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Abstract—Intrusion Detection is one of the most 

common approaches used in detecting malicious 

activities in any network by analyzing its traffic. Machine 

Learning (ML) algorithms help to study the high 

dimensional network traffic and identify abnormal flow 

in traffic with high accuracy. It is crucial to integrate 

machine learning algorithms with dimensionality 

reduction to decrease the underlying complexity of 

processing of huge datasets and detect intrusions within 

real-time. This paper evaluates 10 most popular ML 

algorithms on NSL-KDD dataset. Thereafter, the ranking 

of these algorithms is done to identify best performing 

ML algorithm on the basis of their performance on 

several parameters such as specificity, sensitivity, 

accuracy etc. After analyzing the top 4 algorithms, it 

becomes evident that they consume a lot of time while 

model building. Therefore, feature selection is applied to 

detect intrusions in as little time as possible without 

compromising accuracy. Experimental results clearly 

demonstrate that which algorithm works best 

with/without feature selection/reduction technique in 

terms of achieving high accuracy while minimizing the 

time taken in building the model. 

 
Index Terms—Network, Intrusion, Machine Learning, 

NSL-KDD Dataset, Feature Selection. 

 

I.  INTRODUCTION 

Huge technological advancements in the field of 

communication industry massively increased the volume 

of data and its transmission across the globe via the 

internet. However, such advancements put valuable 

information and data at risk [1]. In today’s era, intrusion 

happens within a few seconds. This gives rise to the need 

for a stronger security system. An Intrusion Detection 

System (IDS) [2] analyzes the network traffic to identify 

malicious actions. Currently available IDS are divided in 

2 major categories [3], namely, anomaly and misused 

based detection. Misuse detection identifies an intrusion 

on the basis of already known patterns, popularly called 

as signatures. Therefore, misuse detection is also referred 

as signature-based IDS (e.g. Snort [4]). Anomaly 

detection [5] identifies any unacceptable deviation from 

normal traffic. Unlike signature-based IDS, anomaly 

detection identifies zero-day attacks but generates a large 

number of false alarms. It also faces many challenges 

while dealing with huge amount of high-dimensional data. 

In order to analyze huge volumes of data, most of the 

existing IDS use Machine Learning (ML) algorithms to 

identify intrusions in an efficient manner. Although many 

techniques are available for detection purposes, quite a 

few are effective in producing high accuracy and low 

false positives for a huge amount of data [6]. Also, some 

ML algorithms perform better than others in terms of 

accuracy but take more training time for building models 

on large datasets. Hence, this results in an imminent need 

of consolidating ML algorithms with feature 

selection/reduction to obtain an accurate classification of 

reduced dimensional data while taking lesser time in 

building the model.  

An ideal IDS should be able to spot zero-day attacks 

with high accuracy and low false positives quickly so that 

intrusions can be prevented as early as possible [7]. 

Consequently, the Objective behind this paper is to 

design an intrusion detection model that integrates ML 

algorithms with the feature selection and feature 

reduction methods to detect intrusions with high accuracy 

and low false positives within a short span of time.  

This paper evaluates the performance of 10 most 

popular ML algorithms in WEKA [8] using NSL-KDD 

dataset [9]. Thereafter, algorithms are ranked based on 

their performances on certain parameters such as 

specificity, sensitivity, accuracy, the time taken in 

building the model, etc. To achieve high accuracy, less 

false alarms and minimum training time on large data sets, 

this paper applies dimensionality reduction methods on 

the best 4 ML algorithms. Later on, the performance of 

these best 4 ML algorithms is evaluated with/without 

applying feature selection/reduction methods in order to 

build an ideal model for intrusion detection. 

The organization of this paper is as follows. Work 

related to intrusion detection is highlighted in Section II. 
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Section III briefly explains the data set and tool used in 

this paper. Algorithms related to machine learning and 

feature selection are discussed in section IV. Section V 

describes the performance metrics used in evaluating the 

algorithms. Section VI explains the implementation and 

analyses the results of the experiments performed. Paper 

is concluded in section VII. 

 

II.  RELATED WORKS 

Numerous papers are presented in the literature to 

discuss and implement various aspects of IDS. In this 

section, we describe some of the significant literature 

work. 

