ja^0 \), where \(a' = |a| \cos(\theta) \) and \(a^0 = |a| \sin(\theta) \). The distribution of the inphase component and the quadrature phase component can be expressed as

\[f_a(a') = \frac{2^m}{\Gamma(m)|\cos(\theta)|m^m} \left(\frac{a'}{\cos(\theta)} \right)^{2m-1} \exp \left(-\frac{ma'^2}{\Omega \cos(\theta)} \right), \quad -\infty \leq a' < \infty \]
\[(6) \]

Volume 15 (2023), Issue 4
\[
f_\alpha(a^Q) = \frac{2^m}{\Gamma(m)\sin(\theta)\Omega m} (\frac{a^Q}{\sin(\theta)})^{2m-1} \exp\left(\frac{-m(a^Q)^2}{\Omega m^2}\right), \quad -\infty \leq a^Q < \infty
\]

4. 5G NR LDPC-OFDM System Model

Every possible channel in the physical world introduces unwanted noise, which in turn causes errors and lowers the system's dependability. Channel coding, which enhances the robustness of digital communication systems by including redundancies in the transmitted data in a managed fashion, [30]. The parity-check matrices of these codes, from which their name derives, consist mostly of zeros (or "0's") and just slightly more ones (1's). Visualizations and descriptions of LDPC codes are possible using matrices or using (Tanner graphs). There are two types of LDPC codes, regular and irregular. A protograph is referred to as a base graph in the 5G standard [31], whose utilization is based on coding rate or the number of information bits, To illustrate this, Fig.1 displays a scatter map of the base graph for the \((\alpha)\) graphs, and their structures are comparable. While BG1 is optimized for longer blocks (500 \(\leq K \leq 8448\) and higher rates (1/3 \(\leq R \leq 8/9\)), BG2 is used for shorter blocks (40 \(\leq K \leq 2560\)) and lower rates (1/5 \(\leq R \leq 2/3\)) [34].

The algorithmic efficiency of LDPC codes is significantly affected by the degree of sparsity in the underlying graph structure. [33].

![Fig.1. 5G-NR-LDPC base graphs](image)

To accommodate different block lengths and coding schemes, 5G NR employs two basic graphs and eight sets of modeling shift coefficient matrices for each base graph in the 5G standard, and as shown in Table 1, there are 51 various lifting sizes are specified.

<table>
<thead>
<tr>
<th>Set index</th>
<th>a</th>
<th>Lifting size (Z_c = 2 \times a^l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>{2, 4, 8, 16, 32, 64, 128, 256}, \ j \in {0,1,2,3,4,5,6,7}</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>{3, 6, 12, 24, 48, 96, 192, 384}, \ j \in {0,1,2,3,4,5,6,7}</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>{5, 10, 20, 40, 80, 160, 320}, \ j \in {0,1,2,3,4,5,6}</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>{7, 14, 28, 56, 112, 224}, \ j \in {0,1,2,3,4,5}</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>{9, 18, 36, 72, 144, 288}, \ j \in {0,1,2,3,4,5}</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>{11, 22, 44, 88, 176, 352}, \ j \in {0,1,2,3,4,5}</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>{13, 26, 52, 104, 208}, \ j \in {0,1,2,3,4}</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>{15, 30, 60, 120, 240}, \ j \in {0,1,2,3,4}</td>
</tr>
</tbody>
</table>

BG1(with dimensions of 46 by 68) and BG2(with dimensions of 42 by 52) are the two kinds of rate-compatible base graphs for channel coding that have been finalized by the 3GPP. Both BG1 and BG2 are considered to be base graphs, and their structures are comparable. While BG1 is optimized for longer blocks (500 \(\leq K \leq 8448\) and higher rates (1/3 \(\leq R \leq 8/9\)), BG2 is used for shorter blocks (40 \(\leq K \leq 2560\)) and lower rates (1/5 \(\leq R \leq 2/3\)) [34].

The degree of parallelism that may be used and the complexity of the related switch network are aspects that are taken into consideration when determining lifting sizes. It is important that supporting a variable code length may be
Performance Analysis of 5G New Radio LDPC over Different Multipath Fading Channel Models

done effectively by simply selecting the right lifting size according on the amount of information that has to be encoded [31].

