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Abstract: Preparing a class timetable or routine is a difficult task because it requires an iterative trial and error method to 
handle all the constraints. Moreover, it has to be beneficial both for the students and teachers. Therefore, the problem becomes 
a multi-objective optimization problem with a good number of constraints. There are two types of constraints: hard and soft 
constraint. As the problem is an NP-hard problem, population based multi-objective optimization algorithms (multi-objective 
evolutionary algorithm) is a good choice for solving the problem. There are well established hard constraints handling 
techniques for multi-objective evolutionary algorithms, however, the technique is not enough to solve the problem efficiently. 
In the paper, a smart initialization technique is proposed to generate fewer constraints violated solutions in the initial phase of 
the algorithm so that it can find feasible solutions quickly. An experimental analysis supports the assumption. Moreover, there 
are no well-known techniques available for handling soft constraints. A new soft constraints handing technique is proposed. 
Experimental results show a significant improvement can be achieved. Finally, proposed combined approach integrates smart 
initialization and soft constraints handling techniques. Better results are reported when comparing with a standard algorithm. 
 
Index Terms: Class timetable problem, Smart initialization, Multi-objective evolutionary algorithm, hard constraint, soft 
constraint. 
 
 

1.  Introduction 

A class timetable problem belongs to a large class of scheduling problems that is very difficult to solve. A class 
timetable problem refers to the preparation of the weekly schedule to deliver lectures to students. It requires the proper 
scheduling of all the course lectures to available rooms and time-slots under a set of constraints. 

A proper university timetable is essential to the management as it makes the efficient utilization of university resources 
(e.g., teachers’ hour, theory and lab classroom). Efficient utilization of the resources under certain constraints make the 
problem is an optimization problem. In fact, the problem is an NP-hard problem [Lovelace (2010), Cooper and Kingston 
(1995)]. Traditionally, a timetable is prepared manually with multiple iterative processes, moreover, the preparation is one 
of the most tedious and labor-intensive jobs. Therefore, an automatic algorithm is required to solve the problem. 

Many research work regarding preparing university and school timetable have been done [Kristiansen and 
Stidsen(2013), McCollum(2006)]. Most of the works have been done for preparing a school timetable where the course 
structures are simple. Almost all the research works mentioned in the survey papers [Kris- tiansen and Stidsen(2013)] and 
[McCollum(2006)] consider the problem as a single objective optimization problem such as [Lukas et al.(2009)Lukas, 
Aribowo, and Muchri, Ahmad and Shaari(2016), Kazarlis et al.(2005)Kazarlis, Petridis, and Fragkou, Chaudhuri and 
De(2010), Al-Jarrah et al.(2017)Al-Jarrah, Al-Sawalqah, and Al-Hamdan]. Formulation of the problem as a multi-
objective optimization problem is the recent interest trend as mentioned in the survey article [McCollum (2006)]. However, 
only two papers have been found [Datta et al. (2006) Datta, Deb, and Fonseca] and [Carrasco and Pato (2000)] regarding
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this aspect. Carrasco et al. [Carrasco and Pato (2000)] formulated the teacher/class timetable problem by identifying a 
number of hard and soft constraints. The goal is to minimize two objectives: i) minimization of the constraints violation 
related to teachers, ii) minimization of constrains violation related to students. The authors also developed crossover and 
mutation to solve the problem. NSGA-II is applied to solve the problem. Datta et al. [Datta et al. (2006) Datta, Deb, and 
Fonseca] made an attempt to solve class timetable problem of IIT Kanpur. When formulating the problem, the authors 
identified six hard constraints and three soft constraints. Within three soft constraints, two soft constraints are chosen as 
conflicting objectives. A modified NSGA-II is applied to solve the problem. 

Ahsanullah University of Science and Technology (AUST) offers courses though a close credit system [Asrar (2012)] 
whereas most of the university offers courses through open credit system. The following section presents the details of the 
class timetable problem of AUST. The problem has two distinct contradictory objectives, six hard constraints and one soft 
constraint. 

To make a step forward in this field, a novel improved approach is proposed to solve the multi-objective timetable 
problem efficiently. It is already mentioned that the problem has many hard and soft constraints, therefore, it is a hugely 
complex problem where finding feasible solutions would take a long time. Moreover, the random initialization technique 
generates huge number of infeasible solutions that delays the algorithm to find feasible solutions. Therefore, a smart 
initialization approach has proposed to generate fewer constraints violated individuals in the early stage of the algorithm. 
The proposed smart initialization technique can be integrated into any meta-heuristic algorithm. The impact of the 
techniques is measured by integrating it into the initial phase of NSGA-II [Deb et al. (2002) Deb, Pratap, Agarwal, and 
Meyarivan]. 

There are well established techniques for handling hard constraints, however, no good soft constraint handling 
techniques are available in the literature. Most of the time, soft constraints are considered as an objective. In this paper, the 
soft constraint of a problem is considered as a condition, not as an objective. In this regard, a novel soft constraint handling 
technique has proposed and integrated into NSGA-II. The comparison with a standard model shows better results. 

In summary, our contributions are as follows: 
 

1. Formulation of AUST CSE timetable problem as a multi-objective optimization problem 
2. Proposed smart initialization technique to efficient handling of hard constraints 
3. A novel soft constraints handling approach 

2.  AUST Class timetable problem 

Computer science and engineering (CSE) department offer a bachelor program called Bachelor of Science in computer 
science and engineering that is a four years program. Each year consists of two semesters (Fall and Spring). There is a total 
of eight semesters in the program. A student of a particular year and semester is called by his/her studied year and semester 
(for example, 11 is called for the students who study in 1st year and 1st semester and so on.) Each semester is divided into 
two or three sections. In a Spring semester, 11, 21, 31 and 41 semesters have 3 sections (named as A, B, and C) each, all 
other semesters have two sections each. 

In CSE department, there are seven theory classrooms and eight labs. Most of the theory classrooms are similar in size; 
there are around 50 seats in each theory classrooms. However, a lab classroom has a seating arrangement of 25 students, 
there are 25 computers in a lab room. Therefore, a section has to divide into two lab groups (e.g., for section A: A1, A2). 
All the theory and lab courses have to be conducted within these classrooms. 