The first notion of intrusion detection was given in 

1980 by James P. Anderson [10]. A model was proposed 

to keep a security watch on user behavior to detect 

anomalies. Lee et al. in 1998 [11] designed a framework 

using data mining techniques for detecting intrusions. 

Another framework was proposed by Schultz et. al. in 

2001 [12] where multiple classifiers are trained on the 

data set of benign and malicious executable to detect new 

cases of intrusions. The 3-tier architecture of IDS was 

proposed by Hwang et. al. in 2007 [13] which consists of 

three lists, namely, whitelist, blacklist and multi-class 

representing the normal traffic, known attacks from the 

traffic and abnormalities that were detected in normal 

traffic respectively. 

In 2009, Tavallaee et. al. [14] studied each feature in 

KDD’99 dataset. In the same year, Srinivasulu et. al. [15] 

performed evaluations on the confusion matrix of Naïve 

Bayesian, CART and Artificial Neural Network. In 2011, 

Reddy et. al. [16] presented a survey of different 

techniques in IDS. In 2012, Nadiammai and Hemalatha 

[17] evaluated the effectiveness of all classifiers on the 

basis of time, accuracy, error, specificity and sensitivity. 

Neethu [18], in 2012, gave an IDS framework comprising 

of Naïve Bayes and PCA classifier. 

In 2013, Revathi et al. [19] identified the best classifier 

in terms of performance and accuracy. In 2015, Sumouli 

Choudhary et. al. [20] presented a comparative analysis 

of machine learning algorithms such as Logistic, 

BayesNet, Random Forest, IBK, PART, J48, Random 

Tree and JRip for network intrusion detection. In 2016, 

Murthy et. al. [21] compared the performances of 4 

classifiers, namely, Naïve Bayes, J48, OneR and 

RandomTree and used the best classifier to select 

important features and build a model with better accuracy. 

Latha et al. [22] proposed feature selection algorithm 

for intrusion detection. However, authors used KDD 

Cup’99 which suffers from lots of drawbacks, mentioned 

in the next section. 

Biswas S. K. compared 5 classifiers and feature 

selection techniques and concluded that kNN classifier 

performed better in comparison to other classifiers [23]. 

In most of the above-mentioned methods, the time 

taken in building the model is not taken into 

consideration. However, time is an important parameter 

for predicting intrusion in real world scenarios. Therefore, 

while building an ideal model, we consider model 

building time as an important aspect whilst achieving 

high accuracy and low false alarms.  

Consequently, the motivation of this paper is to design 

a model that analyzes high dimensional network traffic to 

identify intrusion within real-time with high accuracy. 

Machine learning and feature selection techniques are 

used in a 2-step process in order to attain this objective. 

Authors have taken special care about the model building 

time parameter while selecting the best candidate for task. 

 

III.  DESCRIPTION OF THE DATASET AND TOOL USED 

In literature, the KDD Cup’99 dataset is extensively 

used by researchers. However, Tavallaee et al. [14] 

highlighted that KDD Cup’99 suffers from many 

drawbacks. According to them, the KDD Cup’99 dataset 

was built using a closed network and suffer from 

duplicate data entries, hand injected attacks and non-

validation. NSL-KDD dataset [9] has emerged from KDD 

Cup’99 dataset and   provides solution to 

abovementioned problems. It has many advantages over 

KDD dataset in terms of duplicate data entries and better 

detection rates. These advantages make the NSL-KDD 

dataset much better than original KDD dataset. 

NSL-KDD dataset divides the network traffic as 

normal and anomaly. The entire dataset consists of 41 

attributes along with 1 class label attribute and 125973 

instances. It is divided into training set (80%) and test 

dataset (20%). 

Performance of different ML algorithms is evaluated 

on NSL-KDD dataset using WEKA tool [24]. WEKA 

comprises of ML algorithms used for performing various 

data mining tasks. Earlier, it was coded in C language but 

later, it was revised and written again in JAVA. The 

algorithms available in WEKA can be applied directly to 

the datasets. It also provides a visualization tool for 

analyzing the results. WEKA is distributed under the 

GNU General Public License [8]. WEKA GUI chooser 

provides 4 options: 

A. Explorer 

It is an environment containing several panels for 

exploring data. 

