
I. J. Computer Network and Information Security, 2019, 4, 43-52
Published Online April 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2019.04.06

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 4, 43-52

Intrusion Detection using Machine Learning and

Feature Selection

Prachi, Heena Malhotra
The NorthCap University, Gurgaon, India

E-mail: {prachiah1985, malhotraheena17}@gmail.com

Prabha Sharma
The NorthCap University, Gurgaon, India

E-mail: prabhasharma@ncuinda.edu

Received: 13 February 2019; Accepted: 27 February 2019; Published: 08 April 2019

Abstract—Intrusion Detection is one of the most

common approaches used in detecting malicious

activities in any network by analyzing its traffic. Machine

Learning (ML) algorithms help to study the high

dimensional network traffic and identify abnormal flow

in traffic with high accuracy. It is crucial to integrate

machine learning algorithms with dimensionality

reduction to decrease the underlying complexity of

processing of huge datasets and detect intrusions within

real-time. This paper evaluates 10 most popular ML

algorithms on NSL-KDD dataset. Thereafter, the ranking

of these algorithms is done to identify best performing

ML algorithm on the basis of their performance on

several parameters such as specificity, sensitivity,

accuracy etc. After analyzing the top 4 algorithms, it

becomes evident that they consume a lot of time while

model building. Therefore, feature selection is applied to

detect intrusions in as little time as possible without

compromising accuracy. Experimental results clearly

demonstrate that which algorithm works best

with/without feature selection/reduction technique in

terms of achieving high accuracy while minimizing the

time taken in building the model.

Index Terms—Network, Intrusion, Machine Learning,

NSL-KDD Dataset, Feature Selection.

I. INTRODUCTION

Huge technological advancements in the field of

communication industry massively increased the volume

of data and its transmission across the globe via the

internet. However, such advancements put valuable

information and data at risk [1]. In today’s era, intrusion

happens within a few seconds. This gives rise to the need

for a stronger security system. An Intrusion Detection

System (IDS) [2] analyzes the network traffic to identify

malicious actions. Currently available IDS are divided in

2 major categories [3], namely, anomaly and misused

based detection. Misuse detection identifies an intrusion

on the basis of already known patterns, popularly called

as signatures. Therefore, misuse detection is also referred

as signature-based IDS (e.g. Snort [4]). Anomaly

detection [5] identifies any unacceptable deviation from

normal traffic. Unlike signature-based IDS, anomaly

detection identifies zero-day attacks but generates a large

number of false alarms. It also faces many challenges

while dealing with huge amount of high-dimensional data.

In order to analyze huge volumes of data, most of the

existing IDS use Machine Learning (ML) algorithms to

identify intrusions in an efficient manner. Although many

techniques are available for detection purposes, quite a

few are effective in producing high accuracy and low

false positives for a huge amount of data [6]. Also, some

ML algorithms perform better than others in terms of

accuracy but take more training time for building models

on large datasets. Hence, this results in an imminent need

of consolidating ML algorithms with feature

selection/reduction to obtain an accurate classification of

reduced dimensional data while taking lesser time in

building the model.

An ideal IDS should be able to spot zero-day attacks

with high accuracy and low false positives quickly so that

intrusions can be prevented as early as possible [7].

Consequently, the Objective behind this paper is to

design an intrusion detection model that integrates ML

algorithms with the feature selection and feature

reduction methods to detect intrusions with high accuracy

and low false positives within a short span of time.

This paper evaluates the performance of 10 most

popular ML algorithms in WEKA [8] using NSL-KDD

dataset [9]. Thereafter, algorithms are ranked based on

their performances on certain parameters such as

specificity, sensitivity, accuracy, the time taken in

building the model, etc. To achieve high accuracy, less

false alarms and minimum training time on large data sets,

this paper applies dimensionality reduction methods on

the best 4 ML algorithms. Later on, the performance of

these best 4 ML algorithms is evaluated with/without

applying feature selection/reduction methods in order to

build an ideal model for intrusion detection.

The organization of this paper is as follows. Work

related to intrusion detection is highlighted in Section II.

44 Intrusion Detection using Machine Learning and Feature Selection

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 4, 43-52

Section III briefly explains the data set and tool used in

this paper. Algorithms related to machine learning and

feature selection are discussed in section IV. Section V

describes the performance metrics used in evaluating the

algorithms. Section VI explains the implementation and

analyses the results of the experiments performed. Paper

is concluded in section VII.

II. RELATED WORKS

Numerous papers are presented in the literature to

discuss and implement various aspects of IDS. In this

section, we describe some of the significant literature

work.

The first notion of intrusion detection was given in

1980 by James P. Anderson [10]. A model was proposed

to keep a security watch on user behavior to detect

anomalies. Lee et al. in 1998 [11] designed a framework

using data mining techniques for detecting intrusions.

