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Abstract 

We present a novel solution that allows one platform to securely distribute or redistribute digital contents to 

another in P2P networks. The solution is based on platforms with Trusted Platform Modules (TPMs). It 

maintains the confidentiality and freshness of digital contents during the processes of distribution. Given an 

ideal (tamper-proof) trusted platform, the solution can even withstand attacks by dishonest users during the 

processes of usage. Moreover, it can also be used to redistribute n-time-use digital content offline, so it is more 

flexible and scalable than other related distribution solutions to enable widespread deployment. Lastly, by 

adding a few simple features to TPMs, our solution can easily prevent the malicious sender and receiver from 

colluding when the redistribution takes place, so we can ensure that they can not gain more than a previously 

defined amount of rights without contacting the content provider.  
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1. Introduction  

In the traditional client-server architectures, there is always a trusted server and a client that connects to the 

server to acquire certain contents. The contents in the server can be protected by various effective security 

mechanisms, but it is difficult to protect them when they are beyond the control of a server. Since clients are 

often devices that are logically and physically under the control of their owners, client users can attack and 

circumvent the protection mechanisms easily. It will be more complex in the P2P distribution architectures 

because the party can be both client and server at the same time. That is, all the interests of different parties 

should be reflected in the P2P architectures.  

Fortunately, the Trusted Computing Group (TCG) has specified a Trusted Platform Module (TPM) acting as 

a trusted third party which can be used to build trust relationships between users in the P2P networks. 

Nowadays, TPMs have been embedded in many personal computers. So we can get an ideal trusted platform 

based on such a chip. And the technologies of building such platforms have been focused on for several years, 

such as [1-6]. In this paper, we need such trusted platforms to provide secure environments in which our 

solution runs. However, how to build such a platform is beyond the scope of this paper (the reader can get more 
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about how we build a trusted platform in [3, 5]). 

Contribution. We present a solution for offline, peer-to-peer content sharing which allows redistribution of 

n-time-use content. The basic principle is to use TPM migratable keys with transport session logs (acting, in 

essence, as use-count certificates) in order to prevent replay and a man-in-the-middle style attack. A further 

process is described for preventing collusion by two parties in the P2P networks which need a modification to 

the TPM. Finally, we give an informal analysis of our solution’s security, and the results of performance 

experiments. 

2. Related Work 

Securing P2P distribution using trusted computing has already been introduced by [7] for several years. And 

some concrete schemes of distribution have been proposed based on different models and assumptions 

[4,8,9,10].  

In [8], Sandhu and Zhang present an architecture that provides access control using a trusted hardware 

component such as a TPM, a secure kernel, sealed storage, and a trusted reference monitor that interacts with 

applications through secure channel. However, the secure distribution is just described in a high-level, and 

replay attacks are neglected. In [4], Kyle and Brustoloni implement a novel Linux Security Module (UCLinux) . 

In order to distribute secrets, UCLinux just uses a version of TLS v1.0 protocol, extended to include attestation 

during its handshake. However the distributions of digital contents are not discussed and the security analysis 
of the solution is not presented. 

The authors of [9] present a protocol that allows servers to securely distribute secrets to trusted platforms. 

However the distribution model in [9] is based on traditional client-server architectures. So it can not support 

offline redistributions in P2P architectures. 

In [10], the authors identify characteristic P2P scenarios and demonstrate how distributions between peers 

can be realized by applying a few basic licensing operations. Then, they present a security architecture to 

realize these basic license operations. However, the distributions of n-time-use digital contents are not 

discussed, which are common scenarios in P2P architectures.  

3. Security Requirements 

Consider a user, Bob, who downloads a song from a content provider called Alice. Bob has paid for the song, 

and he can only use it for 10 times. Unfortunately, Bob will not follow the rules voluntarily because he has 

different interests. This is a typical scenario which usage control has focused on for several years. As we just 

focus on the processes of (re)distributing digital contents in this paper, we suppose that there is a usage-control 

system in each peer’s platform and Alice can define the values of platform configuration registers (PCRs) in a 

TPM which reflect the usage-control system.  

Our setting is shown in Figure 1. Alice provides the song s that it will be downloaded to untrusted storage in 

Bob’s platform over an open channel. And later Bob wants to share s with Dave, so he redistributes it to Dave 

over another open channel. Hence, our solution should protect s from the man-in-middle attacks (as shown in 

Figure2). Furthermore, Bob may not respect the rules of Alice (as shown in Figure 2, Bob may be dishonest). In 

any case, Alice is willing to distribute s to Bob’s platform which is known to meet her security requirements 

(i.e., if Bob’s platform meets Alice’s security requirements, it will allow Bob to use s following Alice’s rules).  
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Figure 1. Setting 

 

 

 
 

Figure 2. Attacks 

 

We consider that Bob has listened to s for 5 times, and then he redistributes it to Dave. Thereby, Dave can 

still listen to s for 5 times. Our solution should protect the interests of them (i.e., the 5 use times of s transferred 

form Bob to Dave should be acknowledged by both of them). In addition, Bob and Dave may collude in order 

to get more rights lawlessly as shown in Figure 2. So our solution should prevent them from colluding.  

