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Abstract 
 
It has been of concern for the most appropriate control mechanism associated with the growing complexity of 
dual HIV-HBV infectivity. Moreso, the scientific ineptitude towards an articulated mathematical model for co-
infection dynamics and accompanying methodological application of desired chemotherapies inform this 
present investigation.  Therefore, the uniqueness of this present study is not only ascribed by the quantitative 
maximization of susceptible state components but opined to an insight into the epidemiological identifiability 
of dual HIV-HBV infection transmission routes and the methodological application of triple-dual control 
functions. Using ODEs, the model was formulated as a penultimate 7-Dimensional mathematical dynamic 
HIV-HBV model, which was then transformed to an optimal control problem, following the introduction of 
multi-therapies in the presence of dual adaptive immune system and time delay lags. Applying classical 
Pontryagin’s maximum principle, the system was analyzed, leading to the derivation of the model optimality 
system and uniqueness of the system. Specifically, following the dual role of the adaptive immune system, 
which culminated  into triple-dual application of multi-therapies, the investigation was characterized by dual 
delayed HIV-HBV virions decays from infected double-lymphocytes in a biphasic manner, accompanied by 
more complex decay profiles of infectious dual HIV-HBV virions. The result further led to significant triphasic 
maximization of susceptible double-lymphocytes and dual adaptive immune system (cytotoxic T-lymphocytes 
and humeral immune response) achieved under minimal systemic cost. Therefore, the model is comparatively a 
monumental and intellectual accomplishment, worthy of emulation for related and future dual infectivity. 
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systemic-cost, monolytic-infection, lentivirus, triphasic-maximization 
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NOTATIONS 

HIV – human immunodeficiency virus 
HBV – hepatitis B virus 
CTL – cytotoxic T-lymphocytes 
HIR – humoral immune response 
HAART – highly active antiretroviral therapy 
cccDNA – covalently closed circular DNA 
HBeAg – hepatitis B encore antigens 
HBsAg – hepatitis B surface antigens 

Anti-HBeAg – anti hepatitis B e antigens 
RTI – reverse transcriptase inhibitors 
PIs – protease inhibitors 
IFN-α - alpha-interferon  
NAs – nucleoside analogues  
Lmax – maximum saturated double lymphocytes 
DNA – deoxyribonucleic acid 
ALT – alanine aminotransferase 

1. Introduction 

Globally, the nomenclature HIV-1 and/or HIV/AIDS have been asserted as an integral component of human 
immune system with CD4+ T lymphocytes as route victim. This assertion emanated from the fact that no 
outright medical cure established for this deadly disease [1]. Moreso, HIV infection has concurrently been 
aggravated by the multiplicity of its allied infections, which includes coinfections and/or dual infections of the 
types: HIV-hepatitis B virus, HIV-tuberculosis, HIV-hepatitis C virus, HIV-influenza virus, HIV-pathogeneses, 
HIV-Ebola virus, HIV-listeriosis, HIV-zika virus, etc, [1- 5].  

Following the similarities in infection dynamics, this present study consider the menacing effects of dual 
delayed HIV-HBV infections. The co-infections of human immunodeficiency virus (HIV) and hepatitis B virus 
(HBV) present significant challenges to the health care providers world-wide with persistent co-infections 
leading to deadly acquire immunodeficiency syndrome (AIDS), unprecedented rapid cirrhosis, hepatocellular 
carcinoma, increase in morbidity and mortality rate beyond those caused by monolytic HIV or HBV infection 
[2, 6-10]. As a monolytic infection, HIV is a lentivirus with death as its lethal consequence if proper and timely 
medical suppressive and treatment measures are not offered.  On the other hand, hepatitis B is a liver infection 
caused by hepatitis B virus (HBV), which if allowed under off-treatment, leads to chronic liver cirrhosis, liver 
cancer and hepatocellular carcinoma or even death [1, 10, 11]. Of note, HBV as a prototype member of the 
Hepadnaviridae family (hepatotropic DNA virus) is one of the hepadnaviruses with string infection affinity to 
the liver cells and traceable to the pancreas, kidney and mononuclear cells [9, 12].  

Furthermore, due to the biological similarities of dual HIV-HBV infectivity, it has been adduced that all 
HIV-1 infected patients should be screen for HBV infection and vice-versa. Moreso, infection with HBV had 
become more violent in patients co-infected with human immunodeficiency syndrome. This is obvious as HIV 
infected individuals are prong to HBV infection, the reverse may be rare [9]. Therefore, HIV/HBV dual 
infected individuals are at risk of chronic hepatitis, cirrhosis and hepatocellular carcinoma with often resistance 
and the experience of HAART toxicity. The high death toll caused by dual HIV-HBV infectivity accounted for 
over 36.7 million people living with HIV as at end of 2016 and a death toll of 1 million in 2016, declared by 
the World Health Organization (WHO), [13]. On the other hand, 2-billion world-wide are infected with HBV, 
accounting for approximately 350 million chronic cases and estimated 600,000 death consequence to chronic 
hepatitis B virus infection [9, 14]. Complicatedly, the ubiquitous and asymptomatic nature of HIV at onset of 
infection couple with initial response of anti-HIV immune system often make the incubation period 
predominantly unascertained [1, 15, 16]. This is to say that the incubation period of HBV, which is 30 180−
days is also not fully understood, since majority of infection cases are clinically known after acute stage of 
infection [2. 17]. 

The co-transmission mode of these co-virions ranges from percutaneous exposures i.e. direct contact with 
blood, semen to body fluid from an infected person. Other mode include: sharing of contaminated and unsafe 
therapeutic drug injection needles, perinatal and sexual exposures with an infected person, nosocomial 
transmission; vertical transmission and sharing of personal effects i.e. toothbrush, razor, tattooing and 
acupuncture, barbing equipment, non-compliance with aseptic techniques, non-availability of testing equipment,
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reuse of disposable injecting devices, multiple dose of medication vials, ritual scarification (in parts of Africa) 
and occult infection transmission [9, 18-24]. Therefore, it can be said that dual HIV-HBV similarities lies in its 
transmission vessel known to be the reverse transcriptase enzyme in replication; the tendency to develop 
chronic infection, which are difficult to treat and their immune capacity of genomic mutation resulting to rapid 
mutant strains [9]. Of note, the dichotic characteristic of HIV and HBV is the never recover from infection by 
viral load, even when on cohesive medical care. However, monolytic HBV infected patients who recover from 
infection never get infected by the virus, since system is permanently immune [20]. Moreso, the viral genomes, 
which can integrate within the host genome is obligatory for HIV lifecycle but is not the case for HBV. 

Like HIV, the risk factors associated with chronic HBV infection are the possible development of liver 
fibrosis, cirrhosis and hepatocellular carcinoma causing an estimated 650,000 deaths per year [12, 25]. 
Categorically, the risk factors of chronic HBV include its progression to HBsAg, anti-HB e Ag, and HBV DNA; 
and the problem of experiencing HAART toxicity. Peculiar to co-infected HIV/HBV patient, is the high liver 
related mortality rate when compared to either monolytic infection [56]. The model [69] established the fact 
that for co-infected individuals, the virological persistency of chronic HBV in HIV infected population is 
routed to the intracellular HBV replication intermediate, called covalently closed circular DNA (cccDNA). The 
model had suggested elimination of the cccDNA as the only possible cure of chronic HBV. Thus, the 
consequential effect of co-infectivity of HIV-HBV in addition to rapid progression of liver cirrhosis due to low 
CD4+ T cell counts are decrease rate of HBeAg clearance, rapid replication of HBV and decrease inflammatory 
response to chronic hepatitis B. 

The treatment of co-infection HIV/HBV concurrently can be effectively managed if a coherent diagnosis and 
complete monitoring of this co-infection along with understanding the mechanisms of possible drugs resistance 
are adequately given the needed commitment. This is obvious following drugs variability and risk of 
complications, which assumed great limitations in liver biopsy [26]. Moreso, coming from the view point of 
monolytic virology (HIV or HBV), suppression of viral replication is the main aim of therapy. For HIV 
infection, the varying chemotherapies have been categorized into transcriptase inhibitors (RTI) and protease 
inhibitors (PIs). Related models with the application of RTI and PIs on mono-HIV infection dynamics can be 
found in [1, 27-29]. From related literature, among possible known chemotherapies for monolytic HBV 
infection is the interferon in the form of standard or pegylated, which is often recommended for chronic HBV 
infection. The IFN-α is known for the elimination of infected cells by reducing the cccDNA. Complementing 
the clinical function of IFN- α is the nucleos(t)ide analogues (NAs). It is the clinical attributes of the 
aforementioned chemotherapies that envisage it choice for this present investigation. The respective role of 
these chemotherapies will be outline in section 2. 

Non-the-less, in spite of the significant role of these chemotherapies at monolytic infection levels, a 
systematic combination of these drugs for dual infectivity often result to not only altering the drugs history for 
HBV but notably, interferon is limited to patients with high alanine aminotransferase (ALT) levels, low HBV 
DNA levels and those with positive HB e Ag status [30, 31]. Therefore, for co-infectivity of HIV/HBV, the 
choice of chemotherapies must be a major concern to avoid the overlapping influence of a particular drug on 
the other. It can then be insinuated that following the complexity associated with co-infectivity, the seeming 
measurable approach to understanding infections dynamics, choice of chemotherapies and methodological 
applications as well as associated resistivity had been through mathematical modeling and classical numerical 
methods. 

In collaboration with this present study, mathematical models formulated to account for the monolytic HIV, 
HBV infections include [32-40]. The inclusion of the vital role of adaptive immune system and delay 
intracellular as defense mechanism were studied by [1, 2, 6, 15, 20, 27, 41-48]. Other monolytic models, which 
had focused on the methodological application of treatment strategies and optimal maximization of healthy 
population, can be found in [1, 2, 16, 28, 29, 49-60]. Remarkably, taking precedence from existing literatures, 
classical mathematical models for co-infections of HIV-HBV have been a rare event. From available literatures 
on co-infections of HIV-HBV, only natural history, challenges and on drugs resistivity have been discussed. 
For instance, the study [9] conducted a review on HIV/HBV con-infections: epidemiology, natural history and
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treatment. The study [10] highlighted the global challenges associated with HIV-HBV co-infections. The 
characteristic of drug resistant HBV in an international collaborative study of HIV-HBV infected individuals 
on extended lamivudine therapy was conducted by [61], while dually active HIV/HBV antiretroviral as 
protection against incident hepatitis B infections: potential for prophylaxis was studied by [62]. Moreso, the 
results from a multicenter studied in Italy accounted for the correlation of HIV, HBV and HBC infections in a 
prison inmate population [63]. 

Therefore, to the best knowledge of this present investigation, these previous studies have been devoid of an 
articulated mathematical model for co-infection dynamics and accompanying methodological application of 
desired chemotherapies. This singular yet enormous scientific ineptitude forms the motivating integral factor 
for this present investigation. Theoretically, the unique characteristics of this present study is anticipated to 
integrate the biological components in the nature of adaptive immune system as both state component and as 
treatment measurable functions as well as the exponential time delay lags. Of note, the motivating questions 
that fronted this investigation are thus: since the study envisage dual HIV-HBV infections under dual pair 
control functions in addition to the control measures of dual immune system, will the specify treatment 
functions of HIV have adverse effect on intended positive control functions of HBV and vice versa? Secondly, 
admitting the dual role of dual adaptive immune system on HIV-HBV is it acceptable to assume that if the end 
result of investigation proves against the mutual expectations of optimal maximization of healthy CD3+ T 
lymphocytes and CD4+ T-lymphocytes (double lymphocytes), then control function must have been 
counterproductive? Otherwise, our investigation is anticipated to lead to either eradication or sufficient 
maximization of double lymphocytes. 