Another framework was proposed by Schultz et. al. in

2001 [12] where multiple classifiers are trained on the

data set of benign and malicious executable to detect new

cases of intrusions. The 3-tier architecture of IDS was

proposed by Hwang et. al. in 2007 [13] which consists of

three lists, namely, whitelist, blacklist and multi-class

representing the normal traffic, known attacks from the

traffic and abnormalities that were detected in normal

traffic respectively.

In 2009, Tavallaee et. al. [14] studied each feature in

KDD’99 dataset. In the same year, Srinivasulu et. al. [15]

performed evaluations on the confusion matrix of Naïve

Bayesian, CART and Artificial Neural Network. In 2011,

Reddy et. al. [16] presented a survey of different

techniques in IDS. In 2012, Nadiammai and Hemalatha

[17] evaluated the effectiveness of all classifiers on the

basis of time, accuracy, error, specificity and sensitivity.

Neethu [18], in 2012, gave an IDS framework comprising

of Naïve Bayes and PCA classifier.

In 2013, Revathi et al. [19] identified the best classifier

in terms of performance and accuracy. In 2015, Sumouli

Choudhary et. al. [20] presented a comparative analysis

of machine learning algorithms such as Logistic,

BayesNet, Random Forest, IBK, PART, J48, Random

Tree and JRip for network intrusion detection. In 2016,

Murthy et. al. [21] compared the performances of 4

classifiers, namely, Naïve Bayes, J48, OneR and

RandomTree and used the best classifier to select

important features and build a model with better accuracy.

Latha et al. [22] proposed feature selection algorithm

for intrusion detection. However, authors used KDD

Cup’99 which suffers from lots of drawbacks, mentioned

in the next section.

Biswas S. K. compared 5 classifiers and feature

selection techniques and concluded that kNN classifier

performed better in comparison to other classifiers [23].

In most of the above-mentioned methods, the time

taken in building the model is not taken into

consideration. However, time is an important parameter

for predicting intrusion in real world scenarios. Therefore,

while building an ideal model, we consider model

building time as an important aspect whilst achieving

high accuracy and low false alarms.

Consequently, the motivation of this paper is to design

a model that analyzes high dimensional network traffic to

identify intrusion within real-time with high accuracy.

Machine learning and feature selection techniques are

used in a 2-step process in order to attain this objective.

Authors have taken special care about the model building

time parameter while selecting the best candidate for task.

III. DESCRIPTION OF THE DATASET AND TOOL USED

In literature, the KDD Cup’99 dataset is extensively

used by researchers. However, Tavallaee et al. [14]

highlighted that KDD Cup’99 suffers from many

drawbacks. According to them, the KDD Cup’99 dataset

was built using a closed network and suffer from

duplicate data entries, hand injected attacks and non-

validation. NSL-KDD dataset [9] has emerged from KDD

Cup’99 dataset and provides solution to

abovementioned problems. It has many advantages over

KDD dataset in terms of duplicate data entries and better

detection rates. These advantages make the NSL-KDD

dataset much better than original KDD dataset.

NSL-KDD dataset divides the network traffic as

normal and anomaly. The entire dataset consists of 41

attributes along with 1 class label attribute and 125973

instances. It is divided into training set (80%) and test

dataset (20%).

Performance of different ML algorithms is evaluated

on NSL-KDD dataset using WEKA tool [24]. WEKA

comprises of ML algorithms used for performing various

data mining tasks. Earlier, it was coded in C language but

later, it was revised and written again in JAVA. The

algorithms available in WEKA can be applied directly to

the datasets. It also provides a visualization tool for

analyzing the results. WEKA is distributed under the

GNU General Public License [8]. WEKA GUI chooser

provides 4 options:

A. Explorer

It is an environment containing several panels for

exploring data.

B. Experimenter

It allows the user to create, run and analyze the

experiment and conduct statistical test between learning

schemes.

C. Knowledge Flow

It is an interface based on Java-beans used for setting

and running different machine learning algorithms.

D. Simple CLI

It allows direct execution of WEKA commands by

providing a simple command line interface.

 Intrusion Detection using Machine Learning and Feature Selection 45

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 4, 43-52

IV. ML ALGORITHMS AND FEATURE

SELECTION/REDUCTION METHODS

A. ML Algorithms

ML algorithms help in analyzing a large amount of

network traffic in an efficient manner. Out of the several

algorithms available in WEKA, this paper evaluates 10

algorithms that are compatible with NSL-KDD dataset.

These algorithms are described in brief below:

BayesNet – It acts as a foundation for a Bayes Network

classifier and constructs a Bayesian Network [25] by

determining conditional probability on every node. It

draws a model and represents it graphically using a

directed acyclic graph by depicting random variables

along with their conditional dependencies.

Naïve Bayes – Naive Bayes is a simple but powerful

algorithm for predictive modeling. In machine learning,

Naive Bayes classifiers comprise of simple probabilistic

classifiers when Bayes' theorem is applied with strong

independence assumptions among the features. The

representation for Naïve Bayes is done using probabilities.