In each semester, fixed courses (five theory courses and three to four lab courses) have been offered. All the theory 
courses are 3 credit hour courses, that means, a theory course is conducted three times in a week. However, the credit hour 
of lab courses is either 1.5 or 0.75. A lab course with 1.5 credit hours is conducted once a week, however, a lab with 0.75 
credit hours is conducted once a fortnight for a particular group. The duration of each theory class is 50 minutes, and a lab 
is conducted for two hours and thirty minutes. There is no gap within the classes. 

The slots for theory and lab classes start at 8.00 AM and end at 3.00 PM. We call three consecutive theory classes or a 
lab is a session. There are mainly three sessions: morning, noon and afternoon. Morning, noon and afternoon start at 8:00 
AM, 10:30 AM and 1:00 PM, respectively. The concept of a session has a significant emphasis on AUST routine. For 
example, a section (A) of semester 11 has 3 theory classes starts from 8.00 AM in a room called 7A03, the three theory 
classes end at 10.30 AM. As section (B) is divided into 2 lab groups, two groups of section B can have two lab courses in 
two different labs in the morning session. 

3.  Problem formulation 

The main idea of AUST CSE routine optimization is to schedule the classes in such a way that students spend less time 
in the university, whereas, the teachers can take classes in a relaxed way. It ensures maxi- mum utilization of university 
resources, at the same time, it ensures better teaching-learning environment. Moreover, the routine optimization problem 
has some constraints to consider. 
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3.1   Objectives 

The class routine has to be beneficial for both students and teacher. Therefore, we want to optimize two objectives: i) 
minimizing the total students hours spend in the university, ii) maximizing total teachers hours spend in the university. 

𝑆𝐻(𝑅) = ෍ ෍  

ௗ∈஽

𝑒𝑛𝑑𝑆𝑙𝑜𝑡ௗ
௦

௦∈ௌ

− 𝑠𝑡𝑎𝑟𝑡𝑆𝑙𝑜𝑡ௗ
௦ #(1)  

 
R presents the routine, SH represents total student hours spend having classes by a student group, S represents a set of 

students from all the semesters and the set of all the weekdays is presented by D. endSlotୢ 
ୱ  refers the end time of the last 

slot of student s on weekday d and the starting time of the student s on weekday d is referred by startSlotୢ
ୱ . 

𝑇𝐻(𝑅) = ෍ ෍  

ௗ∈஽

𝑒𝑛𝑑𝑆𝑙𝑜𝑡ௗ
௧

௧∈்

− 𝑠𝑡𝑎𝑟𝑡𝑆𝑙𝑜𝑡ௗ
௧  #(2)  

 
Where T presents the set representing all the teachers of the department. 

3.2   Constraints 

There can be two kinds of constraints in a problem: Hard and soft constraint. A solution that violates hard constraints is 
considered as an infeasible solution, A feasible solution of a problem has to satisfy all the hard constraints. All the 
solutions that violate soft constraints are still feasible solutions, however, the solutions violating fewer soft constraints are 
preferable. 

In the routine problem, we are considering six hard constraints and one soft constraint. 

3.2.1   Hard Constraints 

A teacher cannot have more than one class at the same time. Mathematically, 
 

𝐻𝐶ଵ(𝑅) = ෍ ෍ ෍ 𝐷𝐶௧,ௗ,௦௟(𝑅)

௦௟∈ௌ௟௢௧ௗ∈஽௧∈்

#(3)  

 
Where Slot is a set of all theory and lab slots. Moreover, DC୲,ୢ,ୱ୪(X) is a function that returns 1 if there is a conflict 

found. Conflicts can be found if a teacher t has another class on day d in the same slot sl. When detecting conflicts, the 
function does not only consider theory or lab classes, it considers all combinations among theory and lab courses. For 
example, a teacher has a lab class on Saturday starting from 8.00 AM, the duration of the lab is 2 hours and 30 minutes, 
therefore, the lab ends at 10.30 AM. Please consider now that a theory class is scheduled from 9.40 AM on Saturday for 
the same teacher. Therefore, a conflict has been detected. 

Similarly, a group of students cannot have more than one class at the same time. Mathematically, 
 

𝐻𝐶ଶ(𝑅) = ෍ ෍ ෍ 𝐷𝐶௦,ௗ,௦௟(𝑅)

௦௟∈ௌ௟௢௧ௗ∈஽௦∈ௌ

#(4)  

 
DCୱ,ୢ,ୱ୪(X) is a function that returns 1 if there is a conflict found. 
It is not a good practice to overburden the students. Therefore, it is better to distribute the classes as much as possible 

throughout the weekdays. Please keep in mind that we want to minimize the student time, that means, the optimizer may 
try to schedule classes in one weekday and try to free another weekday. To prevent the possibility, a hard constraint, that a 
student group (from a particular semester and section) do not have more than three theory and one lab class in a day, is set. 

 

𝐻𝐶ଷ(𝑅) = ෍ ෍  

ௗ∈஽

{𝑇𝐶௦
ௗ(𝑅)

௦∈ௌ

> 𝑛௖}  𝑎𝑛𝑑  {𝐿𝐶௦
ௗ(𝑅) > 𝑛௟}#(5)  

 
Where TCୱ

ୢ(R) is a function that takes routine and finds the number of theory courses of a particular group of students (s) 
in any weekday (d). Similarly, LCୱ

ୢ(R) finds the number of lab courses for the student. Finally, nୡ and n୪ represents the 
number of theory courses and the number of lab courses, respectively, in a weekday for a particular group of students. 

In the same way, it is not a good idea to have more than two lab class in a day. 
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𝐻𝐶ସ = ෍ ෍  

ௗ∈஽

{𝐿𝐶௦
ௗ(𝑋)

௦∈ௌ

> 𝑛௟}#(6)  

 
where n୪ is set to 2. 
Similarly, the students do not have more than four theory classes in a day. 
 