Thus, using ODEs, the present model is formulated as penultimate 7-Dimensional mathematical dual HIV-
HBV dynamic augmented model arising from the inductive understanding of models [1, 2]. The model seek as 
its objective, to account for the methodological application of choice multi-therapies in the presence of dual 
adaptive immune system and intracellular delay function following the interplay of dual HIV-HBV with double 
lymphocyte cells. More objectively, the novelty of the present study lies in the proposed methodological 
application of triple-dual control functions with the incorporation of growth logistic term and exponential time 
delay lags for a dual HIV-HBV infections. Furthermore, the study concurrently aims at advancing via optimal 
control theory, a functional scientific control and/or eradication of these deadly dual infections, which is 
presumably the first in the annals of co-infectivity studies. However, it is pertinent to note that due to 
anticipated complexity associated with dual infections, the present model intentionally do not consider 
infections latent cells and non-cytotoxic carrying processes, which are often established at acute stages [49]. 

Ipsofacto, the organization of this present paper is an embodiment of seven sections with section 1 devoted to 
the introductory aspect. Constituting the material and methods of section 2, are the problem statement and 
mathematical equations; and the analysis of model basic properties, which include system invariant and 
boundedness of solutions as well as system equilibria are explicitly discussed. Section 3 focuses on the optimal 
control problem formulation, characterization of optimal control and the existence of an optimal control dual-
pair. The optimality system and uniqueness form the fulcrum of section 4. We introduced a number of 
illustrative examples to validate the model ingenuity in section 5. The resultant outcome of experimental 
simulations are discussed and presented in section 6. Finally, on the basis of the findings, section 7 is devoted 
to an incisive and succinct conclusion and remarks with embedment of obtained results as appendices. The 
entire study is anticipated to be a monumental and equivocal representation of intellectual advancement 
towards the eradication of the seeming insurmountable deadly dual HIV-HBV infections. 

2. Material and Methods 

Constituting the material and methods of this section, are the model problem statement and mathematical 
equations for an untreated dual delayed HIV-HBV infections with natural adaptive immune response as both 
state components and as defense mechanism. Here, the study also investigates the basic properties of the model 
(without chemotherapies), which include system positivity invariant and boundedness of solutions. The last
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part of this section is devoted to the system stability analysis for an untreated dual delayed HIV-HBV model. 

2.1 Problem Statement and Mathematical Equations 

In bracketing the innovative ideas of the current study, we bring to bear three closely compactible models [1, 
2, 50], among those highlighted in section 1. First, we consider mathematical model for a dual delayed HIV-
pathogen infections under immune effectors response and multiple chemotherapies as presented by model [50]. 
The dynamics of that model was governed by  
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where ( ), ( ), ( ), ( ), ( ),T TU t I t V t P t M t denoted the concentration of uninfected cells, infected cells, free viral load, 
free infectious pathogens and immune effectors response respectively. Details of this model could be found as 
cited. 

With the introduction of intrinsic virulence as state variables and specification of infected cytotoxic T-
lymphocyte cells into viral load infected cells and pathogen infected cells as well as subdivision of immune 
effectors response into effectors of CTLs and precursors of CTLs, the model [1], considered optimal dynamics 
of dual pair treatment functions of dual delayed HIV-pathogen infections. The epidemiological governing 
equations were derived as: 
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the hepatitis B virus infection, [2]. The study established the dynamics of the early stage of HBV under off 
treatment scenario as:   
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where ( ) ( ) ( )T t x t y t= +  and ( ), ( ), ( ), ( ), ( )x t y t v t w t z t  denoted the concentrations of uninfected cells, infected 
cells, viruses, antibodies and cytotoxic T-lymphocytes (CTLs). Here, we also refer readers to cited model for 
further details. Thus, from the intuitive point of  reviews of models [1, 2, 50], it is noted that model (1) focuses 
on HIV and general pathogeneses studied under multiple treatments and cytotoxic T-lymphocytes in the 
presence of time delay lag. Model (2) represented an expanded idea of model (1) with the incorporation of two 
state variables leaping from the class of infected cells and the virus ingress as state variables. Now, following 
the fact that HBV possesses quite large characteristic properties and functioned under similar conditions, the 
transformative ideas of HIV dynamics was conveniently implemented on HBV infection as depicted by model 
(3). Notably, natural source and decay rates of uninfected cells as well as replication rate of infected cells were 
not identified.  

Thus, in this present paper endowed by the innovative ideas of the aforementioned models and motivated by 
their scientific lapses, we articulate and formulate an intriguing 7-Dimensional dual delayed HIV-HBV 
dynamic infections model. Here, the study seek as a penultimate model to account for the most probable 
clinical methodological optimal application of triple-dual control functions for the treatment and possible 
eradication of intricating dual delayed HIV-HBV infection on susceptible double lymphocyte cells. Moreso, the 
interplay of these dual virions with multi-therapies is anticipated in the presence of time delay lag; and dual 
function of cellular immune response (CTLs) and humoral immune response (antibodies). Therefore, if the 
population subgroups are representative of the system state variables measured in units’ volume of 3/cells mm , 
such that uT  define the uninfected double lymphocyte cells, iT  - the viral load infected lymphocyte cells and bT
- the B-virus infected hepatocytes , then the free infectious viral load and infectious hepatitis B virus are 
denoted by iV and bV . Other subpopulation are the cellular immune response and the humeral immune 
response capped as Q and Z . Thus, the derived simplified epidemiological non-linear 7-Dimensional 
differential system is governed by the following equations: 
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with  
( ) ( ) ( ) ( )u i bL t T t T t T t= + +   (5)  

and having initial conditions: ( )0 ( )0 ( )0 ( )0 ( )0 0(0) , (0) , (0) , (0) , (0) , (0)u u i i b b i i b bT T T T T T V V V V Q Q= = = = = = and 

0(0)Z Z=  for all 0t t= . Hence, model (4) is the mathematical representation of the system basic equations and 
schematically depicted by fig. 1, below:   Of note, the liver, which is the main victim of hepatitis B virus is a 
member of the immunological organ known as the CD3+ lymphocytes or hepatic lymphocyte repertoire or 
better called liver lymphocytes. Biologically, the site for viral load infection is the CD4+ T lymphocyte. 
Therefore, through this text, we shall refer as double-lymphocytes to define the site for the system HIV-HBV 
dual infections.  

 

Fig.1. Schematic representation of dual HIV-HBV infection and multiple treatment dynamics
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The verification of model ingenuity is conducted using the biological state variables and parameter values 
as inscribed in tables (1 & 2) below. 

Table 1 Description of state variables with values for model (4) 

Variables Dependent variables Initial 
values 

Units  
Description 

( )uT t  Uninfected double lymphocyte cells population 0.5 3/cell mm  

( )iT t  Viral load infected T-lymphocyte cells population 0.02 3/cell mm  

( )bT t  B-virus infected hepatocyte cells population 0.02 3/cell mm  

( )iV t  Infectious free HI-virus population 0.08 1copiesml−  

( )bV t  Infectious free HB-virus population 0.07 1copiesml−  

( )Q t  Cytotoxic T-Lymphocytes (immune effector response) - CTLs 0.04 3/cell mm  

( )Z t  Antibodies (humoral immune response) - HIR 0.02 3/cell mm  

max ( )L t  
Maximum saturated double lymphocyte cells [0,1]∈   

 
Note: Table 1, is a reflection of models [1, 2, 42, 50], modified to accommodate the present investigation. 
 

Intuitively, from fig. 1, the biological descriptions of the terms associated with equations of model (4) can 
be deduced as follows: in the first equation, the first and second terms - ( )max, 1 ( )pb s T t L−  denotes the source 
rate of uninfected double lymphocyte cells with maximum per-capita proliferation rate s , and having logistic 
term ( )max1 ( )T t L−  that depends on the double lymphocytes size, maxL . The healthy double lymphocytes 

becomes infected by the dual virions at the rate ( )1 2( ) ( )i bV V Lβ β− + , as depicted by the third term, where 

1 2,β β are constants of infection rates. The last term Tµ , represent rate of natural decay of uninfected double 
lymphocytes. This last term is among the differentiating attribute of this present model when compared to 
model [2]. From the second and third equations, the respective first terms 1

1 1 1( ) ( )i
ie V t L tµ ωβ ω ω− − − and 

2
2 2 2( ) ( )b

be V t L tµ ωβ ω ω− − − , describes the rate of inflow of infected double lymphocytes arising from 

infectious viral load and B-virus and having exponential rate of infections 1ie µ ω− and 2be µ ω− , which reflects 
death rate of new non-virions producing infections. The 1 2,ω ω , denotes infection time lag. This time lag defines 
the period the newly infected cells becomes actively infectious. The second terms 1 1( ) iq Tα+  and 2 2( ) bq Tα+
describe the rate of replications of infected double lymphocyte cells and death rates due to infections. The last 
terms 1 ig T Q and 2 bg T Q denotes clearance rates of infected double lymphocyte cells by cellular immune 
response (CTLs). 

The fourth and fifth equations depicted the dual virions infectious dynamics. Precisely, dual virions 
particles are produced at the rates 1 1q p for iT and 2 2q p for bT with 1,2ip = as the numbers of free virions growth 
rates from infected double lymphocytes lifespan. Infectious virions decay at the rates 3 iVα and 4 bVα , while 
decay due to antibodies defense mechanism are denoted by 1 iV Zτ and 2 bV Zτ  respectively. From the sixth and 
seventh equations, the first terms define the generation constants 1 2,d d of cellular immune response and 
humoral immune response, which are directly proportional to the production rates of infected and infectious 
hepatocyte cells ( , )i bT T . Lastly, both adaptive immune response decay at the rates 5α and 6α respectively. Of 
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note, the parameters 1 2,d d is known for its contributive role as the strength of lytic components denoted by

1( )i bd T T Q+ and 2 ( )i bd V V Z+ . 