RandomTree – It is an algorithm for tree generation

and uses a certain number of attributes at each node of the

decision tree. Classification is quick once rules are

designed. It does not perform any pruning. It performs

well on large datasets. However, it ignores the correlation

among attributes.

RandomForest – RandomForest [26] is an ensemble

learning method works by combining many decision trees

at training time and delivers output by constructing

separate trees. This classifier has higher accuracy as it

produces low classification errors.

J48 – It is an improved version of C4.5 algorithm

based on the notion of information entropy [27]. It

constructs decision trees from the training data and then

applies a heuristic criterion. This technique consumes lots

of space and time.

Bagging – Bagging [28], also known as Bootstrap

aggregating, is an ensemble meta-algorithm developed

for enhancing the stability and precision of machine

learning algorithms by combining models of a similar

type. Bagging helps in reducing variance and avoids

overfitting.

PART – It is based on separate-and-conquer approach

for constructing a partial C4.5 decision tree in every

iteration and takes the "best" leaf into a rule. It basically

performs instance based learning by building the tree

using heuristics of C4.5 with similar parameters as

defined in J48.

OneR – It is the 1R classifier based on one parameter,

which is the required minimum bucket size for

performing discretization. It may use internal cross

validation (the no. of folds being a parameter) or the

training data for evaluation.

ZeroR - It is the simplest classification method which

makes a table of frequency for the target and selects its

most recurring value. Having no foretelling power, ZeroR

is useful in deciding the baseline performance. It has the

overfitting problem.

Logistic - It is another way for constructing and using a

multinomial logistic regression model with a ridge

estimator to protect itself from overfitting by imposing

large coefficients [29]. It is easy to understand and

implement but suffers from the problem of overfitting.

B. Feature Selection/Reduction Methods

Feature selection/reduction is a methodology in which

a subset of features is selected by removing surplus

features for generating an accurate learning model [30]

while reducing the model building time and complexity.

Two methods for feature selection and reduction [31] are:

Wrapper Method: In this method, feasible subsets are

created with the help of subset evaluator. Different

classifiers are generated using a classification algorithm

and features of every subset to find out which subset of

features performs the best with the classification

algorithm.

Filter Method: In this method, instead of taking

selected attributes, ranks are assigned to all the attributes

in the dataset by using an attribute evaluator and a ranker

method. The attribute ranked first has the highest priority.

Features having lower rank are omitted one at a time to

evaluate the accuracy of the classifier at that point of time.

The number of features can be omitted one after the other

till the global minimum is reached. Beyond global

minima, the dataset will start over-fitting and generating

more number of incorrectly classified instances.

Feature/Attribute Discretization: Discretization is the

process of transforming numeric data into nominal data,

by dividing attribute’s numeric values into a number of

intervals. Thus, discretization combines the attribute

values as per those interval values and helps in reducing

the learning complexity of the classifier with which it is

used. In order to do that, the data is discretized by

applying unsupervised discretize filter to attributes.

V. PERFORMANCE MEASURES

Performance parameters such as accuracy, specificity,

sensitivity, ROC area, the time taken to build model etc.

are used for evaluating and comparing the performance of

different classifiers. Description of all these parameters is

discussed below:

Confusion Matrix: A confusion matrix is a

visualization tool that acts as a basis for calculating all

other parameters. The confusion matrix comprises of 4

values, namely, TP, FP, FN and TN as shown in Table 1.

Table 1. Confusion Matrix

 Predicted

Actual

 Normal Anomaly

Normal TP FN

Anomaly FP TN

The above parameters are described in brief below:

True Positive (TP) - It denotes the normal instances

that are identified correctly.

False Negative (FN) - It points out the abnormal

46 Intrusion Detection using Machine Learning and Feature Selection

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 4, 43-52

instances as normal incorrectly i.e. identifies instances as

normal which are attacks in reality.

False Positive (FP) - It indicates anomaly instances

that are identified as normal incorrectly.

True Negative (TN) - It indicates anomaly instances

that are identified rightly as an attack.

Accuracy: It indicates the total number of correct

predictions. It can be determined from Table 2 using the

following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (1)

Specificity: It is the measure of actual negatives that are

identified correctly. It can be measured from Table 2

using the following formula:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 (2)

Sensitivity: It is the measure of actual positives that are

identified correctly. It can be determined from Table 2

using the following formula:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 +𝐹𝑁
 (3)

ROC (Receiver Operating Characteristics): It is a

graphical way of evaluating machine learning schemes.

ROC curves outline the performance without any

reference to class distribution. On the vertical axis, the

true positive rate is plotted and on the horizontal axis, the

true negative rate is plotted. Larger the area of the curve,

better the model and greater is the value of ROC.

TP Rate: It points out the possibility of an algorithm to

foretell positive instances as correct and normal. A high

TP is desirable and can be calculated as mentioned below:

𝑇𝑃 𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4)

FP Rate: It signifies the possibility of an algorithm to

forecast normal instances as an attack. A low FP is

desirable and can be calculated as mentioned below:

𝐹𝑃 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (5)

Correctly and Incorrectly classified instances:

number of instances which are correctly and incorrectly

identified.

