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Abstract: Today unauthorized access to sensitive information and cybercrimes is rising because of increasing access to the 
Internet. Improvement in software and hardware technologies have made it possible to detect some attacks and anomalies 
effectively. In recent years, many researchers have considered flow-based approaches through machine learning algorithms 
and techniques to reveal anomalies. But, they have some serious defects. By way of illustration, they require a tremendous 
amount of data across a network to train and model network’s behaviors. This problem has been caused these methods to 
suffer from desirable performance in the learning phase. In this paper, a technique to disclose intrusions by Support Vector 
Regression (SVR) is suggested and assessed over a standard dataset. The main intension of this technique is pruning the 
remarkable portion of the dataset through mathematics concepts. Firstly, the input dataset is modeled as a Directed Graph 
(DG), then some well-known features are extracted in which these ones represent the nature of the dataset. Afterward, they are 
utilized to feed our model in the learning phase. The results indicate the satisfactory performance of the proposed technique in 
the learning phase and accuracy over the other ones. 

Index Terms: Cyber Attack, Intrusion Detection System (IDS), Network Security, Machine Learning, Support Vector 
Regression (SVR) 

1. Introduction

These days, due to the ever-increasing use of digital devices connected to the Internet most organizations and
corporations have been encountered the danger of illegitimate access to susceptible information. These issues with regard 
to security and privacy have been caused hundreds of billions of dollars cost [1]. The most common cyber-attacks are 
usually done by performing malware or malicious software. They are defined as “a software program that runs on a system 
and allows an attacker to carry out some unwanted actions. To tackle these chief problems, some researches have proposed 
a concept named the Intrusion Detection System (IDS). 

The idea of intrusion detection began in the mid-1980s by Denning and became the foundation for the Intrusion 
Detection Expert System (IDES) [2]. When this idea was introduced, it was just utilized in critical military and commercial 
systems because of their high-processing load. Today, with the significant advancement in computer and electronic 
technologies they are applied in a wide spectrum of computer systems and network environments. This notion according to 
NIST’s definition is specified as, “a software program that monitors and analyzes events over a network or on a single 
system to disclose possible intrusion” [3].  More specifically, three main targets of an intrusion detection system are as 
follows: 

• Monitoring and Evaluating
• Discovery
• Reaction

Figure 1 illustrates the general architecture of an intrusion detection system. Initially, data is collected from diverse data 
sources such as the network’s traffic, system logs, and etc. Afterward, they are passed toward the processing engine. 
Ultimately, they are analyzed to detect anomalies and generates proper responses [4]. 
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Some intrusion detection systems are designed and developed in such a way that inspect the payload of each network’s 
packet [5,6]. Due to the increase in data transmission rate in computer networks, the process of network’s packet 
inspection is a tedious and time-consuming operation and in most cases impossible. To deal with these problems some 
researchers have allotted their time to investigate the flow-based IDS. Because flow-based IDS just analyze 
communication patterns instead of packets’ payload inspection [7]. Internet Protocol Flow Information Export (IPFIX)’s 
group recognizes a flow as “a set of IP packets that pass across a special point over a network during a certain time interval. 
All packets belonging to a particular flow share a set of properties which are recognized as flow keys that including IP 
Protocol, source and destination IP addresses, source and destination port number” [8,9]. 

In recent years, scientists have employed graph-based approaches to managing the obstacles concerning the network’s 
intrusion detection. In these approaches, each vertex of the graph represents an entity in the network like client and server 
and each edge exposes communication between two entities [10]. Furthermore, many researchers have used machine 
learning algorithms to discern anomalies in high-speed networks [11,12]. However, they have some major drawbacks. For 
instance, they need an immense amount of the network’s traffic data to train and stimulate the network’s behaviors. This 
problem has resulted in an unpleasing performance in the learning phase. 