B. Experimenter 

It allows the user to create, run and analyze the 

experiment and conduct statistical test between learning 

schemes. 

C. Knowledge Flow 

It is an interface based on Java-beans used for setting 

and running different machine learning algorithms. 

D. Simple CLI 

It allows direct execution of WEKA commands by 

providing a simple command line interface. 
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IV.  ML ALGORITHMS AND FEATURE 

SELECTION/REDUCTION METHODS 

A.  ML Algorithms 

ML algorithms help in analyzing a large amount of 

network traffic in an efficient manner. Out of the several 

algorithms available in WEKA, this paper evaluates 10 

algorithms that are compatible with NSL-KDD dataset. 

These algorithms are described in brief below: 

 

BayesNet – It acts as a foundation for a Bayes Network 

classifier and constructs a Bayesian Network [25] by 

determining conditional probability on every node. It 

draws a model and represents it graphically using a 

directed acyclic graph by depicting random variables 

along with their conditional dependencies. 

Naïve Bayes – Naive Bayes is a simple but powerful 

algorithm for predictive modeling. In machine learning, 

Naive Bayes classifiers comprise of simple probabilistic 

classifiers when Bayes' theorem is applied with strong 

independence assumptions among the features. The 

representation for Naïve Bayes is done using probabilities. 

RandomTree – It is an algorithm for tree generation 

and uses a certain number of attributes at each node of the 

decision tree. Classification is quick once rules are 

designed. It does not perform any pruning. It performs 

well on large datasets. However, it ignores the correlation 

among attributes. 

RandomForest – RandomForest [26] is an ensemble 

learning method works by combining many decision trees 

at training time and delivers output by constructing 

separate trees. This classifier has higher accuracy as it 

produces low classification errors. 

J48 – It is an improved version of C4.5 algorithm 

based on the notion of information entropy [27]. It 

constructs decision trees from the training data and then 

applies a heuristic criterion. This technique consumes lots 

of space and time.  

Bagging – Bagging [28], also known as Bootstrap 

aggregating, is an ensemble meta-algorithm developed 

for enhancing the stability and precision of machine 

learning algorithms by combining models of a similar 

type. Bagging helps in reducing variance and avoids 

overfitting. 

PART – It is based on separate-and-conquer approach 

for constructing a partial C4.5 decision tree in every 

iteration and takes the "best" leaf into a rule. It basically 

performs instance based learning by building the tree 

using heuristics of C4.5 with similar parameters as 

defined in J48. 

OneR – It is the 1R classifier based on one parameter, 

which is the required minimum bucket size for 

performing discretization. It may use internal cross 

validation (the no. of folds being a parameter) or the 

training data for evaluation.  

ZeroR - It is the simplest classification method which 

makes a table of frequency for the target and selects its 

most recurring value. Having no foretelling power, ZeroR 

is useful in deciding the baseline performance. It has the 

overfitting problem. 

Logistic - It is another way for constructing and using a 

multinomial logistic regression model with a ridge 

estimator to protect itself from overfitting by imposing 

large coefficients [29]. It is easy to understand and 

implement but suffers from the problem of overfitting. 

B.  Feature Selection/Reduction Methods 

Feature selection/reduction is a methodology in which 

a subset of features is selected by removing surplus 

features for generating an accurate learning model [30] 

while reducing the model building time and complexity. 

Two methods for feature selection and reduction [31] are: 

Wrapper Method: In this method, feasible subsets are 

created with the help of subset evaluator. Different 

classifiers are generated using a classification algorithm 

and features of every subset to find out which subset of 

features performs the best with the classification 

algorithm.  

Filter Method: In this method, instead of taking 

selected attributes, ranks are assigned to all the attributes 

in the dataset by using an attribute evaluator and a ranker 

method. The attribute ranked first has the highest priority. 

Features having lower rank are omitted one at a time to 

evaluate the accuracy of the classifier at that point of time. 