Time taken to build model: time taken by the

classifier to generate the model, measured in seconds.

Lesser the time taken in building the model, better is the

classifier chosen.

VI. RESULT ANALYSIS

A. Classifier Comparison

The above discussed classifiers are implemented with

the NSL-KDD training dataset comprising of 125973

instances and 42 attributes using 10 fold cross-validation.

10 most popular algorithms compatible with our dataset

are chosen for the experimental purpose.

Table 2 illustrates the performance on the basis of

correctly and incorrectly classified instances, TP Rate, FP

Rate, ROC, Specificity, Sensitivity, Accuracy and the

time taken in building the model. Table 2 helps in

predicting which algorithm based classifier is statistically

significant. Based on the values obtained in classifying

the instances correctly, the highest accuracy (99.91%) is

achieved by Random Forest. It also produces a high TP

rate and low FP positives as desirable. Moreover, it has

the highest specificity and sensitivity percentage when

compared to other algorithms. However, it also takes the

largest time in building the model which is 191 sec.

It is clear from Table 2 that the second highest

accuracy, second highest TP rate and second lowest FP

rate is produced by Bagging. Moreover, it has the second

highest sensitivity percentage. However, it also occupies

second place in consuming more time for building the

model.

PART algorithm achieves third highest accuracy,

second highest specificity percentage, third highest TP

rate and third lowest FP rate. However, it also consumes

the third highest time in building the model.

J48 occupies the fourth position in detection accuracy

(99.78%), fourth highest TP rate and fourth lowest FP

rate. It has also got the fourth highest specificity

percentage. Despite its proficiency in achieving high

accuracy, it takes more model building time which is

approx. 62 sec.

For detecting intrusions in high-speed network, time

plays a crucial role. The aforementioned classifiers take

longer model building time while achieving higher

accuracy. Although ZeroR is the most time efficient

classifier out of all 10 classifiers as it consumes minimum

time in the model building but it offers the least amount

of accuracy percentage (53.45%), TP rate and highest FP

rate. So, it cannot be considered as a good classifier.

Thus, it becomes clear from Table 2 that if feature

selection/reduction method is not applied, then out of all

evaluated algorithms, Random Tree is the algorithm that

achieves good amount of accuracy (99.76%), high TP

rate and low FP rate whilst consuming lesser time in

building the model (3.24 sec.) in comparison with other

algorithms.

Thereafter, the ranking of the aforementioned

algorithms has been done in Table 3 on the basis of their

performance. In case, the values of a set of classifiers are

same or very close on a set of parameters then the

classifier in the set with smaller building time will be

ranked lower. In our ranking system, the classifier with

lower rank is preferred over another with higher rank.

The classifier with rank 1 is considered as best and the

classifier with rank 10 is considered as worst.

Table 3 clearly shows that Random Forest Classifier

outperforms all other classifiers on all of the performance

parameters while ZeroR classifier performs worst on our

 Intrusion Detection using Machine Learning and Feature Selection 47

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 4, 43-52

chosen dataset and occupies the last position in the

ranking table. Other classifiers such as Bagging, PART,

J48 and Random Tree have managed to secure their

position in the top 5 classifiers. The other 4 classifiers,

namely, Naïve Bayes, Bayes Net, Logistic and OneR,

come under the bottom 5 categories of classifiers.

Table 2. Performance of Different Classifiers using 10-fold cross Validation

Classifiers

Parameters

Naïve

Bayes

Bayes

Net

Logisti

c

Random

Tree

Random

Forest

J48 Bagging OneR PART ZeroR

Correctly
Classified

Instances

113858
(90.38%)

122409
(97.17

%)

122329
(97.10

%)

125678
(99.76%)

125869
(99.91%)

125698
(99.78%)

125776
(99.84%)

121406
(96.37%)

125769
(99.83%)

67343
(53.45

%)

Incorrectly

Classified

Instances

12115

(9.61%)

3564

(2.89%)

3644

(2.89%

)

295

(0.23%)

104

(0.08%)

275

(0.218)

197

(0.15%)

4567

(3.62%)

204

(0.16%)

58630

(46.54

%)

TP Rate 0.904 0.972 0.971 0.998 0.999 0.998 0.998 0.964 0.998 0.535

FP Rate 0.101 0.032 0.029 0.002 0.001 0.002 0.002 0.033 0.002 0.535

ROC Area 0.966 0.997 0.993 0.998 1.000 0.999 1.000 0.965 0.999 0.500

Specificity (%) 86.8 94.6 96.81 99.73 99.86 99.77 99.80 98.8 99.81 0

Sensitivity (%) 93.6 99.3 97.3 99.79 99.96 99.78 99.87 94.1 99.85 1.0

Accuracy (%) 90.38 97.17 97.1 99.76 99.91 99.78 99.84 96.3 99.83 53.4

Time taken to

build model (in

sec.)