From the setting and possible attacks described above, we identify the following security requirements:  

1. Trust verification of peers’ platforms, so that the digital content provider can believe that his or her 
interests can be insured.  

2. Confidentiality of digital contents in transit between and in storage on the peers’ platforms, so that 

unauthorized reading can be prevented. 

3. Freshness of n-time-use digital contents in transit between and in storage on the peers’ platforms, so that 

replay attacks can be prevented and therefore peers can not get more use times than they are permitted. 

4. Solution 

4. 1 Trust Verification of Platforms and Confidentiality of Contents 

The protected storage feature of a TPM allows for the secure storage of TPM keys, as described in [11,12]. 

We can only use the private key created by a TPM when the current environment is the one stated while 

creating it. Therefore we can provide confidentiality of the digital contents, and verify the state of peers’ 

platforms by encrypting the contents with the private key created by a TPM (sometimes, the content is 

encrypted by a symmetric key, which is protected by the private key in a TPM). As shown in [9], the 

distribution method based on protection of private keys has already existed. However, this method needs the 

content provider always online to verify that the binding key created by receiver is a non-migratable key and it 

is sealed to a set of PCRs required by the provider. For our setting in which offline redistributions usually take 
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place between peers, this method is not appropriate. So we use another approach founded upon both the TCG 

key migration [12] and protection of private keys, as shown in Figure 3. 

 

 
 

Figure 3. An approach for the digital content (re)distribution with TPM 

 

Figure 3 illustrates the process of our approach. In the first step, Platform B sends a request for the digital 

content to Platform A. And in the second step, Platform B generates a non-migratable key pair KB, and certifies 

public KB using its private AIKB. By verifying the AIK-certified public KB, Platform A ensures that KB is a 

non-migratable key. And then, Platform A generates a key pair K which is used to encrypt the digital content. 

And the state of platforms in which K can be used is specified at the same time (by specifying the PCR values). 

Therefore, Platform B can use K to decrypt the digital content only if its state matches that bound to K. After 

that, K is migrated from Platform A to Platform B under the protection of public KB (for more details, the reader 

is referred to TCG key migration [12]). Finally, Platform A encrypts the digital content with public K, and sends 

it to Platform B. Because of the protection of private keys provided by TPMs, this approach can prevent the 

dishonest user and man in the middle from getting the digital content. And moreover, the security state of 
platforms in which the content can be decrypted is specified by the content provider. So when redistributions 

take place between peers, the Step 3 can be omitted (i.e., redistributions can take place between peers without 

contacting the content provider).  

4. 2 Freshness of n-time-use Digital Content 

Considering the P2P networks, we can not provide an online server to record the most recent version of the 

digital content (e.g., remaining use times). So it can only be recorded in the untrusted storage of the user’s 

platform. That is, what we need is some form of trusted memory on the machine that is somehow changed 

irreversibly during usage processes, such that it would be infeasible for attacker to revert the machine to a 

previous state. Therefore in this paper, we present an approach based on the TPM monotonic counters, which is 

a kind of irreversible memory provided by TPM, in order to guarantee the freshness of n-time-use digital 

contents. However, there is a limit to the number of physical counters in TPMs. So we have to use the transport 

sessions of TPM to bind lots of digital contents to one physical counter.  

As shown in Figure 4, we suppose that there is already a physical counter in the TPM, which is called 

CounterA. Then, we establish a transport session, and execute the increment of CounterA, which returns its 

current value Value(CounterA) after increment. At last we execute TPM_ReleaseTransportSigned in order to get 

the log. Note that, we replace its input parameter AntiReplay with a hash value Hash(public K|flag|nonce). 

Public K is the encryption key of a digital content, and nonce is a random number. And the flag can be 

“created”, “used” or “migrated”, which indicates that Value(CounterA) is bound to the creation, use or 

migration operation of K respectively. Therefore, the transport session log includes CounterA, Value(CounterA), 

encryption key of the digital content, flag and a random nonce nonce, and then the association between digital 

contents and TPM counter values can be built directly. We denote this log with TransLogAIK (CounterA, 
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Value(CounterA), public K，flag, nonce). If we find a change of the counter’s value without a transport session 

log, we consider it as a replay attack. Hence, offline (re)distributions of n-time-use digital contents can be built 

with these transport session logs. 