Table 2 Summary of constants and parameter values for model (4) 

Parameter 
symbols 

Parameters and constants Initial 
values 

Units  
Description  

pb  Inflow source of uninfected double lymphocyte cells   0.5  3 1mm d −  

s  Per-capita proliferation rate of double lymphocyte cells   0.5  1day−  

1,2iβ =  Rate of virions infections on susceptible hepatocyte cells  3 51.8 10 ;3.6 10− −× ×  cells
1 1virions d− −

 

Tµ  Natural decay rate of uninfected double lymphocytes 0.2  1d −  

iµ  Death rate of infected HIV non-virus producing cells 21.1 10−×  1d −  

bµ  Death rate of infected HBV non-virus producing cells 33.9 10−×  1d −  

1,2iω =  Time delay lags for infectious double lymphocyte (intracellular 
delays) 

0.5;0.1  day  

1,2iq =  
Replication rates of HIV and HBV by infected double lymphocyte 0.48;0.46  - 

1,2ig =  
Clearance rate of infected hepatocytes( iT  , bT ) by CTLs  0.5;0.1  3 1 1mm cells d− −

 

1,2ip =  
Production rates of virions infectious HIV and HBV  50;480  - 

1,2iτ =  
Clearance rates of infectious virions by antibodies (HIR)  120.05;10−  3 1mm d −

 

1,2id =  
Activation rates  of effectors (CTLs) and antibodies (HIR) 0.005;0.013  3 1 1mm cells d− −

 

1α  Death rate of viral load  infected T-lymphocyte cells 0.02  1d −  

2α  Death rate of HB-virus infected hepatocyte cells 0.053  1d −  

3α  Infectious viral load death rate 0.4  3 1mm d −  

4α  Infectious B-virus death rate 0.67  3 1mm d −  

5α  Decay rate of CTLs 0.1 1d −  

6α  Decay rate of HIR 0.1 1d −  

1,2iu =  Treatment control functions for , ,u i iT T V  [0,1)iu ∈   

1,2ir=  Treatment control functions for , ,u b bT T V  [0,1)ir ∈  

1 1,A B  Optimal weight ratio on 1 1,u r  25000 

2 2,A B  Optimal weight ratio on 2 2,u r  250 

Note: Table 2, is a reflection of models [1, 2, 42, 50], modified to accommodate the present investigation. 

Thus, from the system basic model, we observe that in addition to assumptions of monolytic HIV and HBV 
infections of models [1, 2], the model is guided by following assumptions: 
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Assumption 1 
i. Susceptible double lymphocyte population is assumed to be free of any other infections except dual 

HIV-HBV infections. 
ii. Double lymphocytes and virions are uniformly distributed. 
iii. The process of replication of dual adaptive immune system is ignored. 
iv. Infection latent cells and non-cytotoxic carrying processes are ignored. 
v. Exponential time delay lags, 1,2 0iω = > .  
vi. Only population with dual HIV-HBV is considered.  

Next, since model (4) completely represent a set of living organisms, then it becomes worthwhile to 
investigate the model properties in terms of analysis of basic properties of system model.  

2.2 Analysis of Basic Properties of Model 

In this sub-section, we investigate the model basic properties, which include the system state variables 
invariant and boundedness of solutions as well as the stability analysis of disease-free equilibrium state for an 
untreated dual delayed HIV-HBV infected model. 

2.2.1 System invariant and boundedness of solutions 

For an untreated dual delay HIV-HBV model, where 1,2 0iu = = and 1,2 0ir = = for all 0t = , our basic model (4) 
is simplified to a linear system of the form:  

1

2

1 2

max

1 1
1 1 1 1

1

2 2
2 2 2 2

2

( ) ( )( )1 ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( ) (
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p u u T u

i i u
i i

b b u
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e q T t g T t Q t
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e q T t g T
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µ ω

µ ω

β β
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ω ω
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ω ω
β α

ω
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= + − − −   
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 − −
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= − + − − 

1 1 3 1

2 2 4 2

1 5

2 6

) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ( ) ( )) ( ) ( )

( ( ) ( )) Z( ) ( )

i
i i i

b
b b b

i b

i b

t Q t

dV
q p T t V t V t Z t

dt
dV

q p T t V t V t Z t
dt

dQ d T t T t Q t Q t
dt
dZ d V t V t t Z t
dt

α τ

α τ

α

α

= − −

= − −

= + −

= + −

 .           (6) 

So, we see that model (6) represents a system of 7-Dimensional delayed differential equations for which we 
are required to define the system initial functions and the functional framework. In this case, suppose 

( )7
1,2[ ,0] ;i iN C ω == − ℜ is the Banach space of continuous mapping from 1,2[ ,0]i iω =− to 7ℜ equip with the sup-

norm
0

sup ( )
i t

t
ω

ξ ξ
− ≤ ≤

= , then the initial functions of the system verify the following: 

( )( ), ( ), ( ), ( ), ( ), ( ), ( )u i b i bT T T V V Q Z Nθ θ θ θ θ θ θ ∈ .      (7)  
Moreso, from biological point of view, these initial functions ( ), ( ), ( ), ( ), ( ), ( )u i b i bT T T V V Qθ θ θ θ θ θ and 
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( )Z θ assume non-negative values i.e.  
( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0u i b i bT T T V V Q Zθ θ θ θ θ θ θ≥ ≥ ≥ ≥ ≥ ≥ ≥ , 1,2[ ,0]it ω =∀ ∈ − .                              (8) 

Equation (8) is inert if  
max ( ) ( ) ( ) ( ) 0u i bL L t T t T t T t≥ = + + > , 1,2[ ,0]it ω =∀ ∈ − .                   (9) 

Therefore, the resulting solutions of model (6) about the invariant and boundedness of solutions is satisfied by 
the following theorem. 
Theorem 1  For any given initial functions satisfying conditions (7) and (8), the system (6) has a unique 
solution and in addition, this solution is invariant and bounded for all 0t ≥ . 

Proof. From classical theory of functional differential equations [2, 50], it is noticed that system (6) is locally 
Lipschitzian at 0t = , where mt  is the maximal existence time for the solution of system (6). Observe that if

(0) 0uT = , then ( ) 0uT t ≡ 0t∀ > . Hence, it can be assumed that ( ) 0uT t > . Observe also that (0) 0iT = , then 
from equation (8), we have ( )1 1 1 1(0) ( ( ) ( )) ( ) (0, )i i uT V T L tβ ω ω ω= − − − ≥ , which implies that for 0t > , we have

( ) 0iT t > . Similarly, if (0) 0bT =  then ( )2 2 2 2(0) ( ( ) ( )) ( ) (0, )b b uT V T L tβ ω ω ω= − − − ≥ , which imply that for

0t > , we have ( ) 0bT t > .  Moreso, if (0) 0iV =  then 1 1(0) (0) 0i iV q p T= > , which imply that for 0t > , we have
( ) 0iV t > . This is to say that if (0) 0bV =  then 2 2(0) (0) 0b bV q p T= > , which imply that for 0t > , we have
( ) 0bV t > . Furthermore, if (0) 0, (0) 0Q Z= = , then ( ) 0, ( ) 0Q t Z t≡ ≡ 0t∀ > . Thus, it can be assumed that
(0) 0, (0) 0Q Z> > .  
Now, we then first assume that there is 1 0mt t> > such that 1( ) 0uT t =  and ( ) 0uT t > , ( ) 0iT t > , ( ) 0bT t > ,
( ) 0iV t > ( ) 0bV t >  for 1[0, ]t t∈ . Observe that  

1 2

max

( ) ( )( )1 ( ) ( ) ( )
( )

u i b
p u u T u

dT V t V tL tb s T t T t T t
dt L L t

β β
µ

  + 
= + − − −   

  
. (10) 

Then, it is easy to show that max0 ( )L t L< <  for 1[0, ]t t∈ . We then see that   

1 2( ) ( )
( )

( )
u i b

u
dT V t V t

T t
dt L t

β β+ 
≥ −  

 
, 

which clearly implies that ( ), ( ) ( )i bT t T t L t< ,  for 1[0, ]t t∈ . These observations implies that for 1[0, ]t t∈ , we 
have  

1 2( ) ( )
( )

( ) ( )
u i b

u
i b

dT V t V t
T t

dt T t T t
β β +

≥ −  + 
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Hence,  

 

1
1 2

0
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( ) ( )

( ) (0) 0
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i b
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u u

V s V s ds
T s T s

T t T e
β β 

 
 
 

+
−

+
≥ >

∫
,                                                                                                            (11)

    
  
which contradicts initial assumption. Thus, following similar approach, we can prove that all the state variables 
of system (6) are invariant, which proves the positivity of solutions in [0, )mt t∈ .  
Next, we prove for the boundedness of solutions of the system (6) by considering the following functions. Let 

( ) ( ) ( )1 2
1 2 1 2 1 2 1 2 1 1 2 1 2 2

( )( ) ( ) ( ) ( ) ( ) ( ) ( )i b
u i bM t p p d d T t p p d d T t p p d d T te µ ω µ ω ω ω− += + + + + + + +  
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1 2 1 2 1 2

1 2 1 1 2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( )
2 2 2i b

d d d d d dV t V t Q t p p d q q Z tω ω ω ω+ + + + + + + + + + .     (12) 

From equation (6), substituting the state variables, we have 

 
( ) 1 2 1 2

1 2 1 2
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Since max0 ( )L t L< < , max( )uT t L< , ( ) ( ) ( )u uT t L t T t− < − for 0t > , it follows that  

( ) 1 2
1 2 1 2

max

( )( ) ( )( ) 1 ( )i b
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dM t L tp p d d b s T t
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Suppose, we set ( )max 1 2 3 4 5 6min , ( ) 2, ( ) 2, ,s L q qη α α α α= + + , then we obtain  

 
( ) 1 2

1 2 1 2
( )( ) ( ) ( )i bdM t p p d d M t

dt
e µ ω µ ω η− +≤ + − .                 (15) 

Using Gronwall’s Lemma, we see that ( )M t is bounded and so are the functions
( ), ( ), ( ), ( ), ( ), ( )u i b i bT t T t T t V t V t Q t and ( )Z t , which ensure that the solutions exist globally. Therefore, the results 

obtain shows that the components of the solution of system (6) are invariant for all [0, )mt t∈ . Hence, the 
boundedness of ( ), ( ), ( ), ( ), ( ), ( )u i b i bT t T t T t V t V t Q t and ( )Z t on [0, )mt t∈ implies that mt = ∞ . This completes the 
proof.               

2.2.2 Equilibria and stability analysis 

For a system of linear model (6), which represents an untreated dual delayed HIV-HBV infection dynamics, 
it is obvious that the model is associated with complexity in-terms of state variables and accompanying 
parameters. This implies that the system equilibria and stability analysis are bound to be somewhat complex. 
Not-with-standing, we show the ability of the model to exhibit multiple locally asymptomatically steady states,
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which defines all possible equilibrium points. First, model (6) has disease-free equilibrium
0 ( ,0,0,0,0,0,0)p TE b µ= . This corresponds to the maximal level of healthy double lymphocyte cells with 

biological meaning, provided the system reproduction number 0R  is 
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max 1 2 1 2
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1 2 3 4
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= <
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. (16)  

Then, it can be deduced from the DFE and equation (16) that viral load infected cells, B-virus infected cells, 
free viral load, infectious B-virus, cellular immune response and humeral immune response are all zero. This 
can also be said of the second equilibrium 1 ( )1 ( )1 ( )1 ( )1 ( )1( , , , , ,0,0)u i b i bE T T T V V= , which represents the no 
immune response equilibrium with  
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 . (17) 

This equilibrium exists provided 0 1R > in addition to several other biological meanings.  
More analytically, from model (6), let ( , , , , , , )u i b i bT T T V V Q Zδ = , represent the vectorial capacity of model 

(6), then in vector form, we have 

( , ; )d f t x
dt
δ δ= , (18)  

where ( , ; )f t xδ denotes the RHS of the ODEs and x , the system vector parameter as in table (2). Therefore, 
solving equation (18), we deployed a readily compatible Runge-Kutter of order 4 to obtain the equilibria kx , i.e. 