Our 5G New Radio (NR) LDPC-OFDM system architecture shown in Fig. 2. The irregular LPDC-PCM, is constructed according to the parameters (information block size \(K \), coding rate \(R \)), are listed in five steps below. So, if the lifting size is \(Z \), and the base graph has \(k_b \) columns of information, then \(K = Z_c \times k_b \) is the nominal formula.

- First, choose the values of \(K \) and \(R \) by considering the basis graphs BG1 and BG2.
 - BG1 \(k_b = 22 \).
 - BG2: \(k_b = 10 \) if \(K > 640 \), \(9 \) if \(560 < K \leq 640 \), \(8 \) if \(192 < K \leq 560 \), and \(6 \) else.
- The second step is to calculate \(Z \) by selecting the lowest \(Z \) value from Table 1 such that \(k_b \times Z \geq k \).
- The third step is to choose the shift coefficient matrix from Table 1 [Set index 0, Set index 1,..., Set 7] based on the lifting size \(Z \).
- The fourth step is to use the modular \(Z \) operation, to determine the value of the shifting coefficient \(S_{i,j} \) specified by Equation (5).
- The fifth step is to substitute each item in the final exponent matrix with the \((Z_c \times Z_c)\) permutation matrix or zero matrix. Finally, a PCM (H) of dimension \((m_b Z_c \times n_b Z_c)\) has been constructed, marking the end of the LDPC code construction.

\[
S_{i,j} = f(B_{m,n}, z) = \begin{cases}
-1 & \text{if } B_{m,n} = -1 \\
0 & \text{otherwise}
\end{cases}
\]

(8)

In 5G NR-LDPC codes, information bits are represented by the first 22 columns of base graph 1 and the first 10 columns of base graph 2. To emphasize, the first two columns of both base graphs are always punctured and never broadcast. So, \(n \) is the length of codeword. \(n = 66Z_1 \) for LDPC BG 1 and \(n = 50Z_2 \) for LDPC BG 2.

Finally, 5G NR-LDPC codes allow for rate matching during encoding operation, to control of transmitted bits to be chosen.

Fig. 2. 5G New Radio LDPC-OFDM system architecture

Initial steps include utilizing the LDPC encoder to transform a block of information bits \((d = d_0, d_1,..., d_{k-1})\) into a codeword \(c = (c_0, c_1,..., c_{n-1}) \). The bits of the codeword \(c \) are then sorted into groups and mapped onto the \(2^k \) symbols of a quadrature amplitude modulation (QAM) constellation, so that, for a \(k \)-tuple \(\{ c_m, c_{m+1},..., c_{m+k+1} \} \) of bits which is corresponding QAM symbol is \([11, 20, 21, 23]\)

\[
X_k = C \left[\sum_{m=0}^{k-1} z^{k-1-m} c_m \right]
\]

(9)

where \(C \in \mathbb{C}^{12^k \times 2^k} \) denotes the Gray-encoded vector in the time domain, a complex OFDM signal in baseband may be constructed using an N-points IFFT, as shown in \([11, 21, 33, 35]\).

\[
x_n = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_k \exp \left(\frac{2\pi jkn}{N} \right), n = 0, 1, ..., N - 1
\]

(10)
Where \(N \) denotes the sub-carriers number.

IFFT transforms a frequency domain signal into a random time domain signal, throughout a frequency spectrum, and is used to create OFDM samples after coding and base band modulation, which is then used for pass band modulation. A time-domain CP of duration \(N_{\text{CP}} \) samples is set to surpass the maximum channel delay spreading (\(L_m \)) and is injected at the start of each OFDM symbol by duplicating the final \(N_{\text{CP}} \) samples of the OFDM symbol to the start of \(x \) to generate symbols \(\tilde{x} = [x_{N-N_{\text{CP}}}, x_{N-N_{\text{CP}}+1}, \ldots, x_N, x_0, x_1, \ldots, x_{N-1}] \), that are transmitted and have length \(N = N + N_{\text{CP}} \) samples [19]. This removes ISI between successive OFDM signals in channels. These carriers travel through a variety of fading channels, each of which adds its own noise at the receiving which is produced through multipath fading channel and \(w \) is the additive white noise. It has already been said that the Rayleigh distribution is used to model the multipath fading channel for wireless systems, that PDF will be spread out according to equation (2), and that the Nakagami-\(m \) distribution is shown by equation (5).