 

 
 

Figure 4. An approach for the freshness protection of n-time-use digital content  

4. 3 Anti-collusion Approach 

In P2P scenarios, two dishonest users may collude in order to get more use times. For example, Dave may 

not verify Bob’s transport session logs. 
We propose an approach to prevent dishonest users from colluding by adding a few simple features to the 

TPM. TPM specification 1.2 has provided two key migration approaches, but none of them executes the 

verification of platform state when migration takes place [12]. So we add two sets of PCRs when generating a 

key with TPM_CreateWrapKey. The first one is called Migration PCRs, which specifies the state of the source 

platform. Then the key can be migrated only if the state of the source platform matches Migration PCRs. The 

other one is called Conversion PCRs, which specifies the state of the destination platform. Then the migrated 

key can be converted to the TCG storage form only if the state of the destination platform matches Conversion 

PCRs. Alice can specify the two new sets of PCRs when she create K in order to ensure that there is a security 

software which executes all the steps of redistribution which include verifying of these session logs. And if 

Dave does not verify the logs, the PCR values of his platform would not match PCRReq specified by Alice. 

Hence he cannot decrypt the migrated key. Then he cannot get the digital content. Therefore our solution can 

prevent Bob and Dave from colluding by adding the new feature.  

5. Security Analysis 

Since the communication channels are all open between peers, a man in the middle can get all the messages 

exchanged in the distribution and redistribution processes. However, the digital content is encrypted by Alice 

using public K. And the private K is protected by TPM. Moreover, K is protected by the public key of a 

non-migratable key from destination platform, when it is migrated to other platforms. And the non-migratable 

key is also protected by the TPM of the destination platform, which can be certified to the sender’s platform. 

Hence, the man in the middle can only get the digital content or private K by breaking the cryptographic system, 

which we assume to be infeasible. Thus our solution is secure against a passive man-in-the-middle attack. And 

the active man in middle may replace the messages exchanged in the open channel. There are two kinds of 

messages which can be replaced. The first kind of messages is the certifications of keys or the transport session 

logs. These messages are all signed with AIKs, and AIKs are all protected by TPMs. So the man in the middle 
can not fool the peers because he can not forge the signatures. The other kind of messages is the encrypted 

migration blob of a key or the encrypted digital content. The replacement of this kind of messages amounts to 

the Denial of Service attacks, which is beyond our scope of this paper.  

After the digital content reaches the destination platforms, the dishonest user may want to use the content 
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without following the provider’s rules. However, he could put his platform into a dishonest state (by launching 

another process or rebooting another stack) which results in different PCR values. Hence, he can not decrypt 

the content using private K in the dishonest state of his platform. And if the platform state is honest, it will 

execute all the steps of usage in order to get the content. Then the replay attacks can be detected by the 

verification of transport session logs. 

Finally, we add two sets of PCRs when generating a key with TPM_CreateWrapKey as described in the 

former section. The content provider can specify two new sets of PCRs when he creates the encryption key in 

order to ensure that the states of the source and destination platforms are trusted when the migration takes place. 

The dishonest peers could redistribute contents without following the right steps of redistribution, which will 

result in different PCR values. Hence, they can not generate a migration blob of the encryption key or convert it 

into the TCG storage form. Thus our solution can prevent the malicious peers from colluding. 

6. Performance Analysis 

We do the performance tests on a PC, with a 2.00 GHZ Pentium 4, and 1 GB main memory. The TPM chip is 

from National Semiconductor Corporation. Figure 5 shows the experimental performance results of key 

operations in our solution.  

Although the performance of our solution may not be good enough, we believe that it is acceptable in the 

P2P distribution architectures because there is not an online server which has to execute lots of these operations 
in a short time. All these operations are executed in the respective peers’ platforms. For example, the cost of 

several seconds is acceptable for a peer who wants to get a large movie file by running our solution. So our 

solution is usable in P2P distribution architectures. 

 

 
 

Figure 5. Performance Measurements 

7. Conclusion 

In this paper, we present a TPM-based solution that allows one platform to securely distribute or redistribute 

digital contents to another. We identify characteristic P2P distribution settings and list the security requirements 

which our solution should satisfy. After that we describe our solution in details. That is, we explain why our 

solution can support the offline redistribution of n-time-use digital contents, and how it does. Moreover, we 
propose some changes to the TPM that can make our distribution solution simply prevent peers from colluding. 

Then we provide an informal analysis of the security of our solution. Finally, we present the performance 

results of some key operations, which can be acceptable in P2P architectures. 
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