𝐻𝐶ହ(𝑅) = ෍ ෍  

ௗ∈஽

{𝑇𝐶௦
ௗ(𝑅)

௦∈ௌ

> 𝑛௖}#(7)  

 
It is preferable that all the theory classes are held consecutively. For example, a group of students has three theory 

classes and one lab in a day. It is not a good practice that a lab is conducted after one theory class and next two theory 
classes are held afterward. Moreover, it is even worse if the last two theory classes are held in two different classrooms. 
Therefore, it is better to have three consecutive theory classes in a room in a particular session. 

 

𝐻𝐶଺(𝑅) = ෍ ෍ ෍  

௦௡∈ௌே

{

ௗ∈஽

𝐹𝑅௦,ௗ,௦௡(𝑅)

௦∈ௌ

− 1}#(8)  

 
Where SN is the set of sessions (i.e., in AUST, there are three sessions), FR(R) finds out the number of rooms used for 

conducting theory classes of a session for a group of students. 

3.2.2   Soft Constraints 

The routine optimization problem can have one soft constraint. The teachers can provide preferred session choices for 
each weekday. The optimizer tries to optimize the routine by respecting teachers’ preferences as much as possible. 
Mathematically, the soft constraint can be formulated as follows: 

 

𝑆𝐶ଵ(𝑅) = ෍  

௧∈்

෍ α௧

ௗ∈஽

∗ 𝐹𝐶𝑆{𝑅௧
ௗ(𝑅), 𝑃𝑆௧

ௗ}#(9)  

 
Where R୲

ୢ(R) is the teachers’ routine of a day and PS୲
ୢ is the preferred session choice of teacher t. FCS is a function that 

finds the number of courses scheduled outside of the preferred slot of a teacher. α୲ is the weighting parameter for the 
teacher t. The idea is to prioritize the preference of a higher designated teacher over a lower one (e.g., associate over 
assistant professor). The weighting parameter of a higher designated teacher is larger than a lower one. The value of the 
weighting parameter of a teacher is decided by his/her designation. 

3.3   Mathematical Formulation 

Finally, the problem can be formulated as follows: 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝐻(𝑅), #(10)  
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑇𝐻(𝑅), 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐻𝐶௜(𝑅) =  0, 𝑖 = 1, … 6. 
            𝑆𝐶ଵ(𝑅) 𝑎𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 

 
Someone may argue that the  SCଵ can be added as an additional objective. In the case of single-objective optimization, 

the soft constraints are added as a penalty function [Kerrigan and Maciejowski (2000)]. In the case of multi-objective 
optimization, most of time, it is added as an additional objective such as [Datta et al. (2006) Datta, Deb, and Fonseca] and 
[Singh et al. (2014) Singh, Asafuddoula, and Ray]. However, adding soft constraint as an additions objective has some 
additional problems: i) it makes the problem more complex, ii) the soft constraints may not contradictory to the objectives 
of the problem. Therefore, it would be a better approach to consider soft constraints as constraints and handle separately 
from objectives. 

4. Methodology 

The methodology section is divided into five main subsections. Firstly, the proposed modification of different 
components of a multi-objective optimization algorithm is presented. Secondly, the problem representation for the 
optimization algorithm is discussed. The third section presents a repair function. Finally, the fourth and fifth subsection 
discuss the techniques for smart initialization and handling soft constraints. 
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4.1   Algorithm 

AUST CSE routine problem is formulated as a multi-objective optimization problem, therefore, a multi- objective 
optimization algorithm is required to solve the problem. Multi-objective evolutionary algorithms [Deb (2001)] are often 
used to solve the multi-objective optimization problems mainly because of its population-based approach. There are many 
multi-objective evolutionary algorithms are available in the literature, such as NSGA-II [Deb et al. (2002) Deb, Pratap, 
Agarwal, and Meyarivan], SPEA2 [Zitzler et al. (2001) Zitzler, Laumanns, and Thiele] and so on. As the goal of the paper 
is not comparing different algorithms for solving the AUST class timetable problem, any well-established algorithm in the 
field of multi-objective optimization could be used. Therefore, it is decided that NSGA-II is used to solve the problem as 
NSGA-II is used for solving many practical problems. 

The original NSGA-II is not enough to solve the complex problem efficiently. The upper part of  Fig. 1 shows the 
typical steps of NSGA-II. Two main modifications are made to adapt the algorithms to handle the specific problem. As it is 
mentioned earlier that the problem has many hard constraints, therefore, a smart initialization step replacing the random 
initialization to generate fewer constraints violated population. Moreover, the problem has a soft constraint. In the original 
approach, there is no technique to satisfy soft constraints. Therefore, a modified binary tournament selection is proposed 
instead of binary tournament selection. In addition, after the phase of crossover and mutation, an individual may get 
unacceptable representation. Therefore, a repair function is proposed to make the unacceptable representation back to 
normal representation. The lower part of the figure shows the steps of modified/proposed approach. The modifications are 
marked as light red color. 

4.2   Problem representation 

To represent the problem an N size one-dimensional array is used. N represents all total available slots for six 
weekdays for all the available resources that the CSE department has. Here, resources refer to theory and lab rooms. CSE 
has seven theory rooms and eight separate computer labs. Considering that we have six weekdays, three-session per day 
and three theory classes per session, the total possible number of theory slots are 378 (6*7*3*3). Similarly, the total 
available lab slots are 144 (6*8*3*1). Please note that only one lab class can be held in one session. Therefore, there is a 
total of 522 slots in a week. The figure 2 presents the different aspect of array representation of the problem. An 
array/vector of size 522 that contains all the course slots, each index of the vector represents a slot. The vector is divided 
into two parts. The first represents all theory slots starting from 8.00 AM Saturday and ends with 3.00 PM Thursday. 
Please note that the array/vector indexing starts with 0 for theory and the indexing of lab slots starts with 378. Moreover, 
the figure also shows the morning, noon and afternoon sessions for Saturday and theory room 7A03, and lab room 7B01. 
The ↑ shows the position of the session head (a pointer points to starting index of a session). As three theory courses can 
be taken place in a session, therefore, the session heads are three indexes apart from each other. Lab session heads are apart 
by one as a lab course holds in a session. The concept of session head will be used in the smart initialization section. 
Afterward, it is required to understand which course will be placed in which slot. Therefore, a list of all weekly offered 
courses is made. It is mentioned earlier that there are 3 credit, 1.5 credit and 0.75 credit courses. When listing the weekly 
courses, 3 credit courses are listed three times for a section, 1.5 credit lab courses are listed one time for each group (please 
note that each section is divided into two groups) and 0.75 credit courses are listed one time for two groups. Please 
consider an example with three courses (C୲