Hence, the magnitude of the channel frequency response, \(|A| = \sqrt{(A)^2 + (A^0)^2} \), will follow the Rayleigh distribution in the frequency response for both channels.

In a 4-QAM system, the complex received noisy signal is denoted by \(Y \) in the frequency domain expressed in (11), and the set of all possible modulated symbols \(X \) is denoted by \(C = \{C_1, C_2, C_3, C_4 \} \). The bit error rate (BER) in the AWGN can be expressed as

\[
P_B^{\text{AWGN}} = Q\left(\frac{E_b}{N_0}\right)
\]

A different form of Eq. (16) is as follows.

\[
P_B^{\text{AWGN}} = \frac{1}{2} \text{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)
\]

And the BER over Rayleigh fading channel can be expressed as
\[P_b^{\text{Rayleigh}} = \frac{1}{2} \left(1 - \frac{\frac{E_b}{\sqrt{2}\sigma_w^2}}{\sqrt{\frac{E_b}{\sigma_w^2} + \frac{1}{2}}} \right) \] (18)

5. BER computation over Nakagami-m Fading Channel

To determine the BER of QAM-OFDM over Nakagami-m fading channel in AWGN. The effective bit energy to noise ratio is, \(\gamma = \frac{|A|^2 E_b}{2 \sigma_w^2} \). Therefore, for a given value of A, the bit error probability is

\[P_{b|A} = \frac{1}{2} \text{erfc}(\sqrt{\gamma}) \] (19)

We know from our consideration of the chi-square random variable that it has two degrees of freedom if it is a Rayleigh distributed random variable expressed as, \(p(\gamma) = \frac{1}{\sqrt{2\pi\sigma_w^2}} e^{-\frac{\gamma}{2\sigma_w^2}} \), \(\gamma \geq 0 \). Therefore, the BER can be computed as:

\[P_b^{\text{Nakagami-m}} = \int_{0}^{\infty} \frac{1}{2} \text{erfc}(\sqrt{\gamma}) p(\gamma) d\gamma = \int_{0}^{\infty} \frac{1}{2} \text{erfc}(\sqrt{\gamma}) \frac{1}{\sqrt{2\pi\sigma_w^2}} e^{-\frac{\gamma}{2\sigma_w^2}} d\gamma = \frac{1}{2} \left(1 - \frac{\frac{E_b}{\sqrt{2\sigma_w^2} + \frac{1}{2}}}{} \right) \] (20)

6. Simulation Results and Analysis

The performance of NR-LDPC- QAM-OFDM system in terms of BER for different block lengths and variable code rates over different communication channels: Rayleigh channel, and Nakagami-m, have been examined and compared with the performance of uncoded QAM-OFDM system. Parameters defined in Table 2 are used to utilize above mentioned channels.

<table>
<thead>
<tr>
<th>Table 2. Simulation Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation</td>
</tr>
<tr>
<td>No. of sub-carriers</td>
</tr>
<tr>
<td>No. of Block length</td>
</tr>
<tr>
<td>Channel model</td>
</tr>
<tr>
<td>Frequency selective Nakagami-m fading channel</td>
</tr>
<tr>
<td>Noise</td>
</tr>
<tr>
<td>Code rate</td>
</tr>
</tbody>
</table>

The BER performance of NR-LDPC- QAM-OFDM Scheme for two base graphs are compared with respective uncoded QAM-OFDM under AWGN, and fading channel Fig. 3 and 4, show the performance of BER of LDPC-OFDM systems for code rate 1/3 and 1/2, with varied parameter n. Which is compared for block length n = 1024 bits, and n=128 and BER = 10^{-6} as error rate target. It can be seen from the figures, the performance of BG2 outperforms BG1 in the case n=128 and the performance of BG1 outperforms BG2 in the case n= 1024 and the performance gap between them is significantly reduced to 0.3 dB compared to 1.1 dB in the case of the short block length n=128. According to the findings, the possible range of blocks is between ten thousand and one thousand. Therefore, the total number of bits is equal to 10000 *Zc. The layered Min Sum(MS) approach has been put into action, and success has been attained with fewer iterations comparing with SPA and MSA.