2.88 14.02 87.44 3.24 191.06 61.68 109.9 2.66 99.1 0.13

Table 3. Ranking of Different Classifiers based on Different Parameters

Classifiers

Parameters

Naïve

Bayes

Bayes

Net

Logistic Random

Tree

Random

Forest

J48 Bagging OneR PART ZeroR

Correctly

Classified

Instances

9 6 7 5 1 4 2 8 3 10

Incorrectly

Classified
Instances

9 6 7 5 1 4 2 8 3 10

TP Rate 9 6 7 5 1 4 2 8 3 10

FP Rate 9 7 6 5 1 4 2 8 3 10

ROC Area 8 6 7 5 1 4 2 9 3 10

Specificity 9 8 7 5 1 4 3 6 2 10

Sensitivity 9 6 7 4 1 5 2 8 3 10

Accuracy 9 6 7 5 1 4 2 8 3 10

It is clear from the ranking in Table 3 that Random

Forest, Bagging, PART and J48 are best 4 classifiers.

However, all these algorithms consume huge time in

building the model. Therefore, in the next section these

algorithms are further evaluated using feature selection

and feature reduction methods to determine whether it is

possible to reduce model building time for these

algorithms while achieving high accuracy and low FP

rate.

B. Performance Evaluation using Feature Selection and

Feature Reduction Method

Selection of features to reduce unwanted features helps

in increasing the efficiency of the classifier and building

an effective model. Therefore, the top 4 classifiers are

now evaluated using feature selection and feature

reduction. In this paper, two combinations of feature

selection methods are tried: Wrapper method

(CfsSubsetEval + BestFirst) and Filter method

(InfoGainAttributeEval + Ranker). The details of the

features selected by each combination are described in

Table 4.

Table 4. Feature Selection by using Different Methods

Attribute

Evaluator +

Search Method

Feature Selected Method

Used

CfsSubsetEval +

BestFirst

4,5,6,12,26,30 Wrapper

Method

InfoGainAttribute

Eval + Ranker

5,3,6,4,30,29,33,34,35,38,12,3

9,25,23,26,37,32,36,

31,24,41,2,27,40,28,1,10,
8,13,16,19,22,17,15,14,18,11,

7,21,20,9

Filter

Method

Wrapper based feature selection method is applied to

select the best subset of features. With NSL-KDD dataset,

48 Intrusion Detection using Machine Learning and Feature Selection

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 4, 43-52

Wrapper method selected optimal subset (Table 4) as 4, 5,

6, 12, 26, 30 features. Table 4 also shows the ranking of

features by the filter method. In this paper, ranker is run

on the dataset and low ranked features are omitted one by

one until the overfitting problem occurs. If the

feature/attribute is further removed, the model starts to

overfit and the percentage of correctly classified instances

begins to decrease. So, in filter method features are

removed one after the other till global minima is achieved.

In NSL-KDD dataset, global minimum is achieved when

we are left with top 10 features 5,3,6,4,30,29,33,34,35,38

for detecting attacks.

Performance of 4 top ranked classifiers is evaluated

after removing all redundant features as suggested by

wrapper and filter methods and results are tabulated in

Table 5-8. Moreover, discretize filter is also used

individually and in conjunction with filter and wrapper

method to evaluate the performance of those classifiers.

Table 5 shows the evaluation of J48 classifier based on

different methods. It is observed from the table that the

accuracy of J48 was initially 99.78% but model building

time was quite high. However, after applying the

different combination of feature selection/reduction

techniques, the time taken in building the model is

reduced significantly but with compromising the

accuracy. In fact, in case of filter method, J48 achieves

maximum accuracy i.e. 99.79% while the time taken in

building the model is 17% of the time taken by the J48

when executed without applying feature

selection/reduction methods. Other methods are also able

to achieve nearly equivalent amount of accuracy while

reducing the model building time significantly. Fig. 1

clearly demonstrates the accuracy of the J48 algorithm

with different feature selection/reduction methods.

Table 6 shows the evaluation of Random Forest

classifier using different feature selection and reduction

methods. It is evident from the table that even after

applying wrapper or filter method, the time taken in

building the model is still very high. However, model

building time reduces significantly either when discretize

filter is used individually with the classifier or in

conjugation with filter or wrapper method. The accuracy

achieved with the help of discretize filter is similar to the

accuracy achieved while running Random Forest

individually but the time taken in building the model is

15.5% of actual.

So, Random Forest classifier achieves the highest

accuracy without reducing any features but requires a lot

of model building time. On the other hand, performing

detection with the most important features results in

saving a lot of computation time and helps in building

high speed network intrusion detection.

Fig.1. Performance Comparison of J48 based on Different Methods

Fig. 2 illustrates the performance of Random Forest

classifier in terms of accuracy when used with different

feature selection/reduction techniques.

Table 7 shows the evaluation of Bagging classifier

based on different methods. The accuracy of Bagging was

initially 99.84% but model building time was quite high.