( , ; ) 0f t xδ = . The Jacobian matrix is then computed from the partial derivative  

( , ; )( , ; ) i

i

f t xf t x δδ
δ δ

 ∂∂
=  ∂ ∂ 

. (19) 

For an off-treatment scenario of model (6), the Jacobian with , 1,2,....,13i iΩ ∀ =   
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6 1 5( )i bd T T αΩ = + − , 7 2 6( )i bd V V αΩ = + − , 1 2
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is obtained as:
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 .(20)  

Thus, from equation (20), the dynamic ODE that is linearized about the equilibria kx , is obtained by 
substituting computed kx for x in equation (20). The basis of linearization is to ensure that for eigenvalues with 
negative real part, the equilibria kx are locally asymptotically stable. This affirms the fact that in addition to 
system equilibria 0E  and 1E , there are several other physical steady states and non-physical steady state, which 
could be derived from those of [1, 2, 15, 16, 42]. 

Now, using the above basic properties as background, we can then address the main goal of our investigation, 
which amount to the maximization of the system performance index measured in terms of the concentration of 
susceptible double lymphocyte cells and dual adaptive immune system induced by minimal chemotherapy cost. 
This utmost task is achieved following an acceptable methodological application of desired chemotherapies 
within a finite time interval.  

3. Optimal Control Problem and Mathematical Analysis 

With the introduction of multi-therapies and following the biological behavior of dual adaptive immune 
system as also treatment outfit, we will devote this section to the optimal control formulation investigation of 
its invariant and boundedness of solutions. Also discussed in this section is the mathematical analysis for the 
derived model. This involves the system optimal characterization and existence of optimal dual-pair control. 

3.1 Optimal Control Problem for HIV-HBV Model 

By definition, optimal control is concerned with the maximization of uninfected target population and the 
affected immune system, while suppressing affected disease(s) under anticipated minimized systemic cost, 
following the methodological application of desired control functions [50]. Therefore, in this section, we seek 
an optimal control of dual delayed HIV-HBV multi-therapies, which allow the maximization of healthy double
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lymphocytes concentration as well as maximal cellular immune response and humeral immune response. We 
also, concern the study with the maximal suppression of both viral load and B-virus inclusive of infected 
double lymphocyte cells under presumed systemic cost. 

In this investigation, we consider our dual-pair control functions in the form: reverse transcriptase inhibitors 
– RTI and protease inhibitors – PIs for HIV; standard interferon-α (sINF-α ) and nucleoside analogues - NAs 
in addition to the dual role of adaptive immune system (cellular immune response – CTLs and humeral immune 
response – HIR). Hence, the control initial, triple-dual control functions, otherwise known as tri-linear control 
functions. 

Mathematically, in stating the optimization control problem, we first assume that both viral control function 
denoted by 1u  , 2u ;and that of B-virus by 1r  , 2r all varies with time and has antiviral effect on virions 
production. Clinically, the control functions 1u  , 1r exhibits similar function as is the case for 2r  , 2u in their 
respective T-lymphocytes. The roles of these control functions are defined as follows: 
Definition 1 

i. Reverse transcriptase inhibitor denoted by 1u , represent drug efficacy in blocking new vital load 
infection. 

ii. Standard interferon-α  denoted by 1r is responsible for the elimination of infected cells and reduction 
of cccDNA and blocking of new B-virus infections in the liver cells. 

iii. Protease inhibitors denoted by 2u is the efficacy of chemotherapy in inhibiting viral load replication. 
iv. Nucleoside analogues (i.e. lamivudine) denoted by 2r represents efficacy of drug in elongation of DNA 

and inhibition of HBV replication. 

Definition 2 

i. Cellular immune response mediated by cytotoxic T-lymphocytes (CTLs) is a body defense mechanism, 
which is initiated at the onset of HIV-HBV infection and is responsible for the killing of infected liver 
cells. 

ii. Humoral immune response initiated by the antibodies is protein-like B-cells responsible for the 
neutralization and inhibition of virus proliferation. 

In line with definitions 1& 2, we consider the control version of model (6), which is time inclusive of model (4), 
as: 
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with conditions and parameters descriptions as earlier mentioned in model (4). For this optimal problem (21), 
the properties of boundedness and positivity of solutions is defined by the following theorem. 

Theorem 2 For any initial conditions ( ), ( ), ( ), ( ), ( ), ( )u i b i bT T T V V Qθ θ θ θ θ θ  and ( )Z θ , satisfying equations 
(7) and (8), the system (21) has a unique solution; Moreso, this solution is non-negative and bounded for all

0t ≥ . 

Proof. The proof for this theorem is omitted since it is similar to those of theorem 1 and ([42], Thm. 2, pg. 5-
7). 

Now, from the Jacobian (20), the control functions 1,2 ( )iu t= and 1,2 ( )ir t= are bounded and Lebesgue integrable 
function. Moreso, by definition 1, virions production under chemotherapies are 1 1 1(1 ( ))u t q p− for HIV and 

1 2 2(1 ( ))r t q p− for HBV. Clinically, if 2 2( , ) 1u r = , then inhibition of infections are 100% efficacious, otherwise, 
no inhibition if 2 2( , ) 0u r = . On a similar note, if the control functions 1 1( , )u r represents efficacy of 
chemotherapies in blocking new dual HIV-HBV infections, then the infection rates in the presence of multi-
therapies are 1 1(1 ( ))u t β− and 1 2(1 ( ))r t β− . Therefore, the optimization problem that maximizes the goal of 
study is defined by the following objective functional 

0

2 21 1 2 2
1,2 1 1 2 2

( ) ( )( , ) ( ) ( ) ( ) ( ) ( )
2 2

ft

i i i u
t

A B A BH u r T t Q t Z t u r u r dt=
 + +  = + + − + + +    ∫ , (22)   

subject to equation (21) as constraint and having ft as treatment time limit.   

We see from equation (22) that four positive constants 1,2 0iA = ≥ and 1,2 0iB = ≥ are introduced. These 
parameters denote treatment optimal weight factors, which define benefit-cost on chemotherapies 1,2 1,2,i iu r= =

respectively. Thus, since our goal is that of maximization of the objective functional, which then translate to the 
minimization of viral load and B-virus, while maximizing uninfected double lymphocyte cells and increase in 
the levels of affected adaptive immune response, then we seek an optimal control dual-pair * *

1,2 1,2( , )i iu r= = such 
that  

{ }* *
1,2 1,2 0 , 1

( , ) max ( , ) : ( , )
i i

i i i i i iu r
H u r H u r u r J= =

≤ ≤
= ∈  

where : {( , ) \ ,i i i iJ u r u r= is Lebesgue-measurable with i i ia u b≤ ≤ , i i im r n≤ ≤ , 0[ , ], 1, 2}ft t t i∈ ∀ =  a 
control set. 

Remark 1 The introduction of linearization control functions 1,2 0iA = ≥ and 1,2 0iB = ≥ is of essence, 
since it serves as simple nonlinear controls. Moreso, benefits on cost are nonlinear and cases of drugs side-
effect are adequately considered, [1, 64].  

Proposition 1 The inequalities of the control set 0{ 1, 1, [ , ], 1, 2}i i i i i i fa u b m r n t t t i≤ ≤ < ≤ ≤ < ∈ ∀ = on 
chemotherapies holds against any hazardous drugs side-effect and justifies the optimal weights 1,2 0iA = ≥ and

1,2 0iB = ≥ .  
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3.2 Mathematical Analysis of an Optimal Control Dual-pair  

In this subsection, we consider the theoretical analysis of the system optimal control characterization and 
existence of an optimal control dual-pair. 

3.2.1 System optimal control characterization 

To be able to establish the existence of an optimal control dual-pair, we are required to identify the optimal 
control characteristics, which define the penalty terms on constraints. This is visible using classical 
Pontryagin’s maximum principle, which involves convert solving of our optimization problem into maximizing 
the Hamiltonian argument defined by the Lagrangian [64]: 

( )1 1 2 2, , , , , , , , , , , ,u i b i b iG G t T T T V V Q Z u r u r λ≡  

2 21 1 2 2
1 1 2 2

( ) ( )( ) ( ) ( ) ( ) ( )
2 2u

A B A BT t Q t Z t u r u r+ + = + + − + + +  
  

7

11 1 1 12 1 1 21 2 2
1

22 2 2 11 1 1 12 1 1

21 2 2 22 2 2

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )
( )( ) ( )( )

i i
i

f w t b u w t u a w t b u

w t u a x t m r x t r m
x t n r x t r m

λ
−

+ + − + − + −

+ − + − + −
+ − + −

∑
,                                                               (23)   

where 12 22( ),............, ( ) 0w t x t ≥ are penalty multipliers satisfying 

11 1 1 12 1 1( )( ) 0, ( )( ) 0w t b u w t u a− = − =                       at optimal *
1u  

 21 2 2 22 2 2( )( ) 0, ( )( ) 0w t b u w t u a− = − =   at optimal *
2u  

 11 1 1 12 1 1( )( ) 0, ( )( ) 0x t m r x t r m− = − =   at optimal *
1r  

 21 2 2 22 2 2( )( ) 0, ( )( ) 0x t n r x t r m− = − =   at optimal *
2r , 

and which ensures that * [0,1]iu ∈  and * [0,1]ir ∈ , for all 1, 2i = . From equation (23), the functions 
( ), i 1,....,7i tλ − are the model adjoint variables, which determine the adjoint system and the function if for 
1,....,7i = is the system dynamics defined by 

1

2

1 1 2 1
1

max

1 1
2 1 1 1 1 1

1

2 2
3 2 1

(1 ( )) ( ) (1 ( )) ( )( )1 ( ) ( ) ( )
( )

( ) ( )
(1 ( )) ( ) ( ) ( ) ( )

( )

( ) ( )
(1 ( ))

(

i

b

i b
p u u T u

i u
i i

b u

u t V t r t V tL tf b s T t T t T t
L L t

V t T t
f e u t q T t g T t Q t

L t

V t T t
f e r t

L t

µ ω

µ ω

β β
µ

ω ω
β α

ω

ω ω
β

ω

−

−

  − + − 
= + − − −   

  
 − −

= − − + − − 

− −
= −

− 2 2 2
2

4 2 1 1 3 1

5 2 2 2 4 2

6 1 5

7 2 6

( ) ( ) ( ) ( )
)

(1 ( )) ( ) ( ) ( ) ( )
(1 ( )) ( ) ( ) ( ) ( )

( ( ) ( )) ( ) ( )
( ( ) ( )) Z( ) ( )

b b

i i i

b b b

i b

i b

q T t g T t Q t

f u t q p T t V t V t Z t
f r t q p T t V t V t Z t
f d T t T t Q t Q t
f d V t V t t Z t

α

α τ
α τ
α
α

 
− + − 

 
= − − −

= − − −

= + −

= + −

 . (24)
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From here, we then examine all the possible controls for *
iu and *

ir including those of boundary conditions 
* *0 , 1i iu r≤ ≤  for all 1, 2i = . 

i. The case of the set * *{ \ 0 ( ), ( ) 1}: ( , ) 0i i ij ijt u t r t w x< < =  for all , 1, 2i j = . The unconstrained optimality 

conditions * [0,1]iu ∈  and * [0,1]ir ∈ for , 1, 2i j = can be solve using the Pontryagin’s maximum principle, 
which state that  

 * * *
1 1 2

0, 0, 0G G G
u r u
∂ ∂ ∂

= = = and *
2

0G
r
∂

= .  