According to the findings, results indicate that the NR-LDPC- QAM-OFDM system which is designed enables a considerable improvement over the un-coded system about 9.5dB at 10^{-6} BER for block length 1024, when used Basegraph1, and achieve improvement about 6.5dB at 10^{-6} BER for block length 128, under AWGN model and the performance have a little degradation when employed Basegraph 2.

The variances of AWGN channel model are estimated using SNR values. In the case of fading presence, a fading channel block was accompanied by the AWGN channel block that had previously been used. Fig. 5, and Fig. 6, show the performance of NR-LDPC-4QAM -OFDM of both base graphs system over Rayleigh fading channel compared to the theoretical BER performance of the UOFDM system.

In this simulation, it can be demonstrated that the theoretical BER and the experimental BER correspond well for Uncoded OFDM, over Rayleigh channel coding. Ultimately, it is determined that channel coding has the potential to enhance BER performance of the system. Hence a coding gain is needed for the coded OFDM with LDPC decoding to obtain a bit error rate of 10^{-6}, as is evident from the data shown in Table 3. Each simulation was run for a total of 100 frames, and the process was kept going until a BER value of 10^{-6} was attained, number of transmitted bits per frame10^7.
Fig. 3. BER of LDPC-OFDM systems at R=1/3

Fig. 4. BER of LDPC-OFDM systems at R=1/2

Fig. 5. BER of LDPC-OFDM systems (n=1024)

Fig. 6. BER of LDPC-OFDM systems (n=128)
Table 3. Coded gain of two base graphs over Rayleigh fading channel (n=1024)

<table>
<thead>
<tr>
<th>BER</th>
<th>BG1</th>
<th>BG2</th>
<th>Uncoded system</th>
<th>Gain1</th>
<th>Gain2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}</td>
<td>8.4 dB</td>
<td>8.8 dB</td>
<td>24 dB</td>
<td>15.6 dB</td>
<td>15.2 dB</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>8.8 dB</td>
<td>9.25 dB</td>
<td>34 dB</td>
<td>25.2 dB</td>
<td>24.75 dB</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>9 dB</td>
<td>10.5 dB</td>
<td>44 dB</td>
<td>35 dB</td>
<td>33.5 dB</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>9 dB</td>
<td>11.5 dB</td>
<td>55 dB</td>
<td>46 dB</td>
<td>43.5 dB</td>
</tr>
</tbody>
</table>

As can be observed in the Figure, at a BER of 10^{-4}, BG1 of LDPC provides around 15.6 dB more coding gain than for UOFDM system under Rayleigh fading channel. Additionally, BG1 for LDPC code performs superior to BG2 of LDPC code at approximately greater than 10^{-4}. Furthermore, the findings of the Monte Carlo simulation techniques exhibits closely match to the theoretical performance of the UOFDM system under the same characteristics.

Fig. 7, and Fig. 8, show the performance of NR-LDPC-QAM-OFDM of both base graphs system over Nakagami-m fading channel compared to the theoretical BER performance of the UOFDM system.

The dramatic improvement in system performance achieved about through the use of LDPC-OFDM over UOFDM, with the latter yielding greater coding improvements. As can be observed in the Fig. 7, and 8, when shaping factor (m=0.5) at a BER of 10^{-4}, BG1 of LDPC provides around 25 dB more coding gain and BG2 provides around 24.6 dB more coding gain than for UOFDM system, over nakagami-m fading channel. Additionally, BG1 for LDPC code performs superior to BG2 of LDPC code at approximately greater than 10^{-4}. Furthermore, the findings of the Monte Carlo simulation techniques exhibits closely match to the theoretical performance of the UOFDM system under the same characteristics.