 , C୪
ଵ.ହ and C୪

଴.଻ହ) and one section (A: A1 and A2). C୲
  is a 3.0 credit theory course, 

C୪
ଵ.ହ and C୪

଴.଻ହ are the lab courses with 1.5 and 0.75 credit, respectively. Therefore, C୲
  is listed three times, C୪

ଵ.ହ is listed two 
times (for A1 and A2) and C୪

଴.଻ହ is listed one time (for A1/A2, that means, if A1 group has the course this week, A2 group 
will have the course in next week). Please keep in mind that 300 theory courses and 97 lab courses are listed in the 
semester. Therefore, we must have some free slots. 78 (378 - 300) theory and 47 lab free slots are available. Finally, each 
course and free slots are represented by a unique numeric number starting from 0. According to the Fig. 2, T୶

 , T୷
  and T୸

  
are unique theory course numbers assigned to 0, 1 and 2 indexes of the array. 
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Fig. 1. Original approach and proposed approach 

4.3    Repair function 

There is a good possibility that a theory course is assigned in the lab slot or a lab course is placed in a theory slot after 
the crossover or mutation phases. This kind of occurrence may produce imperfect representation. Therefore, a repair 
function is proposed so that it would be possible to repair an imperfect solution. 

  

Fig. 2. Problem representation. 

Algorithm 1 Algorithm for repair a solution  
1. for all theory courses found in a lab slot do    
2.     Search for a lab course in theory slot   
3.     if A misplaced lab course is found then   
4.        Swap the lab course with the theory course   
5.     else   
6.        Search for a free slot in theory slots   
7.        Swap the theory course with found free slot   
8.     end if   
9. end for 
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Algorithm 1 shows the steps of repair function for misplaced theory courses. The repair function also includes the steps 
for misplaced lab courses that are very similar to theory courses. 

4.4    Smart initialization 

The idea of smart initialization comes forward to handle the hard constraints of AUST CSE routine/timetable problem. 
The random initialization procedure produces individuals that violate so many constraints; it would need a huge amount of 
time (evaluations) to get feasible individuals (please see the results) from the random population. Therefore, a new 
approach is required to initialize the population. The goal of smart initialization is to produce solutions that violate low 
number of constraints in the initial stage of the algorithm. Please note that the only goal of smart initialization is to speed 
up the search process. 

The idea of smart initialization is based on greedy approach. Algorithm 2 shows the details of the approach. The idea is 
to fill up the sessions with courses while maintaining some constraints. There are four constraints implemented in four 
functions: fଵ

 , fଶ
 , fଷ

  and fସ
  (line 5 to line 8 of the algorithm). 

For all required numbers of theory sessions, a random theory course is selected that has not appeared in the vector (line 
11) yet. Afterward, a random theory session is selected while maintaining consistency with four constraints (from line 12 
to line 14). Subsequently, two random theory courses are selected having the same year and semester of previously 
selected course (line 15). Selected three courses are assigned to the array. Finally, all the free slots are assigned to the 
vector (line 20). The similar approach is taken to assign lab courses (from line 21 to line 28). 

Please note that generated initial solutions are not feasible solutions; the generated solutions are fewer constraints 
violated solutions. One can argue that it is possible to produce feasible solutions with a more sophisticated greedy 
approach. However, the greedy approach is not enough to produce a feasible solution, it requires a recursive algorithm to 
produce a feasible solution. The recursive algorithm is a computationally expensive algorithm that is ignored for 
generating the initial population. 

4.5   Soft constraints handling 

There has been extensive literature available to handle hard constraints in the field of multi-objective optimization 
specifically multi-objective evolutionary algorithm [Fonseca and Fleming (1998), mez (2009), Woldesenbet et al. (2009) 
Woldesenbet, Yen, and Tessema, Michalewicz and Schoenauer (1996)]. There is a good number of literature available 
that develop a methodology for handling soft constraint ([Jin et al. (2009) Jin, Tsang, and Li, Singh et al. (2014) Singh, 
Asafuddoula, and Ray, Tsang and Jin (2006), Jin et al. (2009) Jin, Tsang, and Li, Tsang and Jin (2006)]) while dealing 
with single-objective optimization problem. However, Singh et al. (2014) Singh, Asafuddoula, and Ray, Datta et al. 
(2006) Datta, Deb, and Fonseca are the very few that consider handling soft constraints in the multi-objective 
evolutionary algorithms. In the mentioned papers ([Singh et al. (2014) Singh, Asafuddoula, and Ray, Datta et al. (2006) 
Datta, Deb, and Fonseca]) the authors consider constraints as an additional objective. 
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Any of the approaches are not suitable for us, because we plan to consider soft constraints separately from objectives. 
Therefore, we would like to introduce a mechanism for handling soft constraints. The basic idea is to extend the hard 
constraint handling technique to incorporate a mechanism of soft constraints. While using NSGA-II for optimizing a 
problem, hard constraints are handled using binary tournament selection [Deb (2001)]. The basic idea of binary 
tournament selection is very simple: two individuals are randomly chosen and the better individual is selected as a 
parent. In this aspect three scenarios could happen: 

 
Case (1): Both individuals are infeasible 
Case (2): One individual is feasible and other does not 
Case (3): Both individuals are feasible 
 Sub-case (a): Individuals are in different non-dominated fronts 
 Sub-case (b): Individuals are in same non-dominated front 
 

Here, an infeasible individual refers to the individual that violates hard constraints. The following rules are used for 
each of the cases. 