However, when used with the filter method, the time

required in building the model is only 20% of the actual

whilst achieving similar accuracy. Discretize filter based

methods are also able to achieve nearly equivalent

amount of accuracy while reducing the model building

time significantly. Fig. 3 shows the accuracy of Bagging

using different methods.

Table 5. Evaluation of J48 Classifier based on Different Methods

Methods

Parameters

General method Discretize

Filter

classifier

Wrapper

method

Wrapper

method +

Discretize

filter

Filter

method

Filter

method +

Discretize

filter

Correctly Classified
Instances

125698
(99.78%)

125621
(99.72%)

125200
(99.38%)

125412
(99.55%)

125720
(99.79%)

125689
(99.77%)

Incorrectly Classified

Instances

275

(0.218%)

352

(0.279%)

773

(0.613%)

561

(0.445%)

253

(0.200%)

284

(0.225%)

Model Building Time 61.68 sec. 5.75 sec. 7.95 sec. 9.25 sec. 10.45 sec. 10.85 sec.

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

A
cc

u
ra

cy
 in

 %

Different methods used

Performance Comparison of J48

 Intrusion Detection using Machine Learning and Feature Selection 49

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 4, 43-52

Table 6. Evaluation of Random Forest Classifier based on Different Methods

Methods

Parameters

General

method

Discretize

Filter

classifier

Wrapper

method

Wrapper

method +

Discretize

filter

Filter

method

Filter

method +

Discretize

filter

Correctly Classified
Instances

125869
(99.91%)

125861
(99.90%)

125238
(99.41%)

125485
(99.61%)

125818
(99.87%)

125842
(99.89%)

Incorrectly Classified

Instances

104

(0.082%)

112

(0.088%)

735

(0.583%)

488

(0.387%)

155

(0.123%)

131

(0.104%)

Model Building Time 191.06 sec. 30.34 sec. 66.82 sec. 14.89 sec. 69.55 sec. 20.06 sec.

Table 7. Evaluation of Bagging Classifier based on Different Methods

Methods

Parameters

General

method

Discretize

Filter

classifier

Wrapper

method

Wrapper

method +

Discretize

filter

Filter

method

Filter method

+ Discretize

filter

Correctly
Classified

Instances

125776
(99.84%)

125708
(99.78%)

125163
(99.35%)

125404
(99.54%)

125742
(99.81%)

125692
(99.77%)

Incorrectly

Classified

Instances

197

(0.154%)

265

(0.210%)

810

(0.643%)

569

(0.451%)

231

(0.183%)

281

(0.223%)

Model Building

Time

109.9 sec. 39.21 sec. 17.7 sec. 12.2 sec. 21.99 sec. 16.16 sec.

Fig.2. Performance Comparison of Random Forest based on Different
Methods

Table 8 shows the evaluation of PART classifier based

on different methods. As observed from the table, the

accuracy of PART was initially 99.83% but with high

model building time. However, on performing feature

selection using filter method, model building time was

reduced to its one-fifth while accuracy remains almost the

same. The model building time was further reduced when

feature reduction using wrapper method was applied but

with a sizeable reduction in accuracy percentage. Least

model building time is observed when feature

selection/reduction methods are used in conjugation with

discretize filter. Fig. 4 shows the accuracy of PART using

different methods.

Fig.3. Performance Comparison of Bagging based on Different Methods

Thus, with fewer features, the computational time

required during model building can be greatly saved

without compromising on detection accuracy. This also

indicates that out of 42 features, not all of them are

relevant and fewer features are sufficient in detecting

attacks whilst achieving high accuracy in little time.

99.1
99.2
99.3
99.4
99.5
99.6
99.7
99.8
99.9
100

A
cc

u
ra

cy
 in

 %

Different methods used

Performance Comparison of Random
Forest

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

A
cc

u
ra

cy
 in

 %

Different methods used

Performance Comparison of Bagging

50 Intrusion Detection using Machine Learning and Feature Selection

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 4, 43-52

Table 8. Evaluation of PART Classifier based on Different Methods

Methods

Parameters

General

method

Discretize

Filter

classifier

Wrapper

method

Wrapper

method +

Discretize

filter

Filter

method

Filter

method +

Discretize

filter

Correctly

Classified
Instances

125769

(99.83%)

125680

(99.76%)

125181

(99.37%)

125390

(99.53%)

125761

(99.82%)

125698

(99.78%)

Incorrectly

Classified
Instances

204

(0.161%)

293

(0.232%)

792

(0.628%)

583

(0.462%)

212

(0.168%)

275

(0.218%)

Model Building
Time

99.1 sec. 14.91 sec. 8.07 sec. 2.22 sec. 20.35 sec. 3.21 sec.

Fig.4. Performance Comparison of PART based on Different Methods

Following observations are made from the above

analysis of Tables 5-8:

Wrapper method performs detection with the least

accuracy rate in comparison to other methods. Hence, it is

not suitable for detecting intrusion in the real world.

Filter method achieves the highest accuracy when

compared with other methods except the general method.

However, its model building time is dramatically less in

comparison to the general method.