It is also evident that, for the LMSA decoding algorithm, the coding gain is substantially larger with smaller shaping factor of nakagami-m fading channel, even for the scenario where the maximum number of iterations is lowered by eight times. Table 4 provides numerical examples for evaluation and Coded Gain(CGs) for variants of
possible outcomes of the shaping parameter (m). For decreasing values of m, the system performs better, but the coding gain decreases since the signal strength fluctuates less compared to the Rayleigh fading case when m=1.

Table 4. Provides numerical examples

<table>
<thead>
<tr>
<th>Fading (shaping) factor</th>
<th>m=0.5</th>
<th>m=1</th>
<th>m=5</th>
<th>Uncoded</th>
<th>Gain1</th>
<th>Gain2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BER</td>
<td>BG1</td>
<td>BG2</td>
<td>BG1</td>
<td>BG2</td>
<td>BG1</td>
<td>BG2</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>6.8 dB</td>
<td>7 dB</td>
<td>8 dB</td>
<td>8.4 dB</td>
<td>16 dB</td>
<td>14 dB</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>7 dB</td>
<td>7.5 dB</td>
<td>9 dB</td>
<td>9.4 dB</td>
<td>16.5</td>
<td>16 dB</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>7.5 dB</td>
<td>8.5 dB</td>
<td>9.2 dB</td>
<td>12 dB</td>
<td>17 dB</td>
<td>17.2</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>7.5 dB</td>
<td>9 dB</td>
<td>9.2 dB</td>
<td>12.5 dB</td>
<td>17 dB</td>
<td>17.6</td>
</tr>
</tbody>
</table>

7. Conclusions

In this work, the effectiveness of the NR-LDPC-OFDM system takes into consideration, the multipath fading channel. A Rayleigh distribution and the Nakagami-m model are used to account for the many causes that contribute to the distorted signal in the channel. Through the use of Monte Carlo simulations, we find that QAM constellation NR-LDPC-OFDM with total belief LLRs achieved high coding gain compared to the uncoded OFDM in a AWGN under Rayleigh and Nakagami-m fading channel conditions. Moreover, Under low signal-to-noise situations, the NR-LDPC can reduce the number of decoding rounds required for correcting channel errors by 16-24%. The NR-LDPC code work efficiently when the base matrix have a large expansion factor. So that the results do seem to indicate that the performance of NR-LDPC codes improves with increasing block length and degrades with increasing code rate. The coding rate and block length of BG1 are superior to those of BG2, which is why it is used here. For Rayleigh fading find that, the performance improvement of NR_LDPC with BG1 over BG2 is more obviously, and that increasing the codeword length marginally improves system performances.

A variety of shaping factors (m=0.5, 1 and 5) have been tested in simulations of the NR-LDPC-QAM-OFDM system operating in AWGN under the Nakagami-m fading channel. The results show that when (m<1), the Nakagami-m fading channel has higher coding gain than the Rayleigh fading channel for all values of Eb/No.

Finally, it is clear that the used decoding technique(LMSA) has a significant effect, and that longer codewords enhance performance, however this benefit is perceptible specially at lower BER levels.

References

Low Density PC codes,” 2012 14th International Conference on Advanced Communication Technology (ICACT), 2012, pp. 475-480.

Authors’ Profiles

Mohammed Hussein Ali is a lecturer at Al-Turath University College, Biomedical Engineering Department. He holds his B.Sc degree from the College of Engineering, University of Baghdad, in 2004, and obtained his M.Sc. degree in Electronics and Communication Engineering in 2010, and is currently a Ph.D. student in Communications Engineering at Al-Mustansiriya University. His areas of interest are cellular network communications, coding techniques, and signal processing for wireless communications.

Dr. Ghanim A. Al-Rubaye is a Lecturer in the Electrical Engineering Department, Faculty of Engineering, Mustansiriya University, Baghdad, Iraq. He received his M.Sc. in Electronics and Communications from Al-Mustansiriya University, Baghdad, Iraq, in 1999. He received his PhD from the School of Electrical and Electronics Engineering, Newcastle University, Newcastle Upon Tyne, U.K, in 2017. His research focuses on wired/wireless communications on coded systems, OFDM systems, fading and power line communication channels, channel modelling and receiver design.