Then, we find * *0, 0
i i

G G
u r
∂ ∂

= = for 1, 2i = and solve for * * *
1 1 2, ,u r u  and *

2r by setting the partial derivative of G

equal to zero i.e. 

 1* 1 1 1
1 1 1 1 2 1 11 12* 2 2

1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0

( ) ( )
ii u i u

u i b u i

V t T t V t T tG A B u t t t e w w
u T T T T T

µ ωβ ω ω
λ λ β −   − −∂

= − + + − − + =      + + +          
at *

1u  

 

2* 2 2 2
1 1 1 1 3 2 11 12* 2 2

1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0

( ) ( )
bb u b u

u i b u b

V t T t V t T tG A B r t t t e x x
r T T T T T

µ ωβ ω ω
λ λ β −   − −∂

= − + + − − + =      + + +   
   at *

1r  

 

*
2 2 2 4 1 1 21 22*

2
( ) ( ) ( ) ( ) 0i

G A B u t t q p T t w w
u

λ∂
= − + − − + =   at *

2u  

and   

 *
2 2 2 5 2 2 21 22*

2
( ) ( ) ( ) ( ) 0b

G A B u t t q p T t x x
r

λ∂
= − + − − + =  at *

2r . 

Solving for the optimal controls *
iu and *

ir for 0ijw = and 0ijx = , we have 

1* 1 1 1
1 1 2 12 2

1 1

( ) ( ) ( ) ( )1( ) ( ) ( )
( ) ( ) ( )

ii u i u

u i b u i

V t T t V t T t
u t t t e

A B T T T T T
µ ωβ ω ω

λ λ β −    − −
= −       + + + +     

, 

 (25) 

2* 2 2 2
1 1 3 22 2

1 1

( ) ( ) ( ) ( )1( ) ( ) ( )
( ) ( ) ( )

bb u b u

u i b u b

V t T t V t T t
r t t t e

A B T T T T T
µ ωβ ω ω

λ λ β −    − −
= −       + + + +     

, 

 (26) 

[ ]*
2 4 1 1

2 2

1( ) ( ) ( )
( ) iu t t q p T t
A B

λ= −
+
 (27) 

and  

[ ]*
2 5 2 2

2 2

1( ) ( ) ( )
( ) br t t q p T t
A B

λ= −
+

. 

 (28) 
Furthermore, we consider the characterization at the boundaries for * * *0, 0, 1i i iu r u= = = and * 1ir =  as well as 
non-boundary cases.  

ii. The set * *
1 1 2 2{ \ ( ), ( ) 0, 1, 2}: 0, 0, 0, 0i i j j i it u t r t i w x w x= = ≥ ≥ = =  for all , 1i j = . 

The optimal controls are given by
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11 1 1
1 2 1 12 2

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

0
( )

ii u i u
j

u i b u i

V t T t V t T tt t e w
T T T T T

A B

µ ωβ ω ω
λ λ β −   − −

− −      + + +   =
+

. 

Since 1 0jw ≥ , we have  

11 1 1
1 2 12 2

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

0
( )

ii u i u

u i b u i

V t T t V t T tt t e
T T T T T

A B

µ ωβ ω ω
λ λ β −   − −

−      + + +    ≤
+

. 

Ensuring that *
1u is non-negative, we apply the notation 

11 1 1
1 2 12 2

*
1

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( )
( )

ii u i u

u i b u i

V t T t V t T tt t e
T T T T T

u t
A B

µ ωβ ω ω
λ λ β

+
−    − −

−       + + +    =  + 
 
 

. 

Similarly,  

22 2 2
1 3 22 2

*
1

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( )
( )

bb u b u

u i b u b

V t T t V t T tt t e
T T T T T

r t
A B

µ ωβ ω ω
λ λ β

+
−    − −

−       + + +    =  + 
 
 

, 

[ ]*
2 4 1 1

2 2

1( ) ( ) ( )
( ) iu t t q p T t
A B

λ
+

 
= − + 

 

and  

[ ]*
2 5 2 2

2 2

1( ) ( ) ( )
( ) br t t q p T t
A B

λ
+

 
= − + 

. 

 
iii. The case for the set * *

1 2 2 2{ \ ( ), ( ) 1, 1, 2}: 0, 0, 0, 0i i i j j jt u t r t i w x w x= = = = ≥ ≥  for all , 2i j = . 
The optimal controls are obtained as: 

11 1 1
1 2 1 22 2

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

1
( )

ii u i u
j

u i b u i

V t T t V t T tt t e w
T T T T T

A B

µ ωβ ω ω
λ λ β −   − −

− +      + + +   =
+

, 

which implies that 

11 1 1
2 1 2 1 1 12 2

( ) ( ) ( ) ( )
0 ( ) ( ) ( )

( ) ( )
ii u i u

j
u i b u i

V t T t V t T t
w t t e A B

T T T T T
µ ωβ ω ω

λ λ β −   − −
≤ = − − +      + + +   

. 

Therefore, 
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11 1 1
1 2 12 2

*
1

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) 1
( )

ii u i u

u i b u i

V t T t V t T tt t e
T T T T T

u t
A B

µ ωβ ω ω
λ λ β −    − −

−       + + +    = ≥ + 
 
 

. 

Also,  

22 2 2
1 3 22 2

*
1

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) 1
( )

bb u b u

u i b u b

V t T t V t T tt t e
T T T T T

r t
A B

µ ωβ ω ω
λ λ β −    − −

−       + + +    = ≥ + 
 
 

, 

[ ]*
2 4 1 1

2 2

1( ) ( ) ( ) 1
( ) iu t t q p T t
A B

λ
 

= − ≥ + 
 

and  

[ ]*
2 5 2 2

2 2

1( ) ( ) ( ) 1
( ) br t t q p T t
A B

λ
 

= − ≥ + 
. 

Therefore, on this set, we must choose 

11 1 1
1 2 12 2

*
1

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) min ,1
( )

ii u i u

u i b u i

V t T t V t T tt t e
T T T T T

u t
A B

µ ωβ ω ω
λ λ β −

     − −
−        + + +     =   +  

  
  

, 

Also,  

22 2 2
1 3 22 2

*
1

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) min ,1
( )

bb u b u

u i b u b

V t T t V t T tt t e
T T T T T

r t
A B

µ ωβ ω ω
λ λ β −

     − −
−        + + +     =   +  

  
  

, 

[ ]*
2 4 1 1

2 2

1( ) min ( ) ( ) ,1
( ) iu t t q p T t
A B

λ
   = −  +   

 

and  

[ ]*
2 5 2 2

2 2

1( ) min ( ) ( ) ,1
( ) br t t q p T t
A B

λ
   = −  +   

. 

Thus, the characterization of the optimal controls is complete by compatibly combining the three cases for
* * *
1 1 2, ,u r u  and *

2r defined by the following proposition.  

Proposition 2 The optimal controls for the optimality problem of equation (21) with limits 
*0 1i i ia u b≤ ≤ ≤ <  and *0 1i i im r n≤ ≤ ≤ < is completely characterized by
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11 1 1
1 2 12 2

*
1 1 1

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) min max , ,
( )

ii u i u

u i b u i

V t T t V t T tt t e
T T T T T

u t a b
A B

µ ωβ ω ω
λ λ β

+

−
      − − −         + + +      =     +    
    

    

, (29) 

 

22 2 2
1 3 22 2

*
1 1 1

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) min max , ,
( )

bb u b u

u i b u b

V t T t V t T tt t e
T T T T T

r t m n
A B

µ ωβ ω ω
λ λ β

+

−
      − − −         + + +      =     +    
    

    

, (30) 

 
[ ]*

2 2 4 1 1 2
2 2

1( ) min max , ( ) ( ) ,
( ) iu t a t q p T t b
A B

λ
+   = −   

+     (31) 

 

and  

   
[ ]*

2 2 5 2 2 2
2 2

1( ) min max , ( ) ( ) ,
( ) br t m t q p T t n
A B

λ
+   = −   

+   
. (32) 

Remark 2 Intuitively, the optimal controls as inscribed by proposition 2, are concurrently a 
representation of system circulating terms i.e. healthy and infected double lymphocyte cells, the dual virions 
and their adjoint variables. 

3.2.2  Existence of an optimal dual-pair control 

In deriving the system optimal problem as depicted by equations (21) and (22), certain parameter restrictions 
were imposed. Take for instance, the term maxL , which denotes the maximum limit of healthy double 
lymphocytes. If the death rate at maxL is to be greater than the source supply rate, then the inequality  

maxT pL bµ >  (33)  

holds. Otherwise, population size must always be lower than maxL such that endemic tendency due to infectious 
virions are constantly accommodated. Moreso, if population ever gets near maxL , then population growth will 
slow-down, [1, 65]. Of note, proves for existence and uniqueness of an optimal control requires system 
upperbounds. Therefore, if max( )uT t L< , then the upperbounds on the solutions of active infectious state 
variables are derived as: 

1
1 ( )max

ˆ
ii

i u
dT

e V T
dt

µ ωβ −=   0 ( )0
ˆ ( )i iT t T=  

2
2 ( )max

ˆ
bb

b u
dT

e V T
dt

µ ωβ −=   0 ( )0
ˆ ( )b bT t T=  

1 1

ˆ
ˆi
i

dV
q p T

dt
=   0 ( )0

ˆ ( )i iV t V=
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2 2

ˆ
ˆb
b

dV
q p T

dt
=   0 ( )0

ˆ ( )b bV t V=  

Or  
1

2

1 ( )max

2 ( )max

1 1

1 1

垐 0 0 0
垐 0 0 0
垐 0 0 0
垐 0 0 0

i

b

i ii u

b bb u

i i

b b

T Te V T

T Te V T
V Vq p
V Vq p

µ ω

µ ω

β

β

−

−

    
    
    

=    
    
    

    

 (34)  

where 1 2( , ) 0, 0, 0i bβ β µ µ> > > and  1,2 0iω = ≥ . 

From equation (34), it becomes obvious that the system is linearly bounded with supersolutions 垐 垐, , ,i b i bT T V V
uniformly bounded as well. Thus, the existence result follows from the theorem hereof. 

Theorem 3 Given proposition 1 and the inequality (33), there exist optimal dual-pair controls
* *

1,2( , )i i iu r J= ∈ that maximizes the objective functional  
* *

( , )
max ( , ) ( , ), 1, 2
i i

i i i iu r J
H u r H u r i

∈
= ∀ = . 

Proof  Invoking existence results from ([50], Thm. 2, pg. 26-27, [66], Thm. 4.1, pg. 68-69, [67]), we first 
check for the following properties: 

(C1) The class of all control sets ( ), ( ), 1, 2i iu t r t i = are Lebesgue-integrable functions on 0,[ ]ft t with value in 
the admissible control sets and such that the corresponding state variables are satisfied and are non-
empty.  