 
Case (1): The solution that violets less hard constraints is chosen  
Case (2): The feasible solution is chosen 
Case (3): Better solution with respect to objective value is chosen  
 Sub-case (a): Solution belongs to better non-dominated front is chosen 
 Sub-case (b): Solution that have better crowding distance [Deb et al. (2002) Deb, Pratap, Agarwal, 
 and Meyarivan] is chosen 
 

We have modified the sub-case 3(b) to incorporate the concept of handling soft constraint. The modification of case 
(3) is shown below: 

 
Case (3): Better solution with respect to objective values is chosen   
 Sub-case (a): Solution belongs to better non-dominated front is chosen  
 Sub-case (b): Solution that violates less soft constraint is chosen 

 
It is clear from the modification that the crowding distance is sacrificed to integrate soft constraints. One could argue 

that sacrificing crowding distance would make an algorithm performs poorly. However, crowing distance is not only 
maintained in a binary tournament selection but also it is applied in the sorting of a population in NSGA-II [Deb et al. 
(2002) Deb, Pratap, Agarwal, and Meyarivan]. Therefore, the performance will not be worsened dramatically. Please 
see the results (section 5.4 and section 5.5). 

5.  Comprehensive Experiments and Results 

The first section reports some general settings for the experiments. The second section compares the optimized 
solution with the manually prepared solution. The impact of smart initialization is reported in the third section. The 
fourth section shows the results of the modified binary tournament. The experiments are divided into three sections. The 
final section compares different approaches integrated with smart initialization. 

5.1   General Experimental Settings 

The proposed methodologies presented here are implemented in jMetal [Durillo and Nebro (2011)], a JAVA-based 
multi-objective meta-heuristic framework. Moreover, all the common experimental settings related to all the three 
experiments are presented in the section. Specific settings will be presented to the specific section, if required.Table 1 
shows the general parameter settings that are used in the experiments. Additionally, two-point crossover [Magalhaes-
Mendes (2013)] and swap mutation [Cicirello and Cernera (2013)] are used as crossover and mutation operators, 
respectively. The values of population size and the number of evaluations is relatively large compared to normal 
settings; please note that on average 362 (108,600) evaluations are required to get feasible solutions in the population 
(see Table 4. Therefore, a large population and evaluations are required to solve the particular problem. Each evaluation 
takes approximately 19.5 milliseconds (on average) to complete, smart initialization takes approximately 44 
milliseconds to generate a single individual. Repair function takes 43 milliseconds, moreover, evaluating hard and soft 
constraints of a solution takes approximately 0.16 and 0.044 milliseconds, respectively. Each run takes approximately 
five and half hours. For each phase of the experiments, the algorithm runs independently 20 times to facilitate statistical 
analysis.
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Table 1 General parameter settings 

Parameters            value 

Population size 300 

Crossover probability 0.90 

Mutation probability 0.20 

Total number of evaluations 900,000 

Number of independent runs 20 

5.2   Compare with manually generated solution 

In this section, a comparison is made between multi-objective optimization and the manually prepared routine. Each 
semester a committee (called routine committee) from the department prepares the class timetable. The manually 
generated routine takes around 1 to 2 weeks to complete. The objective values for manual routine are presented in Table 
2. Please note that the students’ hours need to minimize while the teachers’ hours need to be maximized. 

Table 2 Objective values for manual routine 

Objective            value 

Total students’ hour 880 

Total teachers’ hour 576 

 

 
Fig. 3. Two instances of found approximation of Pareto-optimal fronts 

Fig. 3 presents two instances of found approximation of Pareto-optimal fronts. It is not possible to show all the 
Pareto fronts because of the space constraint. The X-axis represents total students’ hours and the Y-axis represents total 
teachers’ hours. When comparing with the manual routine, remarkable improvement can be observed. All the Pareto 
front solutions of two different runs are better on both objectives. It is worth to mention that all the found solutions are 
better than the manual solution. Moreover, a Pareto front provides management many options to choose from. 

5.3    Impact of Smart Initialization 

Please recall that the main purpose of smart initialization is to generate individuals that violate less hard constraints. 
Therefore, the algorithm has more time to optimizing the solutions rather than finding feasible solutions. 

To investigate the effect of smart initialization over random initialization (RI), two evaluation metrics are defined. 
The first metric is the generation number when a first feasible solution is produced in the population. The second metric 
is the generation number when no infeasible individuals exist in the population. When comparing different techniques, 
lower metrics values indicate better results. As the simulation runs multiple times (20 times), the average generation 
numbers are reported. 

In total two approaches are compared. One of the approaches is random initialization. In addition, two approaches of 
smart initialization are investigated: i) all the individuals of a population are generated using smart initialization (SIA), 
ii) half of the total population is generated using smart initialization and the rest of the population is generated using 
random approach (SIH). The latter approach is investigated to test the idea of mixing random and smart 
individuals.Table 3 reports the number of average generation numbers. It shows that when SIA is used, the algorithm
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finds a first feasible solution faster (in terms of generation number) than any other technique. Similarly, SIA approach 
reaches faster producing a population with all feasible solutions. There is not much difference between SIA and SIH. 
Please note that RI is not able to produce any feasible solution within 3000 generations (900,000/300). We also further 
investigated by increasing stopping generation at 6000 (1,800,000 evaluations), however, no feasible solution is 
produced. Therefore, it can be concluded that without the smart initialization approach it would be very difficult to 
optimize the routine. 