Intrusion detection methods are classified into three broad categories: Signature-based IDS, Anomaly-based IDS, and 
Stateful Protocol Analysis (SPA). In signature-based IDS, the patterns of captured events are compared to the pattern of 
well-known attacks or vulnerabilities. This type of IDS is also specified as knowledge-based detection or misuse detection. 
An anomaly-based IDS builds a model for normal behavior and compares it to the observed events in order to recognize 
significant attacks. This IDS type is also called behavior-based detection. SPA is similar to anomaly-based methods but 
SPA depends on vendor-developed generic profiles [13]. 

 
Fig 1. An architectural view of an Intrusion Detection System (IDS) [4] 

The intrusion detection system provides useful information about the attacks. Some purposes of them include: 
• Monitoring and analyzing the users’ activities on computers and networks 
• Checking the network specifications and its vulnerabilities 
• Recognizing patterns with regard to attacks 
• Specifying patterns of abnormal behaviors 
To get more knowledge about the structure of intrusion detection systems in detail, you can see [4]. Since to train the 

model of the machine learning-based method, the immense volume of the network’s traffic slowed down this stage and 
previous methods could not be used in the operational environment, the main purpose of this research is to find a solution 
to decrease the input data in the learning phase so that the quality of the input data be preserved and the detection process 
be done with high accuracy. The remainder of the paper is organized as follows: at first, some basic terminologies are 
introduced. An overview of related works is described concisely in section two. Section three represents our proposed 
technique point by point. Section four indicates the experimental results comprehensively. Finally, conclusion and future 
works would be illustrated in section five. 
Basic Concepts: 
In order to assist the reader to grasp this paper in-depth, we tend to allude several notions and terminologies: 
Computer Network: A computer network often referred to as a network, is a group of computers and devices 
connected together that can communicate through either wired or wireless media. The computer network facilitates 
communication between users and allows them to share resources. 
Intrusion: A series of illegal actions that endanger the integrity, confidentiality, and accessibility to a resource.
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Adversary: Any internal or external intruder agent that its aim is to damage the system or perform unauthorized 
operations. 
Intrusion Detection System (IDS): A system that its primary goal is to identify any unauthorized access that may 
damage the system and usually performed by both internal and external users. Intrusion detection and prevention 
systems play a notable role to guarantee the security of network and computer systems. Plus, they are used as a key 
component alongside the firewalls. 

2.  Previous Studies 

In recent years there has been growing interest in intrusion detection. Many researchers have conducted immense papers 
in this area. In the following, we would denote some of them briefly. Li and et al. [14] proposed an anomaly-based IDS 
method to divulge Denial Of Services (DOS) attacks in high-speed networks using merely flow information. Authors in 
[15] presented an algorithm to disclose DOS and Distributed Denial of Service (DDOS) attacks. They defined an adaptive 
threshold to extract the flow’s features from the network in various conditions, then through ones predict the anomalies. 
Hellemons and et al. [16] developed a flow-based intrusion detection system to expose SSH-dictionary attacks in a real-
time manner. Their algorithm specified suspect traffic via two metrics: packet-per-flow and a minimum number of flow 
records. Winter and et al. [11] Sheikhan and et al. in [12] used machine learning algorithms to uncover anomalies in high-
speed networks. To decrease CPU usage in the learning phase, they chose a small subset of a flow-based dataset released 
by Sperotto and et al. [17]. 

In 1996 Staniford-Chen and et al. [18] introduced a graph-based IDS (GrIDS) to disclose some attacks like worm-
propagation but their work had not satisfactory security [19]. Ellis and et al. [20] presented a secure worm detection 
approach, although it was not appropriate to implement on the hardware. Illiofotou and et al. [21] suggested an intrusion 
detection approach that could be implemented in hardware. Zhou and et al. [22] recommended a time-series graph mining 
method to determine DDOS attacks. Sun and et al. [23] proposed a Compact Matrix Decomposition (CMD) to decompose 
the adjacency matrix and used reconstruction sum-square-error to find anomalies over the network’s traffic which modeled 
as a graph. Authors in [24] presented a graph clustering algorithm to discern anomalies, albeit it was memory-consuming 
and had poor performance. 