(C2) The admissible control set J , is convex and closed. 
(C3) The RHS of the state system is continuous and bounded by linear functions of ( )iu t and ( ), 1, 2ir t i =

with coefficients that depends on proposition 1 and on the control variables. 
(C4) The integrand of the object functional is concave on J . 
(C5) There exist constants 1 2, 0c c > and 1α > such that the integrand   

 ( ) 22 2
2 1 1 1 2 2( , , , , ) | | | | , 1, 2u i iH T Q Z u r c c u r u r i

α
≤ − + + + =

 
(35)  

where   

 

2 21 1 2 2
1 1 2 2

( ) ( )( , , , , ) ( ) ( ) ( ) ( ( ) ( )) ( ( ) ( ))
2 2u i i u

A B A BH T Q Z u r T t Q t Z t u t r t u t r t+ + = + + − + + +  
.  (36) 

The boundedness of the state system equations with dual-pair controls (21) ensures the existence of a solution. 
 Therefore, we can deduce that the set of controls and the corresponding state variables are non-empty and thus 
satisfy condition (C1). By definition, the control set is convex and closed, which ensures condition (C2).  
Furthermore, since the system exhibits dual bi-linear in ( ), ( ), 1, 2i iu t r t i = , the right hand-side of (21) verifies 
condition (C3) for a simple fact that solutions are bounded. On condition (C4), we apply the Hessian matrix for
H as follows: 

1 1

2 2

( ) 0
0 ( )H

A B
A B

− + 
ϒ =  − + 
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with determinant 
1 1 2 2 1,2det( ) ( )( ) 0, ( , )H i i iA B A B u r J=ϒ = + + ≥ ∀ ∈ . 

Then, H is concave on J . Moreso, for condition (C5), we have  

( )2 2
2 1 1 1 2 2( , , , , ) | | | |u i iH T Q Z u r c c A B A B≤ − + + + , 

with 2c depending on the upper bound on , ,uT Q Z and 1 1 2 2
1 min 0

2 2
A B A Bc + + = + > 

 
. We deduce that there 

exists an optimal control dual-pair 1,2( , )i i iu r J= ∈ such that  
* *

( , )
max ( , ) ( , ), 1, 2
i i

i i i iu r J
H u r H u r i

∈
= ∀ = . 

Hence, we complete the proof.            

4. Optimality System and Uniqueness 

Following the fact that we are pre-occupied by a tri-linear maximization endorsed by the existence prove of 
an optimal control dual-pair, this section is devoted to the derivation of the model optimality system and the 
uniqueness verification. 

4.1 Optimality System for a Dual HIV-HBV Control Dual-pair 

Extending classical principle of Pontryagin’s approach as noted by [1], optimality system which defines the 
biological behavior of system state variables is a vital component of an optimal control problem, following the 
application of desired chemotherapy. The approach is also use for determining the growth or clearance rate of 
the state variables. 

 Definition 3 We define an optimality system as an embodiment of the state system couple with the adjoint 
system with initial conditions and transversality conditions together with derived optimal control pair. 

 Now, from the stand point of definition 3, it is obvious that we already obtain the system model with stated 
initial conditions as well as the optimal control dual-pair. Therefore, to complete the derivation of the model 
optimality system, a well-posed adjoint system and transversality conditions is necessary. By definition, the 
model adjoint system is given by  

i

i

d G
dt
λ

φ
−
∂

=
∂

 

where , 1,...,7i iφ = are the state variables. Moreso, for a maximization problem of the type: 

0

0( , )
max ( , ) ( ( ) ( , , ))

f

i i

t

i i u u i iu r J
t

H u r F T t f T u r dν
∈

= + ∫ , , 1, 2i =  

which is subject to the system ( , , , )u
u i i

dT
f t T u r

dt
= and such that ( )uT t belong to some set ( ( ))uk T t , we derive 

the following transversality conditions on the adjoint variable as  

 
1

( ) ( ( )) ( ( ))
m

i u i i
i

t F T t c k T tλ υ
=

= +∑ ,  (37)  

with F denoting terminal cost. But our control problem has no terminal cost. Then ( ( )) 0F T t = . Also, the
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problem is without any resulting set. Rather, we have desired end result emanating from free-state variables. 
Again, the implication is that the summation term is zero. Therefore, the transversality conditions on adjoint 
variable is  

 ( ) 0i tλ = , 1,....,7i = . (38) 
Furthermore, in line with definition 2, we differentiate equation (23) to obtain the adjoint system as stated by 

the following theorem: 

Theorem 4 For any optimal control dual-pair * *
1,2( , )i i iu r = and any solutions * * * * * * *( , , , , Z )u i b i bT T T V V Q of 

the corresponding state system (21), there exist adjoint variables 1 2 3 4 5 6, , , , ,λ λ λ λ λ λ and 7λ satisfying the 
equations 

* * * * **
1 1 2 1

1 1 *
max max

( ) (1 ( )) ( ) (1 ( )) ( )( )( ) 1 ( ) (1 )
( )

u i b
T

sT t u t V t r t V tL tt t s
L L L t

β β
λ λ µ

  − + −′ = − − − − −  
   

  

1

* *
*

2 1 1 1 1 1 1*2

( ) ( )
( )( ( 1) ( )

( )
i i iV t T t

t u t e q
L t

µ ωλ ω ω β α−  
− + + − − + 

 
  

 2

* *
*

3 2 1 2 2 2 2*2

( ) ( )
( )( ( 1) ( )

( )
b b bV t T t

t r t e q
L t

µ ωλ ω ω β α−  
− + + − − + 

 
 

 

* * * * * * *
1 1 2 1

2 1 *2
max

( ) (1 ( )) ( ) ( ) (1 ( )) ( ) ( )
( ) ( )

( )
u i u b usT t u t V t T t r t V t T t

t t
L L t

β β
λ λ

  − + −′ = −  
   

* *
* *

2 1 1 1*2

( ) ( )
( ) (1 ( )) ( )

( )
i iV t T t

t u t g Q t
L t

λ β
 

+ − − 
 

  

     ( )
* *

* * *
3 1 2 4 2 1 1 6 1*2

( ) ( )
( )(1 ( )) ( ) (1 ( ) ( ) ( )

( )
b uV t T t

t r t t u t q p t d Q t
L t

λ β λ λ
 

+ − + − + 
 

 

 

* * * * * * *
1 1 2 1

3 1 *2
max

( ) (1 ( )) ( ) ( ) (1 ( )) ( ) ( )
( ) ( )

( )
u i u b usT t u t V t T t r t V t T t

t t
L L t

β β
λ λ

  − + −′ = −  
   

  

 
* * * *

* * *
2 1 1 3 1 2 2*2 *2

( ) ( ) ( ) ( )
( ) (1 ( )) ( ) (1 ( )) ( )

( ) ( )
i i b uV t T t V t T t

t u t t r t g Q t
L t L t

λ β λ β
    

+ − + − −   
     

                               

 ( )* *
5 2 2 2 6 1( ) (1 ( ) ( ) ( )t r t q p t d Q tλ λ+ − +  

* * * * * *
1 1 1 1

4 1 2* *

(1 ( )) ( ) ( ) (1 ( )) ( ) ( )
( ) ( ) ( )

( ) ( )
i u i uu t V t T t u t V t T t

t t t
L t L t

β β
λ λ λ

   − −′ = − +   
   

( )* *
4 3 1 7 1( ) ( ) ( ) ( )t Z t t d Z tλ α τ λ− + +  

* * * * * *
2 1 2 1

5 1 3* *

(1 ( )) ( ) ( ) (1 ( )) ( ) ( )
( ) ( ) ( )

( ) ( )
b u b ur t V t T t r t V t T t

t t t
L t L t

β β
λ λ λ

   − −′ = − +   
   

( )* *
5 4 2 7 2( ) ( ) ( ) ( )t Z t t d Z tλ α τ λ− + +  

 ( )* * * *
6 2 1 3 2 6 1 5( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))i b i bt t g T t t g T t t d T t T tλ λ λ λ α′ = − − + + −   

( )* * * *
7 4 1 6 2 7 2 6( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))i b i bt t V t t V t t d V t V tλ λ τ λ τ λ α′ = − − + + − , 

with * * * *( ) ( ) ( ) ( )u i bL t T t T t T t= + + and ( ) 0, 1,....,7i t iλ = = as the transversality conditions. Moreso, the dual-pair 
controls are given by proposition 2. 
Proof Invoking optimality system results of [1, 42], we see that the transversality conditions and adjoint 
equations are as follows:
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( )i

i

d t G
dt
λ

φ
∂

= −
∂

, 1,....,7i = , 

where 
i

G
φ
∂
∂

is depicted by equation (39). Then,  

1 1

2 2

3 3

4 4

5 5

6 6

7 7

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

f
u

f
i

f
b

f
i

f
B

f

f

Gt t t
T
Gt t t
T
Gt t t
T
Gt t t
V
Gt t t
V
Gt t t
Q
Gt t t
Z

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

∂ ′ = − = ∂
 ∂′ = − = ∂
 ∂′ = − =

∂
 ∂′ = − =

∂
 ∂′ = − =

∂
 ∂ ′ = − =

∂
 ∂ ′ = − =
 ∂

.   (40) 

Next, we recall the derive dual-pair optimal controls * * *
1 1 2, ,u r u  and *

2r from proposition 2. Therefore, the target 
optimality system is obtain by compatibly combining equations (21) and (40) upon substituting equations (29)-
(32) into equations (21) and equation (39) into equation (40). That is, the optimality system is derived as: 

1

2

* * * * **
* * *1 1 2 1

*
max

* * *
* * * *1 1

1 1 1 1 1*
1

*

2

(1 ( )) ( ) (1 ( )) ( )( )1 ( ) ( ) ( )
( )

( ) ( )
(1 ( )) ( ) ( ) ( ) ( )

( )

(1

i

b

u i b
p u u T u

i i u
i i

b

dT u t V t r t V tL tb s T t T t T t
dt L L t

dT V t T t
e u t q T t g T t Q t

dt L t

dT
e

dt

µ ω

µ ω

β β
µ

ω ω
β α

ω

β

−

−

   − + −
= + − − −   

   
 − −

= − − + − − 

=
* *

* * * *2 2
1 2 2 2*

2

*
* * * * *
2 1 1 3 1

*
* * * * *
2 2 2 4 2

*
* * *

1 5

( ) ( )
( )) ( ) ( ) ( ) ( )

( )

(1 ( )) ( ) ( ) ( ) ( )

(1 ( )) ( ) ( ) ( ) ( )

( ( ) ( )) ( )

b u
b b

i
i i i

b
b b b

i b

V t T t
r t q T t g T t Q t

L t

dV
u t q p T t V t V t Z t

dt
dV

r t q p T t V t V t Z t
dt

dQ d T t T t Q t Q
dt

ω ω
α

ω

α τ

α τ

α

 − −
− − + − − 

= − − −

= − − −

= + − *

*
* * * *

2 6

( )

( ( ) ( )) Z ( ) ( )i b

t

dZ d V t V t t Z t
dt

α= + −

  

 

* * * * **
1 1 2 1

1 1 *
max max

( ) (1 ( )) ( ) (1 ( )) ( )( )( ) 1 1 ( ) (1 )
( )

u i b
T

sT t u t V t r t V tL tt t s
L L L t

β β
λ λ µ

   − + −′ = − − − − − −   
    
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 1

* *
*

2 1 1 1 1 1 1*2

( ) ( )
( )( ( 1) ( )

( )
i i iV t T t

t u t e q
L t

µ ωλ ω ω β α−  
− + + − − + 

 
 

2

* *
*

3 2 1 2 2 2 2*2

( ) ( )
( )( ( 1) ( )

( )
b b bV t T t

t r t e q
L t

µ ωλ ω ω β α−   − + + − − +  
  

 