Table 3 Average generations numbers for different approaches 

 

Approaches 

Average generation no, 
when first feasible 
individual appears 

Average generation no. 
when no infeasible 

individuals in a population 

RI 0 0 

SIA 373 386 

SIH 387 399 

5.4    Effect of modified binary tournament selection 

The modified binary tournament (MBT) selection is introduced to minimize the soft constraints violation as much as 
possible. To assess the impact of modified binary tournament, binary tournament (BT) technique (found in literature) is 
compared with MBT. For the comparison, the average soft constraints violations (ASCV) for two approaches for each 

run are compared. The ASCV is calculated by 
∑ ୗେభ(ୖ)ొ

౟సభ

୒
 where N represents the number of individuals in a population 

that violate soft constraints. 
Table 4 reports the starting and ending ASCV for two approaches for 10 independent runs. Please note that starting 

ASCV is not reported from 1st generation; it is because the compared approach is not even activated until all hard 
constraints are satisfied. Therefore, the reporting generation number is the generation when all hard constraints are 
satisfied for all the individuals. It is worth to mention that the reporting generation numbers are different for BT and 
MBT approaches. It is completely predictable as the initial populations for two different runs are different, moreover, 
other operations (i.e., crossover, mutation and selection) are based on random act. Therefore, two approaches are 
activated in two different times of evolution. 

The results show that MBT can reduce ASCV for each run, whereas the ASCV stays almost constant for BT 
technique. It also shows that the ASCV does not reach 0 (that is ideal). Reaching 0 ASCV may not be possible as it is 
not a primary goal of the algorithm. We do not report the other 10 runs because of space constraint, moreover, very 
similar results are achieved for the other 10 runs. 

Table 4 Compare average soft constraint violations (SCV) for BT and MBT 

                               

BT 

                                

MBT 

 

 Reported 
Generation 

Starting ASCV Ending ASCV Reported 
Generation 

Starting ASCV Ending ASCV 

Run # 1 613 1131.76 1182.30 309 1014.17 726.47 

Run # 2 458 1110.23 1159.77 283 1115.10 769.91 

Run # 3 361 1225.44 1357.84 926 1077.38 776.22 

Run # 4 286 1340.44 1322.67 471 1087.99 790.50 

Run # 5 197 947.02 1073.60 295 1250.42 925.99 

Run # 6 276 951.66 1050.97 253 996.12 640.87 

Run # 7 246 1399.29 1425.03 292 974.39 728.32 

Run # 8 442 966.82 1073.42 355 1137.91 696.12 

Run # 9 311 911.99 1098.73 366 1114.39 909.93 

Run # 10 315 956.03 975.51 312 1275.88 938.88 

 
To understand the effect of applying MBT more clearly, a generation vs ASCV plot is presented in Fig. 4. The x-axis 

represents the generations and the y-axis represents the ASCV for a particular run. It is clearly seen that when applying 
MBT, the ASCV decreases over time, however, in the case of BT, the ASCV stays almost constant 
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Fig. 4. Generations vs SCV plot 

One can argue that the modification of binary tournament selection may decrease the performance of the algorithm. 
Therefore, the algorithmic performance of the different selection techniques with smart initialization has been compared 
in the next section. 

5.5  Compare smart initialization with binary tournament and modified binary tournament 

In the section, a comparison is made among three different approaches with smart initialization i.e., all of the 
individuals generated using smart initialization and binary tournament (SIABT), half of the individuals generated using 
smart initialization and modified binary tournament (SIHMBT), and all of the individuals generated using smart 
initialization and modified binary tournament (SIAMBT). 

Several evaluation metrics can be found in the literature for comparing multi-objective optimization algorithms. In 
the paper, two well-known metrics, Hyper-volume (HV) [Zitzler and Thiele (1999)] and additive epsilon approximation 
[Zitzler et al. (2003) Zitzler, Thiele, Laumanns, Fonseca, and Da Fonseca], are used to compare the performance. HV 
calculates the total volume covered by the set of solutions in a Pareto front form a particular reference point. An 
algorithm with a higher value of HV than other algorithms indicates better algorithm. On the other hand, epsilon 
determines the minimum translation distance among all the distances for the solutions in a Pareto front. The translated 
distance of a solution is calculated by translating the solution in objective space to dominate the true Pareto front (tPF). 
a tPF is required to calculate values of epsilon. HV requires a reference point that set manually or generated from tPF. 
As the tPF is not known for AUST CSE routine optimization problem, it is approximated by merging all the Pareto 
fronts (total 60 runs) and find out tPF from the merged front. 

The means and standard deviations of two metrics for three different approaches are presented in Table 5. The dark 
gray shade indicates better results. It is clear from the table that SIAMBT outperforms SIHMBT and SIHBT on all the 
metrics. 

Table 5 Mean and standard deviation (in subscript) for different quality indicators. 

Evaluation metrics SIABT SIHMBT SIAMBT 

HV 7.75e – 032.4e - 02 1.26e – 011.2e – 01 1.38e − 011.4e – 01 

Epsilon 8.51e + 011.6e + 01 6.26e + 011.8e + 01 6.15e + 011.5e + 01 

 
 
In addition to previously reported results in Table 5, it is also required to perform statistical analyses to understand 

the performance of the algorithms. A Mann-Whitney U-tests [Mann and Whitney (1947)] is performed on all the 
evaluation metric values for all twenty different runs. The function of Mann-Whitney U-tests to determine whether two 
samples (i.e., metrics values) come from the same population or not by comparing the null hypothesis against an 
alternative hypothesis. The null hypothesis will be rejected if the corresponding p-value is less than 0.05. 

Table 6 Mann-Whitney U-tests: p-values for different metrics when comparing smart initialization with different techniques. 

P-values 

Evaluation metrics Compare 
SIAMBT and SIHMBT 

Compare 
SIAMBT and SIABT 

Compare 
SIHMBT and SIABT 

HV 0.839 2.274-06 1.088-05 

Epsilon 0.715 5.518-05 3.192-04 
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Table 6 presents p-values for two metrics. When comparing SIAMBT and SIHMBT, the p-values are higher than 
0.05 for both the metrics, as a result, it can be concluded that there is not a difference when all the individuals or half of 
the individuals are generated by smart initialization process. Therefore, any approach can be used. However, there is a 
significant difference among the metrics values when comparing SIAMBT with SIABT and SIHMBT with SIABT, as 
all p-values are less than 0.05. 