Owing to time as the most important consideration in

attack detection, the discretize filter works best when

used in conjugation with the filter method.

However, it is worth noting from the above analysis

that even after applying feature selection/reduction

methods, the best 4 ML algorithms consumed more time

for model building in comparison to Random Tree

(without feature selection/reduction) while achieving the

almost same amount of accuracy. Therefore, it becomes

evident that Random Tree achieves a good amount of

accuracy within a very short span of time even without

feature selection/reduction methods.

VII. CONCLUSIONS

Current network intrusion detection systems face the

challenge of processing large volumes of data. Hence, for

achieving high detection accuracy in lesser possible time,

it becomes necessary to remove irrelevant data and

reduce its dimensionality by carefully selecting the most

important features. This paper emphasizes on the

significance of IDS and assesses the performance of 10

most popular ML algorithms using NSL-KDD intrusion

detection dataset and ranks them according to their

performance. Empirical analysis of best 4 algorithms

(Random Forest, Bagging, PART and J48) shows that

they consume a lot of time in building the model. So, they

are selected for further evaluation in conjugation with

different feature selection and feature reduction schemes.

Results clearly show that the model building time is

significantly reduced with a smaller set of features

without compromising accuracy.

However, it is important to note that the best 4

algorithms performed well in terms of model building

time after feature selection/reduction but Random Tree is

the only classifier which achieves good accuracy in a

comparative smaller span of time without using feature

selection/reduction methods. The above conclusions are

based on the performances of the ML algorithms on NSL-

KDD dataset. However, performance of these algorithms

may vary for other datasets. We, therefore, feel that by

selecting and reducing the features should help a number

of ML algorithms to perform well.

Our results will help future researchers as well as

industrialists to understand the suitable feature selection

and reduction schemes for designing good machine

learning algorithms. In future work, we will generate the

most acceptable and applicable set of features from large

and complex data and build a practical real time system

for high speed network intrusion detection. We also plan

to formulate a scheme for comparing ML algorithms on

the basis of their requirements of space.

REFERENCES

[1] Summers R. C., “Secure computing: Threats and safe-

guards” in Computers, New York: McGraw-Hill, 2000, pp.

1-688.

[2] Intrusion Detection Systems: Definition, Need and

Challenges, SANS Institute 2001.

https://www.sans.org/reading-

room/whitepapers/detection/intrusion-detection-systems-

definition-challenges-343

[3] Benferhat S., Tabia K., “Integrating Anomaly-Based

99.1
99.2
99.3
99.4
99.5
99.6
99.7
99.8
99.9

A
cc

u
ra

cy
 in

 %

Different methods used

Performance Comparison of PART

 Intrusion Detection using Machine Learning and Feature Selection 51

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 4, 43-52

Approach into Bayesian Network Classifiers” in e-

Business and Telecommunications, 2009, vol.8, eds.

Joaquim Filipe, Mohammad S. Obaidat, pp. 127-139.

[4] Snort (2014), the open source network intrusion detection

system [online]. Available at: http://www.snort.org/.

[5] Ranjan R, Sahoo G., “A new clustering approach for

anomaly intrusion detection” in International Journal of

Data Mining and Knowledge Management Process, 2014

Mar; 4(2), pp. 29–38.

[6] McHugh J., “Testing intrusion detection systems: A

critique of the 1998 and 1999 DARPA intrusion detection

system evaluations as performed by Lincoln Laboratory”

in ACM Transactions on Information and System Security,

vol. 3, no. 4, 2000, pp. 262–294.

[7] Hofmann A., Sick B., “Online Intrusion Alert

Aggregation with Generative Data Stream Modeling," in

IEEE Transactions on Dependable and Secure Computing,

vol. 8, no. 2, 2011, pp. 282-294.

[8] WEKA Machine Learning Project:

http://www.cs.waikato.ac.nz/~ml/weka/index.html.

[9] NSL-KDD dataset for network based intrusion detection

systems. Available at: http://nsl.cs.unb.ca/NSL-KDD/,

December 2016.

[10] Anderson J. P., “Computer security threat monitoring and

surveillance,” Technical Report, Fort Washington,

Pennsylvania, USA, 1980.

[11] Lee W. and Stolfo S. J., “Data mining approaches for

intrusion detection” in Proceedings of the 7th conference

on USENIX Security Symposium, vol. 7, San Antonio,

TX, 1998.

[12] Schultz M. G., Eskin E., Zadok E., Stolfo S. J., “Data

Mining Methods for detection of New Malicious

Executables”, in IEEE Symposium on Security and

Privacy, Columbia University, 14-16 May 2001, pp.38-49.

[13] Hwang T., Lee T., and Lee Y., “A Three-tier IDS via Data

Mining Approach” in Proceedings of the 3rd annual ACM

workshop on Mining network data, 2007, pp. 1-6.

[14] Tavallaee M., Bagheri E., Lu W., and Ghorbani A., “A

Detailed Analysis of the KDD CUP 99 Data Set,”

Submitted to Second IEEE Symposium on Computational

Intelligence for Security and Defense Applications

(CISDA), 2009.