 

* * * * * * *
1 1 2 1

2 1 *2
max

( ) (1 ( )) ( ) ( ) (1 ( )) ( ) ( )
( ) 1 ( )

( )
u i u b usT t u t V t T t r t V t T t

t t
L L t

β β
λ λ

   − + −′ = − −   
       

* * * *
* * *

2 1 1 1 3 1 2*2 *2

( ) ( ) ( ) ( )
( ) (1 ( )) ( ) ( )(1 ( ))

( ) ( )
i i b uV t T t V t T t

t u t g Q t t r t
L t L t

λ β λ β
   

+ − − + −   
   

  

  ( ) }* *
4 2 1 1 6 1( ) (1 ( ) ( ) ( )t u t q p t d Q tλ λ+ − +  

 
* * * * * * * * *

*1 1 2 1
3 1 2 1 1*2 *2

max

( ) (1 ( )) ( ) ( ) (1 ( )) ( ) ( ) ( ) ( )
( ) 1 ( ) ( ) (1 ( ))

( ) ( )
u i u b u i isT t u t V t T t r t V t T t V t T t

t t t u t
L L t L t

β β
λ λ λ β

     − + −′ = − − + −     
      

  

( ) }
* *

* * * *
3 1 2 2 5 2 2 2 6 1*2

( ) ( )
( ) (1 ( )) ( ) ( ) (1 ( ) ( ) ( )

( )
b uV t T t

t r t g Q t t r t q p t d Q t
L t

λ β λ λ
  

+ − − + − +  
   

 (41)  

* * * * * *
1 1 1 1

4 1 2* *

(1 ( )) ( ) ( ) (1 ( )) ( ) ( )
( ) 1 ( ) ( )

( ) ( )
i u i uu t V t T t u t V t T t

t t t
L t L t

β β
λ λ λ

    − −′ = − − +    
    

( ) }* *
4 3 1 7 1( ) ( ) ( ) ( )t Z t t d Z tλ α τ λ− + +  

* * * * * *
2 1 2 1

5 1 3* *

(1 ( )) ( ) ( ) (1 ( )) ( ) ( )
( ) 1 ( ) ( )

( ) ( )
b u b ur t V t T t r t V t T t

t t t
L t L t

β β
λ λ λ

    − −′ = − − +    
    

( ) }* *
5 4 2 7 2( ) ( ) ( ) ( )t Z t t d Z tλ α τ λ− + +  

 ( ){ }* * * *
6 2 1 3 2 6 1 5( ) 1 ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))i b i bt t g T t t g T t t d T t T tλ λ λ λ α′ = − − − + + −   

( ){ }* * * *
7 4 1 6 2 7 2 6( ) 1 ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))i b i bt t V t t V t t d V t V tλ λ τ λ τ λ α′ = − − − + + − , 

with * * * *( ) ( ) ( ) ( )u i bL t T t T t T t= + + , ( ) 0, 1,....,7i t iλ = = and where 

11 1 1
1 2 12 2

*
1 1 1

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) min max , ,
( )

ii u i u

u i b u i

V t T t V t T tt t e
T T T T T

u t a b
A B

µ ωβ ω ω
λ λ β

+

−
      − − −         + + +      =     +    
    

    

,
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22 2 2
1 3 22 2

*
1 1 1

1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) min max , ,
( )

bb u b u

u i b u b

V t T t V t T tt t e
T T T T T

r t m n
A B

µ ωβ ω ω
λ λ β

+

−
      − − −         + + +      =     +    
    

    

, 

[ ]*
2 2 4 1 1 2

2 2

1( ) min max , ( ) ( ) ,
( ) iu t a t q p T t b
A B

λ
+   = −   

+   
 

and  

[ ]*
2 2 5 2 2 2

2 2

1( ) min max , ( ) ( ) ,
( ) br t m t q p T t n
A B

λ
+   = −   

+   
. 

4.2 Uniqueness of Optimality System 

In affirmation of our derived optimality system, we establish the system uniqueness for possibly a small time 
interval. Aligning with existence of optimal control dual-pair, we have that  

( )maxu uT T< , 
which implies that the system have a finite upperbounds; a necessary condition for the proof of uniqueness of 
optimality system. Thus, the system uniqueness is completely defined by the following theorem with proof 
guided by the lemma hereof. 

Lemma 1 The control dual-pair functions * *( , )(z) (min( , , ))), 1, 2i i i iu r z a b i= ∀ −  is Lipschitz continuous 
in z , where i ia b<  are fixed constants. 

Theorem 5 Let the time interval ft be as small as possible, then the bounded solutions of the optimality 
system are unique. 

Proof The proof is invoked from the uniqueness of optimality results of [1, 3, 55]. Now, suppose  
( )1 2 3 4 5 6 7, , , , , , , , , , , , ,u i b i bT T T V V Q Z λ λ λ λ λ λ λ and ( )1 2 3 4 5 6 7, , , , , , , , , , , , ,u i b i bT T T V V Q Z λ λ λ λ λ λ λ  are two 
solutions of the model optimality system (41). Then we choose 0λ > such that the values of the solutions are 
obtained by setting   

1 2 3 4 5 6 7

1 2 3 4 5

, , , , , , ,
, , , , , ,

, , , , , , ,
, , , ,

t t t t t t t
u i b i b

t t t t t t t

t t t t t t t
u i b i b

t t t t

T g e T g f T g h V g l V g j Q g k Z g m
g p g q g s g t g u g w g x

T g e T g f T g h V g l V g j Q g k Z g m
g p g q g s g t g

δ δ δ δ δ δ δ

δ δ δ δ δ δ δ

δ δ δ δ δ δ δ

δ δ δ δ δ

λ λ λ λ λ λ λ

λ λ λ λ λ

= = = = = = =

= = = = = = =

= = = = = = =

= = = = = 6 7, , .t t tu g w g xδ δλ λ






 = =

  (42) 

 
Now, substituting equation (42) into optimal control dual-pair of equations (29)-(32), the derive solutions 

becomes:
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11 1 1
12 2

*
1 1 1

1 1

( ) ( )
( ) ( )

( ) min max , ,
( )

i
ple l t e tqe

e f h e f
u t a b

A B

µ ωβ ω ωβ −
      − −
 −     

+ + +      =     +    
    

   

 

22 2 2
22 2

*
1 1 1

1 1

) ( ) ( )
( ) ( )

( ) min max , ,
( )

b
pje j t e tse

e f h e h
r t m n

A B

µ ωβ ω ωβ −
      − −
 −     

+ + +      =     +    
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Next, we substitute t
uT g eδ= and all corresponding terms into the ODE of equation (41) and then 

differentiate to obtain
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The process is then followed by performing the subtraction of state solutions uT from uT , iT from iT , . . . . . . . . , 

1λ from 1λ , …….., 7λ from 7λ and then multiply the obtained result by appropriate difference of functions and 
integrate from 0t to ft . The final resulting fourteen integral equations are summed and uniqueness of the 
system solution derived by using estimation approach. That is, invoking lemma 1, the first result is derived as: 
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where, the constants 1φ and 2φ  depends on the coefficients and on bounds of the state and adjoints. Combining 
the fourteen estimates, we see that the following inequality holds:  
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Optimally, the uniqueness of optimality system for a small time interval is a two point boundary problem 
consequence to opposite time orientation and the state equations defined by initial and final time conditions. 
Moreso, the dual-pair optimal controls 1,2[ , ]i i iu r =  are characterized by the unique solution of optimality system. 

Therefore, from epidemiological view point, we deduce from Thm, 5, that if ( )1 1 2 2( ) ( )A B A Bλ > + + + and 
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Adversely if 1 1
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to occur. 

5. Numerical Simulations 

Here, noting that this study initial data are certified clinical data modified in tune with the present model (see 
notes on tables (1 & 2), we verify in accordance with the objective of this study, the e ingenuity of our derived 
system model. For simplicity, model simulations will be considered in the sequence of derivations. This 
includes the simulation of the system basic model (6) for the case of untreated dual delayed HIV-HBV 
infections, followed by the derived optimality system, the optimal dual-pair control functions and the objective 
functional of the system. Of note, the entire simulations are conducted via in-built Runge-Kutter of order 
precision 4 in a Mathcad surface. Importantly, the mathematical outcomes of our simulations are carefully 
presented in the appendices for the purpose of simplification. 

5.1 Simulation of Basic Model (without control functions) 

Fundamentally, it is worth initiating the computational aspect of the system basic model equation (6). This is 
obvious as it is leverage to our derived optimality system. Commendably, the epidemiological status of dual 
delayed HIV-HBV infections dynamics under off-treatment scenario is adequately represented by the following 
simulations. This is to say that invoking model (6) with 1,2 0iu = = and 1,2 0ir = = , the following fig. 2(a-g) is 
obtained:   
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Fig. 2(a-g). Epidemiological representations of untreated dual delayed HIV-HBV infection dynamics
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Fig. 2(a-g) represents the dynamical flow of dual delayed HIV-HBV infections under off-treatment setting. 
Typically, figure 2(a) clearly shows the early asymptomatic stage infection where the infection is yet to 
opening manifest within the first 10 months. This can be attributed to the initial response from dual adaptive 
immune system. We also observed depletion of susceptible double lymphocyte cells under an unchecked dual 
HIV-HBV infection scenario after 10ft ≥ months to a value 3( ) 0.215 /uT t cell mm≤ . This is evident by the 
increasing rate of infected sub-population of HIV and HBV infected double lymphocyte cells as depicted by fig. 
2(b & c). The depletion of infected HBV cells is due to the fact that the physiological manifestation of HBV 
infection takes much longer period, thus undulating pictorial structure.   Also, it is observed that replication of 
virions (infectious HIV and HBV) occurred due to the off-treatment situation – fig. 2(d & e). Furthermore, the 
initial active defensive response from cellular immune response (CTLs) and humoral immune response 
(antibodies) is seen to succumb to the severe forces of untreated dual HIV-HBV virions – fig. 2(f & g). In 
particular, the rising nature of the antibodies explains the fact that the amount of infectious HBV determines the 
replication of antibodies with value 3( ) 144.302 /Z t cell mm≤ . Mathematically, we present the summary of the 
resulting variations of the dynamical flow of healthy population, HIV-HBV coinfcted double lymphocyte cells, 
infectious dual virions and those of dual adaptive immune system in appendix A.  

5.2  Simulation Model for the Optimality System (with dual tri-linear control functions) 

Notably, when the human system is exposed to systematic infections, which affect the immune system, the 
affected system are bound to collapse if timely intervention is not in place. However, the introduction of 
competent chemotherapy could result to the enhancement of the immune efficiency. Therefore, the introduction 
of peculiar multi-therapies by this investigation is aim at not only de-phasing the progress of infections but to 
also activate the efficiency of affected immune system. Thus, the introduction of 1,2 0iu = > and 1,2 0ir = > , 
representing reverse transcriptase inhibitors and protease inhibitors; standard interferon- α and nucleoside 
analogues activates the dual immune response. Hence, the initial - dual tri-linear treatment functions. 