The number of features can be omitted one after the other 

till the global minimum is reached. Beyond global 

minima, the dataset will start over-fitting and generating 

more number of incorrectly classified instances. 

Feature/Attribute Discretization: Discretization is the 

process of transforming numeric data into nominal data, 

by dividing attribute’s numeric values into a number of 

intervals. Thus, discretization combines the attribute 

values as per those interval values and helps in reducing 

the learning complexity of the classifier with which it is 

used. In order to do that, the data is discretized by 

applying unsupervised discretize filter to attributes. 

 

V.  PERFORMANCE MEASURES 

Performance parameters such as accuracy, specificity, 

sensitivity, ROC area, the time taken to build model etc. 

are used for evaluating and comparing the performance of 

different classifiers. Description of all these parameters is 

discussed below: 

Confusion Matrix: A confusion matrix is a 

visualization tool that acts as a basis for calculating all 

other parameters. The confusion matrix comprises of 4 

values, namely, TP, FP, FN and TN as shown in Table 1. 

Table 1. Confusion Matrix 

 Predicted 

 

Actual 

 Normal Anomaly 

Normal TP FN 

Anomaly FP TN 

 

The above parameters are described in brief below: 

 

True Positive (TP) - It denotes the normal instances 

that are identified correctly. 

False Negative (FN) - It points out the abnormal 
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instances as normal incorrectly i.e. identifies instances as 

normal which are attacks in reality. 

False Positive (FP) - It indicates anomaly instances 

that are identified as normal incorrectly. 

True Negative (TN) - It indicates anomaly instances 

that are identified rightly as an attack. 

 

Accuracy: It indicates the total number of correct 

predictions. It can be determined from Table 2 using the 

following formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
                   (1) 

 

Specificity: It is the measure of actual negatives that are 

identified correctly. It can be measured from Table 2 

using the following formula: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
                          (2) 

 

Sensitivity: It is the measure of actual positives that are 

identified correctly. It can be determined from Table 2 

using the following formula: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 +𝐹𝑁
                         (3) 

 

ROC (Receiver Operating Characteristics): It is a 

graphical way of evaluating machine learning schemes. 

ROC curves outline the performance without any 

reference to class distribution. On the vertical axis, the 

true positive rate is plotted and on the horizontal axis, the 

true negative rate is plotted. Larger the area of the curve, 

better the model and greater is the value of ROC. 

 

TP Rate:  It points out the possibility of an algorithm to 

foretell positive instances as correct and normal. A high 

TP is desirable and can be calculated as mentioned below: 

 

𝑇𝑃 𝑟𝑎𝑡𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                           (4) 

 

FP Rate: It signifies the possibility of an algorithm to 

forecast normal instances as an attack. A low FP is 

desirable and can be calculated as mentioned below: 

 

𝐹𝑃 𝑟𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                           (5) 

 

Correctly and Incorrectly classified instances: 

number of instances which are correctly and incorrectly 

identified. 

 

Time taken to build model: time taken by the 

classifier to generate the model, measured in seconds. 

Lesser the time taken in building the model, better is the 

classifier chosen. 

 

VI.  RESULT ANALYSIS 

A.  Classifier Comparison 

The above discussed classifiers are implemented with 

the NSL-KDD training dataset comprising of 125973 

instances and 42 attributes using 10 fold cross-validation. 

10 most popular algorithms compatible with our dataset 

are chosen for the experimental purpose.  

Table 2 illustrates the performance on the basis of 

correctly and incorrectly classified instances, TP Rate, FP 

Rate, ROC, Specificity, Sensitivity, Accuracy and the 

time taken in building the model. Table 2 helps in 

predicting which algorithm based classifier is statistically 

significant. Based on the values obtained in classifying 

the instances correctly, the highest accuracy (99.91%) is 

achieved by Random Forest. It also produces a high TP 

rate and low FP positives as desirable. Moreover, it has 

the highest specificity and sensitivity percentage when 

compared to other algorithms. However, it also takes the 

largest time in building the model which is 191 sec.  

It is clear from Table 2 that the second highest 

accuracy, second highest TP rate and second lowest FP 

rate is produced by Bagging. Moreover, it has the second 

highest sensitivity percentage. However, it also occupies 

second place in consuming more time for building the 

model. 