[15] Srinivasulu P., Nagaraju D., Kumar P. R., and Rao K. N.,

“Classifying the Network Intrusion Attacks using Data

Mining Classification Methods and their Performance

Comparison” in IJCSNS International Journal of

Computer Science and Network Security, vol. 9, no.6,

2009, pp. 11-18.

[16] Reddy K., Iaeng M., Reddy V. N., and Rajulu P. G., in “A

Study of Intrusion Detection in Data Mining” in World

Congress on Engineering, vol. III, 2011, July 6-8.

[17] Nadiammai G. V. and Hemalatha M., “Perspective

analysis of machine learning classifiers for detecting

network intrusions” in IEEE Third International

Conference on Computing Communication & Networking

Technologies (ICCCNT), India, 26-28 July 2012, 2012,

pp. 1-7.

[18] Neethu B., “Classification of Intrusion Detection Dataset

using machine learning Approaches” in International

Journal of Electronics and Computer Science Engineering,

vol. 1, 2012, pp. 1044-51.

[19] Revathi S., Malathi A., “A Detailed Analysis on NSL-

KDD Dataset Using Various Machine Learning

Techniques for Intrusion Detection”, in International

Journal of Engineering Research & Technology (IJERT),

vol. 2 no. 12, 2013, pp. 1848-1853.

[20] Choudhary S. and Bhowal A., “Comparative Analysis of

Machine Learning Algorithms along with Classifiers for

Network Intrusion Detection” in IEEE International

Conference on Smart Technologies and Management for

Computing, Communication, Controls, Energy and

Materials (ICSTM), Chennai, T.N., India, 6-8 May 2015,

pp. 89-95.

[21] Murthy P. C., Manjunatha A. S., Jaiswal A., Madhu B. R.,

“Building Efficient Classifiers For Intrusion Detection

With Reduction of Features” in International Journal of

Applied Engineering Research, vol. 11, no. 6, 2016, pp.

4590-4596.

[22] Latha S., Prakash S. J., “HPFSM - A High Pertinent

Feature Selection Mechanism for Intrusion Detection

System,” International Journal of Pure and Applied

Mathematics, vol 118, no. 9, 77-83

[23] Biswas. S. K., “Intrusion Detection Using Machine

Learning: A Comparison Study,” International Journal of

Pure and Applied Mathematics, vol 118, no. 19, 101-114

[24] WEKA 3.9 - Data Mining with Open Source Machine

Learning Software in Java. [Online] Available at:

http://www.cs.waikato.ac.nz/ml/weka/ [Accessed: July,

2016].

[25] John G.H., P. Langley, “Estimating Continuous

Distributions in Bayesian Classifiers” in Proc. Of the 11th

Conference on Uncertainity in Artificial Intelligence,

August 18 - 20, 1995, pp. 338-345.

[26] Kaur H., “Algorithm used in Intrusion Detection System:

A Review”, International Journal of Innovative Research

in Computer and Communication Engineering, 2014, vol.

2, issue 5, May 2014.

[27] Quinlan J. R., “C4.5: Programs for Machine Learning”,

Morgan Kaufmann Publishers, San Mateo, CA., 1993.

[28] Witten I. H., Frank E. and Hall M. A., “Data Mining:

Practical Machine Learning Tools and Techniques”, 3rd

edition, eds. J. Geller, E. Davis, P.A. Flach, Morgan

Kaufmann Publishers Inc, 2011, pp. 1-558.

[29] Cessie S. L., Houwelingen J. C., “Ridge Estimators in

Logistic Regression” in Applied Statistics, vol. 41, no. 1,

1992, pp. 191-201.

[30] John G.H., “Irrelevant Features and the Subset Selection

Problem” in proc. of the 11th Int. Conf. on Machine

Learning, Morgan Kaufmann Publishers, 1994, pp.121-

129.

[31] Dash M. & Liu H., “Feature Selection for Classification”

in Intelligent Data Analysis, vol.1(3), 1997, pp. 131–56.

Authors’ Profiles

Dr. Prachi, Ph. D. and associate professor in

The NorthCap University. Her main research

interests include cyber security, intrusion

detection and prevention.

Ms. Heena, pursuing Ph. D. in The NorthCap University. Her

main research interests include intrusion detection and

prevention.

Prof. Prabha Sharma, Professor and Ph. D. supervisor in The

NorthCap University. Her main research interests include

optimization.

52 Intrusion Detection using Machine Learning and Feature Selection

Copyright © 2019 MECS I.J. Computer Network and Information Security, 2019, 4, 43-52

How to cite this paper: Prachi, Heena Malhotra, Prabha Sharma,"Intrusion Detection using Machine Learning and

Feature Selection", International Journal of Computer Network and Information Security(IJCNIS), Vol.11, No.4, pp.43-

52, 2019.DOI: 10.5815/ijcnis.2019.04.06