Kelton and et al. [25] proposed a nature-based approach to reveal abnormal or malicious behaviors. They used meta-
heuristic optimization to improve their algorithm. Ma, Jiefei, and his co-authors proposed a distributed algorithm to 
uncover distributed signature-based intrusion. They used some common features between multiple paths to reach their ends. 
[26]. In [27] authors offered a method to uncover anomalies based on genetic algorithm. In [28] authors combined IPFIX-
based flow monitoring with Network-Based Intrusion Detection (NIDS). Their method exploits the HTTP related flow 
Information Elements (IEs) to divulge intrusion in high-speed networks. Jelidi, Mohamed And et al. developed an 
algorithm to recognize intrusion in cloud environments. They utilized two detection methods: Signature-based and 
Anomaly-based methods [29]. 

3. Proposed Technique 

In this section, our technique is stated in two fundamental steps. Firstly, some features are extracted from the 
network’s traffic data. After that, Support Vector Regression (SVR) algorithm is trained through the features’ values 
that elicited in the previous step to construct a model. Next, this model is applied to unveil anomalies. Figure 2 shows 
the general architecture of the suggested technique. In the following, it would be expressed in great detail. 

To model our system, we refer to our mathematical knowledge. We are aware that if the network in different time 
intervals visualizes as a Directed Graph (DG) so that the vertices represent the network’s components (computer 
systems and smartphones, etc.), the edges show the directed links between them, and weight of each edge exhibits the 
number of packets that exchanged among two nodes, hence it is straightforward to analyze the network’s behavior. First 
of all, because the real dataset we chose to evaluate our technique contains approximately seven billion records, we 
attempted to summarize it by exploring some most noteworthy features, otherwise, we faced an exhausting action to 
train our model. After this preprocessing, we solely had 105 records to work on. As indicates in Figure 4, the flow-
based network’s traffic is modeled as a Traffic Dispersion Graph (TDG) in several specific time intervals (here, each 
time interval is supposed as 10 minutes.), then some graph’s features are withdrawn. Applying graph to model 
network’s traffic and deriving its principal features lead to a sharp reduction in the number of instances for the SVR 
training model, consequently, performance in the learning phase improves. These features were determined based on 
characteristics of DDOS, Scan, and SSH-dictionary attacks, in such a way the highest value for the first two options and 
the lowest amount for others ones can be signs of an anomaly. Each of the features is suitable to reveal a certain type of 
anomalies. These features have been listed as follows: 

1) The number of edges. 2) Total weight of edges. 3) The average weight of edges. 4) Percentage of edges with 
minimum weight. 5) Percentage of edges that their weight less than the average minus standard deviation 6) Number of 
nodes with a degree more than average plus standard deviation. 7) Maximum degree of the graph. 8) Number of nodes 
with non-zero degree. 9) The multiplication of maximum degree by the proportion of maximum degree per total input



4                            A Flow-Based Technique to Detect Network Intrusions Using Support Vector Regression (SVR)                             
over Some Distinguished Graph Features 

Copyright © 2020 MECS                                                        I.J. Mathematical Sciences and Computing, 2020, 4, 1-11 

weight. 
As previously mentioned, in this technique the SVR algorithm has been employed to construct the detection model. 

In the following section, it would be narrated briefly. 
 

 
Fig 2. A general structure of our intrusion detection technique 

Support Vector Regression (SVR) 
This is one of the most powerful machine learning algorithms. It is proper for such problems in which there are 

complicated relationships among their features and a few numbers of instances input. It was developed at AT&T Bell 
Laboratories by Cortes and Vapnik [30]. Support Vector Machine (SVM) also can be used in both nonlinear regression 
(SVR) and classification (SVC) problems. It is based on the structural risk minimization principle of the statistical 
learning theory [31]. Below the standard SVR is introduced to solve the approximation problems: 
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After the training, an evaluation is performed through the k-fold cross-validation algorithm. This algorithm is 
repeated k times, in which each of the k subsamples used exactly once as the testing data. Then the k results are 
averaged to obtain the final accuracy. 