PART algorithm achieves third highest accuracy, 

second highest specificity percentage, third highest TP 

rate and third lowest FP rate. However, it also consumes 

the third highest time in building the model.  

J48 occupies the fourth position in detection accuracy 

(99.78%), fourth highest TP rate and fourth lowest FP 

rate. It has also got the fourth highest specificity 

percentage. Despite its proficiency in achieving high 

accuracy, it takes more model building time which is 

approx. 62 sec.  

For detecting intrusions in high-speed network, time 

plays a crucial role. The aforementioned classifiers take 

longer model building time while achieving higher 

accuracy. Although ZeroR is the most time efficient 

classifier out of all 10 classifiers as it consumes minimum 

time in the model building but it offers the least amount 

of accuracy percentage (53.45%), TP rate and highest FP 

rate. So, it cannot be considered as a good classifier.  

Thus, it becomes clear from Table 2 that if feature 

selection/reduction method is not applied, then out of all 

evaluated algorithms, Random Tree is the algorithm that 

achieves good amount of accuracy (99.76%), high TP 

rate and low FP rate whilst consuming lesser time in 

building the model (3.24 sec.) in comparison with other 

algorithms. 

Thereafter, the ranking of the aforementioned 

algorithms has been done in Table 3 on the basis of their 

performance. In case, the values of a set of classifiers are 

same or very close on a set of parameters then the 

classifier in the set with smaller building time will be 

ranked lower. In our ranking system, the classifier with 

lower rank is preferred over another with higher rank. 

The classifier with rank 1 is considered as best and the 

classifier with rank 10 is considered as worst. 

Table 3 clearly shows that Random Forest Classifier 

outperforms all other classifiers on all of the performance 

parameters while ZeroR classifier performs worst on our 
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chosen dataset and occupies the last position in the 

ranking table. Other classifiers such as Bagging, PART, 

J48 and Random Tree have managed to secure their 

position in the top 5 classifiers. The other 4 classifiers, 

namely, Naïve Bayes, Bayes Net, Logistic and OneR, 

come under the bottom 5 categories of classifiers.  

Table 2. Performance of Different Classifiers using 10-fold cross Validation 

Classifiers 

 
Parameters 

Naïve 

Bayes 

Bayes 

Net 

Logisti

c 

Random 

Tree 

Random 

Forest 

J48 Bagging OneR PART ZeroR 

Correctly 
Classified 

Instances 

113858 
(90.38%) 

122409 
(97.17

%) 

122329 
(97.10

%) 

125678 
(99.76%) 

125869 
(99.91%) 

125698 
(99.78%) 

125776 
(99.84%) 

121406 
(96.37%) 

125769 
(99.83%) 

67343 
(53.45

%) 

Incorrectly 

Classified 

Instances 

12115 

(9.61%) 

3564 

(2.89%) 

3644 

(2.89%

) 

295 

(0.23%) 

104 

(0.08%) 

275 

(0.218) 

197 

(0.15%) 

4567 

(3.62%) 

204 

(0.16%) 

58630 

(46.54

%) 

TP Rate 0.904 0.972 0.971 0.998 0.999 0.998 0.998 0.964 0.998 0.535 

FP Rate 0.101 0.032 0.029 0.002 0.001 0.002 0.002 0.033 0.002 0.535 

ROC Area 0.966 0.997 0.993 0.998 1.000 0.999 1.000 0.965 0.999 0.500 

Specificity (%) 86.8 94.6 96.81 99.73 99.86 99.77 99.80 98.8 99.81 0 

Sensitivity (%) 93.6 99.3 97.3 99.79 99.96 99.78 99.87 94.1 99.85 1.0 

Accuracy (%) 90.38 97.17 97.1 99.76 99.91 99.78 99.84 96.3 99.83 53.4 

Time taken to 

build model (in 

sec.) 