5.6    Discussion 

Finally, which combinations of techniques should be used? According to section 5.3 it is obvious to use smart 
initialization than random initialization. Section 5.4 concludes that modified binary selection is far superior to binary 
selection to minimize the soft constraint violations as much as possible. Section 5.5 investigates that which combination 
of proposed techniques performs best. It turns out that smart initialization (all individuals generated) with modified 
binary selection perform best for handing multi-objective routine problem. 

6.   Conclusion 

Formulation of class timetable problem as a multi-objective optimization problem is rare, however, it is very 
practical to prepare a routine in such a way that it is connivance for both student and teacher. A timetable problem 
becomes complex for having many hard and soft constraints. Therefore, a multi-objective optimization algorithm solely 
cannot solve the problem efficiently. Two new components of the algorithm are developed to help the algorithm. The 
test results show significant improvements in terms of time and algorithmic performance when compared with a 
standard algorithm for solving the problem. 

Two different future directions can be taken. The first direction is related to the problem. When optimizing the 
problem using a population-based algorithm, the algorithm generates many duplicate solutions. The duplicate solutions 
are different in decision space but the same in objective space. In other words, different routines can have the same 
objective values. Therefore, the search process is slowed down. Hence, it is required to develop techniques to handle 
this kind of duplicate solution. 

The second direction is related to handling soft constraints. There is not a generalized approach exists for handling 
soft constraint in population-based multi-objective optimization field. Besides, many other real-world problems can 
have soft constraints. Hence, a theoretically sound and well tested soft constraint handling techniques need to be 
developed. 

References 

[1] mez (2009). Constraint-handling in evolutionary optimization. Number volume 198 in Studies in      computational intelligence. 
Springer, Berlin, 2009. ISBN 978-3-642-00618-0. 

[2] Ahmad and Shaari (2016). A. Ahmad and F. Shaari. Solving university/polytechnics exam timetable problem using particle 
swarm optimization. In Proceedings of the 10th International Conference on Ubiquitous Information Management and 
Communication, page 46. ACM, 2016. 

[3] Al-Jarrah et al. (2017) Al-Jarrah, Al-Sawalqah, and Al-Hamdan.  M. A. Al-Jarrah, A. A. Al-Sawalqah, and S. F. Al-Hamdan. 
Developing a course timetable system for academic departments using genetic algorithm. Jordanian Journal of Computers and 
Information Technology (JJCIT), 3(1), 2017. 

[4] Asrar (2012). C. Asrar. Closed and open credits in undergraduate programmes in Bangladesh. The Daily Star, 2012. URL 
https://www.thedailystar.net/campus/2012/11/04/post.htm. 

[5] Carrasco and Pato (2000). M. P. Carrasco and M. V. Pato. A multiobjective genetic algorithm for the class/teacher timetabling 
problem. In International Conference on the Practice and Theory of Automated Timetabling, pages 3–17. Springer, 2000. 

[6] Chaudhuri and De (2010). A. Chaudhuri and K. De. Fuzzy genetic heuristic for university course timetable problem. Int. J. 
Advance. Soft Comput. Appl, 2(1):100–123, 2010. 

[7] Cicirello and Cernera (2013). V. A. Cicirello and R. Cernera. Profiling the distance characteristics of mutation operators for 
permutation-based genetic algorithms. In the Twenty-Sixth International FLAIRS Conference, 2013. 

[8] Cooper and Kingston (1995). T. B. Cooper and J. H. Kingston. The complexity of timetable construction problems. Technical 
report, University of Sydney, 1995. 

[9] Datta et al. (2006) Datta, Deb, and Fonseca. D. Datta, K. Deb, and C. M. Fonseca.  Solving class timetabling problem of iit 
kanpur using multi-objective evolutionary algorithm. KanGAL, Report, 2006006:1–10, 2006. 

[10] Deb (2001).  K. Deb. Multi-objective optimization using evolutionary algorithms, volume 16. John Wiley & Sons, 2001. 
[11] Deb et al. (2002) Deb, Pratap, Agarwal, and Meyarivan. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan.  A fast and elitist 

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002. 
[12] Durillo and Nebro (2011).  J. J. Durillo and A. J. Nebro. jMetal: A Java framework for multi-objective optimization. Advances 

in Engineering Software, 42:760–771, 2011.  ISSN 0965-9978. 
[13] Fonseca and Fleming (1998). C. Fonseca and P. Fleming. Multiobjective optimization and multiple constraint handling with 

evolutionary algorithms. II. Application example. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and 
Humans, 28(1):38 –47, Jan. 1998.  ISSN 1083-4427. doi: 10.1109/3468.650320.



             A Multi-Objective Optimization Approach for Solving AUST Classtimetable Problem Considering Hard and Soft Constraints                13  

Copyright © 2020 MECS                                                        I.J. Mathematical Sciences and Computing, 2020, 5, 1-14 

[14] Jin et al. (2009) Jin, Tsang, and Li. N. Jin, E. Tsang, and J. Li. A constraint-guided method with evolutionary algorithms for 
economic problems. Applied Soft Computing, 9(3):924 – 935, 2009.  ISSN 1568-4946.  doi: 
https://doi.org/10.1016/j.asoc.2008.11.006.  URL http://www.sciencedirect.com/science/article/pii/S1568494608001695. 

[15] Kazarlis et al. (2005) Kazarlis, Petridis, and Fragkou. S. Kazarlis, V. Petridis, and P. Fragkou. Solving university timetabling 
problems using advanced genetic algorithms. GAs, 2(7):8–12, 2005. 

[16] Kerrigan and Maciejowski (2000).  E. C. Kerrigan and J. M. Maciejowski. Soft constraints and exact penalty functions in model 
predictive control.  2000. 

[17] Kristiansen and Stidsen (2013). S. Kristiansen and T. R. Stidsen. A comprehensive study of educational timetabling-a survey. 
Technical report, Department of Management Engineering, Technical University of Denmark, 2013. 

[18] Lovelace (2010).  A. L. Lovelace. On the complexity of scheduling university courses. Master’s thesis, California Polytechnic 
State University, San Luis Obispo, 2010. 