Parameters tuning is an important section in the SVR algorithm. It has a direct impact on the accuracy of the model. 
To do so, the evolutionary algorithm is applied. The major objective of this algorithm is to find the optimal values for 
three static parameters of the SVR algorithm, namely ε, c, and σ. Table 1 pictures all characteristics of this evolutionary 
algorithm. Value encoding is the best choice for floating-point numbers. For more information regarding evolutionary 
algorithms refer to [32]. 

Fig 3. Graph Visualization and Feature Extraction 

Table 1. Designing an evolutionary algorithm for SVR static parameters tuning 

Value Encoding (ε,c,σ) Encoding 1 
Generating Random values in a uniform distribution Generating Initial Population 2 

SVR Accuracy Fitness function 3 
1) Roulette Wheel SelectionSelection 4 

Uniform Crossover Crossover 5 
Adding or subtracting a small number to the selected value Mutation 6 

Generalization + Elitism Replacement 7 
A certain number of iteration or to reach a wanted accuracy Stop Condition 8 
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4 Experimental Results 

This section describes the dataset which we used to evaluate our technique as well as the results of experiments. 
The dataset used in this research is a labeled flow-based dataset released by Sperotto et al. [17]. It was prepared by 
monitoring a honeypot in the network of the University of Twente. The records of flow are labeled as malicious or 
benign flows. The entire dataset classified into some sections as follows: 
Malicious traffic: this section involves all flow records in which the honeypot is the victim of attacks or it is used to 
perform attacks against others. 
Side-effect traffic: this part of traffic was streamed when attacks were carried out, however, it cannot be considered as 
malicious traffic. 
Unknown traffic: this class includes a small subset of dataset (5968 flows) in which the malicious or benign of flows 
cannot be specified. 

The two first sections of this dataset are used to evaluate the proposed technique in the current paper in which the 
side-effect class is considered as benign traffic. 

Due to the lack of a complete flow-based dataset that covers all types of attacks, in this study, it was not possible to 
test all attacks. Because the previous techniques employed a large amount of network’s traffics in the learning phase 
and could not be practical in operational environments, our proposed technique alleviated the input data of the SVR 
algorithm to make the learning phase more efficient and suitable for the operational environments. To achieve this goal, 
Firstly, we visualized the dataset as a graph to withdraw the important features and use them in the learning phase as 
inputs. On the other hand, because other methods required a boring process to train their model as well as our technique 
was far superior in this step, so we neglected to compare our experimental results with others. 

 We used MATLAB to implement our work, then performed on a system with the following configuration: RAM: 
8GB, CPU: Intel(R) Core(TM) i7-4710HQ@ 2.8GHz (8CPUs), Operating System (OS): Windows 8.1-64bit. Using 
Mathworks Matlab 2014a  software.  The dataset is divided into 104 subsets according to 10-minute time intervals. The 
malicious flows are ones in which they could have a sign of anomaly or intrusion. There are no malicious flows in the 
8-time intervals, as illustrated in Figure 3. These features are presented in Figures 4 through 13. As mentioned before, 
each of these features is exploited to detect a specific type of attack. For instance, the 'max degree' in Figure 10 is used 
to uncap the DOS attacks. However, there is a situation in which the high value of this feature can be considered as the 
normal behavior of the network. Malicious flows can be detected by analyzing these features manually. Support Vector 
Regression (SVR) is used in the next step to disclose the anomalies. Table 2 shows the value of input parameters which 
has been estimated by the Evolutionary Algorithm (EA). The four iterations of the k-fold cross-validation algorithm 
(k=4) are presented in Figures 14 to 17. The final accuracy is calculated by averaging the outputs of the validation 
algorithm. It is equal to 98.2975%. The values of input parameters for SVR estimated from the evolutionary algorithm 
are as follow: 
1) ε: 5.35463428729795E-4                2) c: 1.0570000697821605E+3                  3) σ: 2.925292600260995E+2 
 