2.88 14.02 87.44 3.24 191.06 61.68 109.9 2.66 99.1 0.13 

Table 3. Ranking of Different Classifiers based on Different Parameters 

Classifiers 

 

Parameters 

Naïve 

Bayes 

Bayes 

Net 

Logistic Random 

Tree 

Random 

Forest 

J48 Bagging OneR PART ZeroR 

Correctly 

Classified 

Instances 

9 6 7 5 1 4 2 8 3 10 

Incorrectly 

Classified 
Instances 

9 6 7 5 1 4 2 8 3 10 

TP Rate 9 6 7 5 1 4 2 8 3 10 

FP Rate 9 7 6 5 1 4 2 8 3 10 

ROC Area 8 6 7 5 1 4 2 9 3 10 

Specificity 9 8 7 5 1 4 3 6 2 10 

Sensitivity 9 6 7 4 1 5 2 8 3 10 

Accuracy 9 6 7 5 1 4 2 8 3 10 

 

It is clear from the ranking in Table 3 that Random 

Forest, Bagging, PART and J48 are best 4 classifiers. 

However, all these algorithms consume huge time in 

building the model. Therefore, in the next section these 

algorithms are further evaluated using feature selection 

and feature reduction methods to determine whether it is 

possible to reduce model building time for these 

algorithms while achieving high accuracy and low FP 

rate. 

B.  Performance Evaluation using Feature Selection and 

Feature Reduction Method 

Selection of features to reduce unwanted features helps 

in increasing the efficiency of the classifier and building 

an effective model. Therefore, the top 4 classifiers are 

now evaluated using feature selection and feature 

reduction. In this paper, two combinations of feature 

selection methods are tried: Wrapper method 

(CfsSubsetEval + BestFirst) and Filter method 

(InfoGainAttributeEval + Ranker). The details of the 

features selected by each combination are described in 

Table 4. 

Table 4. Feature Selection by using Different Methods 

Attribute 

Evaluator + 

Search Method 

Feature Selected Method 

Used 

CfsSubsetEval + 

BestFirst 

4,5,6,12,26,30 Wrapper 

Method 

InfoGainAttribute

Eval + Ranker 

5,3,6,4,30,29,33,34,35,38,12,3

9,25,23,26,37,32,36, 

31,24,41,2,27,40,28,1,10, 
8,13,16,19,22,17,15,14,18,11,

7,21,20,9 

Filter 

Method 

 

Wrapper based feature selection method is applied to 

select the best subset of features. With NSL-KDD dataset, 
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Wrapper method selected optimal subset (Table 4) as 4, 5, 

6, 12, 26, 30 features. Table 4 also shows the ranking of 

features by the filter method. In this paper, ranker is run 

on the dataset and low ranked features are omitted one by 

one until the overfitting problem occurs. If the 

feature/attribute is further removed, the model starts to 

overfit and the percentage of correctly classified instances 

begins to decrease. So, in filter method features are 

removed one after the other till global minima is achieved. 

In NSL-KDD dataset, global minimum is achieved when 

we are left with top 10 features 5,3,6,4,30,29,33,34,35,38 

for detecting attacks. 

Performance of 4 top ranked classifiers is evaluated 

after removing all redundant features as suggested by 

wrapper and filter methods and results are tabulated in 

Table 5-8. Moreover, discretize filter is also used 

individually and in conjunction with filter and wrapper 

method to evaluate the performance of those classifiers. 

Table 5 shows the evaluation of J48 classifier based on 

different methods. It is observed from the table that the 

accuracy of J48 was initially 99.78% but model building 

time was quite high. However, after applying the 

different combination of feature selection/reduction 

techniques, the time taken in building the model is 

reduced significantly but with compromising the 

accuracy. In fact, in case of filter method, J48 achieves 

maximum accuracy i.e. 99.79% while the time taken in 

building the model is 17% of the time taken by the J48 

when executed without applying feature 

selection/reduction methods. Other methods are also able 

to achieve nearly equivalent amount of accuracy while 

reducing the model building time significantly. Fig. 1 

clearly demonstrates the accuracy of the J48 algorithm 

with different feature selection/reduction methods.  