[19] Lukas et al. (2009) Lukas, Aribowo, and Muchri.  S. Lukas, A. Aribowo, and M. Muchri. Genetic algorithm and heuristic search 
for solving timetable problem case study: Universitas pelita harapan timetable.  In 2009 Second International Conference on the 
Applications of Digital Information and Web Technologies, pages 629–633, Aug 2009. doi: 10.1109/ICADIWT.2009.5273979. 

[20] Magalhaes-Mendes (2013). J. Magalhaes-Mendes. A comparative study of crossover operators for genetic algorithms to solve 
the job shop scheduling problem. WSEAS transactions on computers, 12(4):164–173, 2013. 

[21] Mann and Whitney (1947). H. B. Mann and D. R. Whitney. On a test of whether one of two random variables are stochastically 
larger than the other. The annals of mathematical statistics, pages 50–60, 1947. 

[22] McCollum (2006). B. McCollum. University timetabling: Bridging the gap between research and practice. In in Proceedings of 
the 5th International Conference on the Practice and Theory of Automated Timetabling, pages 15–35. Springer, 2006. 

[23] Michalewicz and Schoenauer (1996).  Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter 
optimization problems. Evol. Comput., 4(1):1–32, Mar. 1996.  ISSN 1063-6560. doi: 10.1162/evco.1996.4.1.1. URL 
http://dx.doi.org/10.1162/evco.1996.4.1.1. 

[24] Singh et al. (2014) Singh, Asafuddoula, and Ray. H. K. Singh, M. Asafuddoula, and T. Ray. Solving problems with a mix of 
hard and soft constraints using modified infeasibility driven evolutionary algorithm (idea-m). In2014 IEEE Congress on 
Evolutionary Computation (CEC), pages 983–990, July 2014. doi: 10.1109/CEC.2014.6900239. 

[25] Tsang and Jin (2006).  E. Tsang and N. Jin. Incentive method to handle constraints in evolutionary algorithms with a case study. 
In Proceedings of the 9th European Conference on Genetic Programming, EuroGP’06, pages 133–144, Berlin, Heidelberg,2006. 
Springer-Verlag.  ISBN 3-540-33143-3,978-3-540-33143-8.doi:10.1007/1172997612. URL 
http://dx.doi.org/10.1007/11729976_12. 

[26] Woldesenbet et al. (2009) Woldesenbet, Yen, and Tessema. Y. Woldesenbet, G. Yen, and B. Tessema.  Constraint Handling in 
Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Computation, 13(3):514–525, 2009.  ISSN1089-
778X. doi: 10.1109/TEVC.2008.2009032. 

[27] Zitzler and Thiele (1999).  E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case study and the 
strength pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271, 1999. 

[28] Zitzler et al. (2001) Zitzler, Laumanns, and Thiele. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength 
pareto evolutionary algorithm. Technical Report TIK-Report No. 103, Computer Engineering and Networks Laboratory (TIK), 
Swiss Federal Institute of Technology (ETH), Zurich, 2001. 

[29] Zitzler et al. (2003) Zitzler, Thiele, Laumanns, Fonseca, and Da Fonseca.  E.  Zitzler, L. Thiele, M.  Laumanns, C.  M.  Fonseca, 
and V. G. Da Fonseca.  Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on 
Evolutionary Computation, 7(2):117–132, 2003. 



 14               A Multi-Objective Optimization Approach for Solving AUST Classtimetable Problem Considering Hard and Soft Constraints 

Copyright © 2020 MECS                                                        I.J. Mathematical Sciences and Computing, 2020, 5, 1-14 

Authors’ Profiles 
 

Md. Shahriar Mahbub obtained his Ph.D. from the University of Trento, Italy.  His Ph.D. research work 
focused on the development of tools for optimizations of energy systems. In his research, he developed a 
framework for optimizing an energy system for minimizing more than one objective. Currently, he is 
working as an associate professor in the department of Computer Science and Engineering at Ahsanullah 
University of Science and Technology, Bangladesh. His current research focuses on applications of multi-
objective optimization algorithms and the development of different techniques for the improvements of 
multi-objective optimization algorithms. 
 
 
 

 
 

 
 

Shihab Shahriar has been working as a software developer for almost three years. He has completed his 
graduation in CSE from Ahsanullah University of Science and Technology in late 2018. He has worked as an 
adjunct lecturer in the same university. He wants to see himself as a successful entrepreneur and so he is 
working accordingly. https://www.bangladesh-made.com/ is one of the developing websites that he initiates. 
His favourite pastime includes playing football, gaming etc. 

 
 
 
 

 
 

 
Kazi Irtiza Ali has received his B.Sc. degree in Computer Science and Engineering from Ahsanullah 
University of Science and Technology, Bangladesh, in 2019. He’s currently working as a User Experience 
Designer at Samsung Research and Development Institute Bangladesh for two years. He’s mainly involved 
with creating digital products for Samsung which have a huge user base. Currently his research interest is 
mainly focused on human-centered designs. 
 

 
 
 

 
 
 

 
Md Taief Imam has received his B.Sc. degree in Computer Science and Engineering from Ahsanullah 
University of Science and Technology, Bangladesh, in 2019. He’s currently working as a Software Quality 
Assurance Engineer at Cokreates Ltd. He’s involved with Bangladesh e-Government ERP Project (GRP). 
This is a project of Planning division, ICT Division, High-Tech Park, BCC, a2i, BUET. He had received an 
appreciation letter as an SQA Engineer from Bangladesh Computer Council last December to work actively in 
the QA team. His current goal is to represent himself as a QA professional at an ever growing and challenging 
corporate environment to excel through work, dedication and quick learning. 
 
 
 

 
 
 
How to cite this paper: Md Shahriar Mahbub, Shihab Shahriar Ahmed, Kazi Irtiza Ali, Md. Taief Imam. " A Multi-Objective 
Optimization Approach for Solving AUST Classtimetable Problem Considering Hard and Soft Constraints ", International Journal of 
Mathematical Sciences and Computing (IJMSC), Vol.6, No.5, pp.1-14, 2020. DOI: 10.5815/IJMSC.2020.05.01 
 