Guided by propositions 1 & 2, toxicity of chosen chemotherapies are clinically observed under optimal 
weight factors: 1 2 1 225000, 250, 25000, 250A A B B= = = = and having limit bounds of 

1 2 1 20, 0.2, 0.4, 0.9;a a b b= = = = 1 2 1 20.1, 0.4, 0.4, 0.7m m n n= = = = . Then, fig. 3(a-g) depicts the optimality 
system with well-posed optimal control functions. 
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Fig. 3(a-g).  Epidemiological dynamics of dual delayed HIV-HBV infections under multi-therapies and activated dual adaptive immune 
response  

From fig. 3(a), we observed that following systematic application of choice chemotherapies, susceptible 
double lymphocyte cells exhibit tremendous increase with stability after 10ft ≥ months, which indicates 
acceptability of choice drugs. Moreso, the decline in both HIV infected cells and HBV infected cells as 
depicted by fig. 3(b & c) vindicates the outcome of fig. 3(a). It is also observed from fig. 3(d & e), the 
depletion of both HIV and HBV virions following the administration of structured chemotherapies within study 
validity period. Furthermore, the dynamic response of dual immune system, which is determined by the rate of 
infection growth and enhanced by induced chemotherapies are clearly seen in the gradual decline and stability 
of both CTLs and antibodies as in fig. 3(f & g) respectively. Thus, the quantitative expression of fig. 3(a-g) is 
given in appendix B.   

5.3 Simulation of Optimal Control Functions and Objective Functional 

Furthermore, we simulate the system control functions (29)-(32) as an outlet to the quantitative description of 
drugs toxicity and the amount of drugs required. Fig. 4(a-d) depicts the various quantities and the commercial 
values of chemotherapies required to keep under control, the deadly dual-delayed HIV-HBV infections.
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Fig. 4 (a-d)  Graphical representations of optimal control functions for dual delayed HIV-HBV infections 

  Fig. 4(a & b) construed some smooth linear functions, which are typical of optimal dynamics. Clearly, the 
amount of RTI required is seen to be in the range *

10.5 ( ) 3.5u t≤ ≤  for all 30ft ≤ months, which is significantly 
small amount of RTI. Standard interferon-α exhibit similar tendency with that of RTI, which value in the range 
of *

10.5 ( ) 3.5r t≤ ≤  for all 30ft ≤ months. On the other hand, fig. 4(c & d) portrait the respective amount of PIs 

and NAs required in the range of 0.3 ( ), ( ) 6.3i iu t r t≤ ≤ combating free infectious dual HIV-HBV infectivity for 
all 30f ≤ months. 

Finally, we simulate system (22), which defines the objective functional to be maximized. This step depicts 
the optimal control pairs in relation to maximized double lymphocyte healthy population and the restoration of 
active immune system. Fig. 5 represent maximized ( ), ( )uT t Q t and ( )Z t : 

 

Fig. 5. Simulation of objective functional for pair-dual treatment with 1 1 2 2, 25000; , 250A B A B= =
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From fig. 5, we have a linear inclination indicating the overall commercial value of triple dual control 
functions, which clinically combat the influx of dual HIV-HBV infections. Notably, for treatment duration of

30ft ≤ months, chemotherapies value is in the range of 1030.16 ( , ) 2.879 10 , 1,2i iu r i≤ ≤ × ∀ − , which are 56%
of double lymphocyte cells and normalized dual adaptive immune system restored.  

6. Discussion  

 In this study, a number of closely related models were carefully highlighted, which gave the motivational 
focus of investigation. A presumably the first model, the study formulated an articulated 7-Dimensional 
dynamic dual HIV-HBV co-infectivity. The study is characterized by the epidemiological identifiability of dual 
infection transmission routes and the methodological application of triple-dual control functions following the 
dual role of adaptive immune system. The model was frame under the interplay of dual vector components 
(HIV and HBV) on the host victims – double lymphocyte cells (CD4+ T-lymphocyte cells and CD3+ T-
lymphocyte cells) in the presence of immunity time delay lags. The model positivity and boundedness of 
solutions was investigated to justify the state variables as representation of set of living organisms. Achieving 
the maximization goal of the study, the system derived model was transformed to an optimal control problem. 
An approach that allowed the application of classical optimal control theory – the Pontryagin’s maximum 
principle.  
 The analysis led to the establishment of the existence of optimal control dual-pair and the optimality system 
as well as the uniqueness of the system. Starting with the off-treatment scenario, the system basic model (6) 
was first simulated to investigate the dual infection transmission dynamics. Fig. 2(a-g) clearly demonstrated the 
infection properties ranging from the gradual undulating decline of the susceptible double lymphocyte cells – 
fig. 2(a). This is vindicated by the similar magnitude of undulating inclination of infected double lymphocytes 
and infectious HIV and HBV virions – fig. 2(b-e). The antibodies appeared to be more responsive capered to 
the intensity of the cytotoxic T-lymphocytes – fig. 2(f & g).  

Furthermore, following the introduction of choice multi-therapies ( , ) 0, 1, 2i iu r i> − under regulated optimal 
weight factors and limit bounds, we observed initial increase in the amount of susceptible double lymphocytes, 
which attained stability after10 months of cogent structured multi-therapies – fig. 3(a). Of note, tremendous 
biphasic decays of both infected double lymphocyte cells and dual virions were established as in fig. 3 (b-e). 
These significant declines by infected victims and the vectors are further explained by the gradual decline of 
both adaptive immune systems – fig. 3(f & g). This attained result was an improvement when compared to 
those of models [1, 2]. Precisely, both infected double lymphocytes and dual infectious virions were eliminated 
in the interval 10ft ≤ months. The model analysis was further expanded by the verification of the amount of 
chemotherapies required for the duration of experimental period – fig. 4(a-d). This explained the optimal 
maximization of treatment cost with PRI and INF-α more on demand. The overall commercial implications of 
chemotherapies needed for the triphasic maximization of double lymphocyte cells and dual adaptive immune 
system were explicitly demonstrated by fig. 5. The entire experiment conducted via in-built Runge-Kutter of 
order precision 4 in a Mathcad surface.  

7. Conclusion 

A presumed first articulated mathematical model for the optimal dynamics of dual delayed HIV-HBV 
infections had been formulated and studied by this present paper. The model entails a penultimate 7-
Dimensional mathematical equations, which accounted for the identifiability of dual delayed HIV-HBV 
infection transmission routes and the methodological application of triple-dual treatment control functions. 
Moreso, the study presented an articulated mathematical model for co-infection dynamics and accompanying 
methodological application of desired chemotherapies with the incorporation of dual adaptive immune response 
in the presence of time delayed lag. The study upon transformation of the model to an optimal control problem
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was mathematically analyzed using classical Pontryagin’s maximum principle. From a set of four numerical 
examples simulated, results showed that under off-treatment scenario, susceptible double lymphocyte cells 
population decays was eminent and characterized by biphasic endemic infection atmosphere. Furthermore, 
elimination of both infected double lymphocyte cells and dual HIV-HBV virions was accompanied by more 
complex decay profiles of infectious dual HIV-HBV virions, achieved at the earliest time interval of 3 10ft≤ ≤
months. This had been vindicated by the tri-phasic maximization of susceptible double lymphocytes and dual 
adaptive immune system, which further justified the investigation. The study is therefore not only 
recommended for further enhanced articulated model but served as a monumental scientific intelligent that can 
be convincingly adopted to investigate the insight into multi-infection dynamics and prevention methods. 
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APPENDICES 

Appendix A: 

Table 3 Off-treatment of dual HIV-HBV scenario 

Numerical summary 
Fig. 2 Population dynamics Evaluation (in months) 

 

a. ( )uT t  

- Initial increase of susceptible double lymphocyte cells due 
to adaptive immune defense. 
 

- Declined thereafter due to incessant invasion by dual 
virions. 

0.5 ( ) 1.327uT t≤ ≤  
for all 3 10ft≤ ≤ . 

1.327 ( ) 0.215uT t≥ ≥   
for all 10 30ft≤ ≤ . 

    
b.  ( )iT t  

- Rapid viral load infected cells increases.  
 

- Slight decrease due to response from adaptive immune 
response. 

 

30.996 10 ( ) 5.005iT t−× ≤ ≤  
for all 3 14ft≤ ≤ . 

5.005 ( ) 3.00iT t≥ ≥   
for all 14 30ft≤ ≤ . 

     
c. ( )bT t  

- Sharp decrease due to excessive present of virions.  
 

- Gradual increase due to response from adaptive immune 
system. 

 

40.02 ( ) 3.884 10bT t −≥ ≥ ×  
for all 3 20ft≤ ≤ . 

4 33.884 10 ( ) 5 10bT t− −× ≤ ≤ ×   
for all 20 30ft≤ ≤ . 

   
d.   ( )iV t  

- Rapid viral load increase in the present of off-treatment. 
 

- Decrease but attain endemic stability. 
 

0.08 ( ) 181.828iV t≤ ≤  
for all 3 14ft≤ ≤ . 

181.828 ( ) 10.00iV t≥ ≥   
for all 14 30ft≤ ≤ . 

    
e.  ( )bV t  

- Undulated viral load increases. 
 

- Declined slightly and then increases. 
 

0.07 ( ) 2.653bV t≤ ≤  
for all 3 20ft≤ ≤ . 

2.563 ( ) 1.2bV t≥ ≥   
for all 20 30ft≤ ≤ . 

f.    ( )Q t  - Gradual decline due to consistent proliferation of untreated 
virions. 

 

30.04 ( ) 2.725 10Q t −≤ ≤ ×  
for all 3 30ft≤ ≤ . 

g.  ( )Z t  - Initial low stability at 3 14ft≤ ≤ and then attain 
undulating increase. 

0.011 ( ) 144.302Z t≤ ≤  
for all 14 30ft≤ ≤ . 
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Appendix B: 

Table 4 On-treatment of dual HIV-HBV scenario 

Numerical summary 
Fig. 3 Population dynamics Evaluation (in months) 

    

a. ( )uT t  

- Tremendous initial increase of susceptible double 
lymphocyte cells. 
 

- Declined to stability. 
 

0.5 ( ) 1.614uT t≤ ≤  
for all 3 10ft≤ ≤ . 

1.614 ( ) 0.118uT t≥ ≥   
for all 10 30ft≤ ≤ . 

   

b. ( )iT t  

- Instantaneous decline, which lead to elimination of viral 
load infected cells.  

0.02 ( ) 4.212iT t≤ ≤ −  
for all 3 30ft≤ ≤ . 

     
c. ( )bT t  

- Instantaneous decline, which lead to elimination of B-virus 
infected cells. 

0.02 ( ) 4.352bT t≥ ≥ −  
for all 3 30ft≤ ≤ . 

     

d. ( )iV t  

- Gradual decline to zero at 3ft ≤ and infectious viral load 
eliminated thereafter. 

0.08 ( ) 0.195iV t≤ ≤ −  
for all 30ft ≤ . 

    
e.  ( )bV t  

- Gradual decline to zero at 3ft ≤ and infectious viral load 
eliminated thereafter. 

0.07 ( ) 0.032bV t≤ ≤  
for all 30ft ≤ . 

f.   ( )Q t  - Gradual decline due to restoration of susceptible population 
 

40.04 ( ) 7.945 10Q t −≤ ≤ ×  
for all 3 30ft≤ ≤ . 

g.  ( )Z t  - Gradual decline due to restoration of susceptible double 
lymphocyte population. 

40.02 ( ) 9.428 10Z t −≤ ≤ ×  
for all 14 30ft≤ ≤ . 

 
 