Table 6 shows the evaluation of Random Forest 

classifier using different feature selection and reduction 

methods. It is evident from the table that even after 

applying wrapper or filter method, the time taken in 

building the model is still very high. However, model 

building time reduces significantly either when discretize 

filter is used individually with the classifier or in 

conjugation with filter or wrapper method. The accuracy 

achieved with the help of discretize filter is similar to the 

accuracy achieved while running Random Forest 

individually but the time taken in building the model is 

15.5% of actual. 

So, Random Forest classifier achieves the highest 

accuracy without reducing any features but requires a lot 

of model building time. On the other hand, performing 

detection with the most important features results in 

saving a lot of computation time and helps in building 

high speed network intrusion detection. 

 

 

Fig.1. Performance Comparison of J48 based on Different Methods 

Fig. 2 illustrates the performance of Random Forest 

classifier in terms of accuracy when used with different 

feature selection/reduction techniques. 

Table 7 shows the evaluation of Bagging classifier 

based on different methods. The accuracy of Bagging was 

initially 99.84% but model building time was quite high.  

However, when used with the filter method, the time 

required in building the model is only 20% of the actual 

whilst achieving similar accuracy. Discretize filter based 

methods are also able to achieve nearly equivalent 

amount of accuracy while reducing the model building 

time significantly. Fig. 3 shows the accuracy of Bagging 

using different methods. 

Table 5. Evaluation of J48 Classifier based on Different Methods 

Methods 

 

Parameters 

General method Discretize 

Filter 

classifier 

Wrapper 

method 

Wrapper 

method + 

Discretize 

filter 

Filter 

method 

Filter 

method + 

Discretize 

filter 

Correctly Classified 
Instances 

125698 
(99.78%) 

125621 
(99.72%) 

125200 
(99.38%) 

125412 
(99.55%) 

125720 
(99.79%) 

125689 
(99.77%) 

Incorrectly Classified 

Instances 

275 

(0.218%) 

352 

(0.279%) 

773 

(0.613%) 

561 

(0.445%) 

253 

(0.200%) 

284 

(0.225%) 

Model Building Time 61.68 sec. 5.75 sec. 7.95 sec. 9.25 sec. 10.45 sec. 10.85 sec. 

 

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

A
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Different methods used 

Performance Comparison of J48 
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Table 6. Evaluation of Random Forest Classifier based on Different Methods 

Methods 

 

Parameters 

General 

method 

Discretize 

Filter 

classifier 

Wrapper 

method 

Wrapper 

method + 

Discretize 

filter 

Filter 

method 

Filter 

method + 

Discretize 

filter 

Correctly Classified 
Instances 

125869 
(99.91%) 

125861 
(99.90%) 

125238 
(99.41%) 

125485 
(99.61%) 

125818 
(99.87%) 

125842 
(99.89%) 

Incorrectly Classified 

Instances 

104 

(0.082%) 

112 

(0.088%) 

735 

(0.583%) 

488 

(0.387%) 

155 

(0.123%) 

131 

(0.104%) 

Model Building Time 191.06 sec. 30.34 sec. 66.82 sec. 14.89 sec. 69.55 sec. 20.06 sec. 

Table 7. Evaluation of Bagging Classifier based on Different Methods 

Methods 

 

Parameters 

General 

method 

Discretize 

Filter 

classifier 

Wrapper 

method 

Wrapper 

method + 

Discretize 

filter 

Filter 

method 

Filter method 

+ Discretize 

filter 

Correctly 
Classified 

Instances 

125776 
(99.84%) 

125708 
(99.78%) 

125163 
(99.35%) 

125404 
(99.54%) 

125742 
(99.81%) 

125692 
(99.77%) 

Incorrectly 

Classified 

Instances 

197 

(0.154%) 

265 

(0.210%) 

810 

(0.643%) 

569 

(0.451%) 

231 

(0.183%) 

281 

(0.223%) 

Model Building 

Time 

109.9 sec. 39.21 sec. 17.7 sec. 12.2 sec. 21.99 sec. 16.16 sec. 