Discussion 

The current technique is proper for high-speed networks because it is a flow-based technique, and it does not need 
to inspect the packets’ payloads. In this technique, the Support Vector Regression (SVR) was used to detect anomalies, 
plus the problem of waste of CPU’s time in the training phase by graph visualization was resolved. If the parameters "d" 
and "n" are the number of features and the number of instances respectively, the time complexity of SVR is equal to 
O(max(n,d), min(n,d)2). Moreover, the time complexity of the SVR, just like other machine learning algorithms highly 
depends on the number of instances. In comparison to previous works in which the features have been specified on the 
individual flows, in current technique features are recognized over a graph, furthermore the number of the instances is 
extremely decreased. For example, the dataset used in current research includes 104 ten-minute time intervals and 
approximately 6000 flows in each time interval by average. Based on previous approaches, [11,12] that features are 
defined on flows, the total number of instances is equal to 4,368,000. Additionally, they had to use a small subset of the 
dataset. Whereas in our technique one graph is visualized for every time intervals and the number of instances would be 
104. As mentioned earlier, the dataset includes DDOS, Scan, and SSH-dictionary attacks. this technique would be able 
to detect attacks by an accuracy equal to 98.2975%. 
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Fig 4. Percentage of malicious flows in each time interval 

 
Fig 5. Number of edges 

 
Fig 6. Total weight of edges 

 
Fig 7. The average weight of edges 

 
Fig 8. Edges with minimum weight 

 
Fig 9. Edges with a weight less than an average minus standard 
deviation 

 

 



8                       A Flow-Based Technique to Detect Network Intrusions Using Support Vector Regression (SVR)                            
over Some Distinguished Graph Features 

Copyright © 2020 MECS                                                        I.J. Mathematical Sciences and Computing, 2020, 4, 1-11 

 
Fig 10. Nodes with a degree more than an average plus standard 
deviation 

 
Fig 11. Max degree of the graph 

 
Fig 12. Multiplication of max degree and proportion of max degree 
per total input weight 

 
Fig 13. Number of edges with nonzero degree 

 
Fig 14. Iteration 1, Accuracy: 98.31% 

 
Fig 15. Iteration 2, Accuracy: 98.11% 
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Fig 16. Iteration 3, Accuracy: 97.96% 

 
Fig 17. Iteration 4, accuracy: 98.81% 

5 Summary, Conclusion, and Future Works 

To sum up, in this paper, firstly, we addressed some essential terminologies in order to grasp the intrusion detection 
area profoundly. After that, a concise literature review concerning some intrusion detection approaches, techniques, and 
mechanisms as well as some prominent weak points of them was discussed. Then, our proposed technique was stated 
elegantly. It was evaluated by a flow-based real-world dataset. The results of our experiments depicted that our 
technique was superior to others in terms of accuracy and performance, particularly in the learning phase. 

Several attacks such as DDOS, Scan, and SSH-dictionary were exposed with an accuracy of  98.295575%. 
Furthermore, because it used some leading features, as a result, it had a notable performance in the training phase of the 
SVR algorithm. By preparing more datasets in the future, we can offer better solutions to unveil intrusions by 
combining machine learning techniques as well as powerful statistical methods like the Markov chain model. 
Furthermore, if we can generate comprehensive flow-based datasets that cover all the attacks that have been identified, 
these datasets can be used by other researchers to evaluate their methods and techniques with a higher standard. Due to 
the outstanding performance of our suggested technique in the learning phase, it can also be a competent solution in 
high-speed networks. Finally, since it is worthwhile to detect botnet activities from traffic dispersion graphs by 
extracting new features, we are going to conduct research in the future. 
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