 

 

Fig.2. Performance Comparison of Random Forest based on Different 
Methods 

Table 8 shows the evaluation of PART classifier based 

on different methods. As observed from the table, the 

accuracy of PART was initially 99.83% but with high 

model building time. However, on performing feature 

selection using filter method, model building time was 

reduced to its one-fifth while accuracy remains almost the 

same. The model building time was further reduced when 

feature reduction using wrapper method was applied but 

with a sizeable reduction in accuracy percentage. Least 

model building time is observed when feature 

selection/reduction methods are used in conjugation with 

discretize filter. Fig. 4 shows the accuracy of PART using 

different methods. 

 

 

Fig.3. Performance Comparison of Bagging based on Different Methods 

Thus, with fewer features, the computational time 

required during model building can be greatly saved 

without compromising on detection accuracy. This also 

indicates that out of 42 features, not all of them are 

relevant and fewer features are sufficient in detecting 

attacks whilst achieving high accuracy in little time. 
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Table 8. Evaluation of PART Classifier based on Different Methods 

Methods 

Parameters 

General 

method 

Discretize 

Filter 

classifier 

Wrapper 

method 

Wrapper 

method + 

Discretize 

filter 

Filter 

method 

Filter 

method + 

Discretize 

filter 

Correctly 

Classified 
Instances 

125769 

(99.83%) 

125680 

(99.76%) 

125181 

(99.37%) 

125390 

(99.53%) 

125761 

(99.82%) 

125698 

(99.78%) 

Incorrectly 

Classified 
Instances 

204 

(0.161%) 

293 

(0.232%) 

792 

(0.628%) 

583 

(0.462%) 

212 

(0.168%) 

275 

(0.218%) 

Model Building 
Time 

99.1 sec. 14.91 sec. 8.07 sec. 2.22 sec. 20.35 sec. 3.21 sec. 

 

 

Fig.4. Performance Comparison of PART based on Different Methods 

Following observations are made from the above 

analysis of Tables 5-8: 

Wrapper method performs detection with the least 

accuracy rate in comparison to other methods. Hence, it is 

not suitable for detecting intrusion in the real world.  

Filter method achieves the highest accuracy when 

compared with other methods except the general method. 

However, its model building time is dramatically less in 

comparison to the general method. 

Owing to time as the most important consideration in 

attack detection, the discretize filter works best when 

used in conjugation with the filter method. 

However, it is worth noting from the above analysis 

that even after applying feature selection/reduction 

methods, the best 4 ML algorithms consumed more time 

for model building in comparison to Random Tree 

(without feature selection/reduction) while achieving the 

almost same amount of accuracy. Therefore, it becomes 

evident that Random Tree achieves a good amount of 

accuracy within a very short span of time even without 

feature selection/reduction methods. 

 

VII.  CONCLUSIONS 

Current network intrusion detection systems face the 

challenge of processing large volumes of data. Hence, for 

achieving high detection accuracy in lesser possible time, 

it becomes necessary to remove irrelevant data and 

reduce its dimensionality by carefully selecting the most 

important features. This paper emphasizes on the 

significance of IDS and assesses the performance of 10 

most popular ML algorithms using NSL-KDD intrusion 

detection dataset and ranks them according to their 

performance. Empirical analysis of best 4 algorithms 

(Random Forest, Bagging, PART and J48) shows that 

they consume a lot of time in building the model. So, they 

are selected for further evaluation in conjugation with 

different feature selection and feature reduction schemes. 

Results clearly show that the model building time is 

significantly reduced with a smaller set of features 

without compromising accuracy.  

However, it is important to note that the best 4 

algorithms performed well in terms of model building 

time after feature selection/reduction but Random Tree is 

the only classifier which achieves good accuracy in a 

comparative smaller span of time without using feature 

selection/reduction methods. The above conclusions are 

based on the performances of the ML algorithms on NSL-

KDD dataset. However, performance of these algorithms 

may vary for other datasets. We, therefore, feel that by 

selecting and reducing the features should help a number 

of ML algorithms to perform well. 

Our results will help future researchers as well as 

industrialists to understand the suitable feature selection 

and reduction schemes for designing good machine 

learning algorithms. In future work, we will generate the 

most acceptable and applicable set of features from large 

and complex data and build a practical real time system 

for high speed network intrusion detection. We also plan 

to formulate a scheme for comparing ML algorithms on 

the basis of their requirements of space. 
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