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Abstract 
Rabies is a fatal, zoonotic, viral disease that causes an acute inflammation of the brain in humans and other 
mammals. It is transmitted through contact with bodily fluids of infected mammals, usually via bites or 
scratches. In this paper, we formulate a deterministic model which measures the effects of different rabies 
control methods (mass-culling and vaccination of dogs) for urban areas near wildlife, using the Arusha region 
in Tanzania as an example. Values for various parameters were deduced from five years’ worth of survey data 
on Arusha’s dog population. Data included vaccination coverage, dog bites and rabies deaths recorded by a 
local non-governmental organization and the Ministry of Agriculture, Livestock Development and Fisheries of 
the United Republic of Tanzania. The basic reproduction number R0 and effective reproduction number Re 
were computed and found to be 1.9 and 1.2 respectively. These imply that the disease is endemic in Arusha. 
The numerical simulation of the reproduction number shows that vaccination is the most appropriate control 
method for rabies transmission in urban areas near wildlife reservoirs. The disease free equilibrium ε0 is also 
computed. If the effective reproduction number Re is computed and found to be less than 1, it implies that it is 
globally asymptotically stable in the feasible region Φ. If Re >  1 it is implied that there is one equilibrium 
point which is endemic and it is locally asymptotically stable. 
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1. Introduction 

Mathematical modeling has historically been of great importance in epidemiology and is a useful tool for 
providing a better insight into the dynamics of epidemic diseases such as rabies. 

Rabies is a fatal, zoonotic, viral disease that causes an acute inflammation of the brain in humans and other 
mammals. It is transmitted by the saliva of infected animals via bites or scratches, with dogs being the primary 
source of transmission to humans [23].Rabies occurs in more than 150 countries and territories around the 
world and is most prevalent in developing countries in Africa and Asia [8].  

Globally, it claims an estimated 60,000 human lives annually [15], the highest number of deaths caused by 
any zoonotic disease [11,16]. Dog transmitted rabies is estimated to cause 24,000 human deaths per year in 
Africa and [26] up to 60% of dog bite victims are children less than 15 years of age. Unfortunately, the 
majority of dog bites go unreported to parents and any resulting rabies cases are not reported to health 
authorities [2]. In Tanzania, it claims the lives of around 1500 people yearly [19]. 

The two main ways to control rabies transmission are mass-dog vaccination and culling, whereby the culling 
method is perceived to be easier and cheaper than vaccination, especially in the presence of free-roaming and 
poorly socialized animals in areas where veterinary personnel has relatively little experience or confidence in 
handling dogs [18]. 

Despite these control efforts, rabies remains a problem with 99% of all human deaths from rabies occurring 
in the developing world [14]. 

However, according to Mbwa wa Africa, an animal welfare organization in Arusha conducting research, 
every killed dog is replaced within 6 months by a new, young dog [22]. As dogs are territorial and defend their 
resting and feeding grounds in packs, killed members of a pack affect its ability to hold a territory, leading to 
more fighting and mixing of the overall dog population. Killing a neutered, vaccinated dog, therefore often 
leads to its replacement by an unvaccinated, unneutered dog, potentially increasing the risk for rabies outbreaks 
[22].  

In order to reduce the risk of transmission and keep rabies control costs as low as possible, information on 
the efficacy of culling and mass dog vaccination programs is required. We used a mathematical model to 
establish the impact of culling and vaccination in Arusha respectively.  

A similar model, but in a very different environment, was formulated to describe the dynamics of rabies 
transmission among dogs, livestock and humans within and around Addis Ababa, Ethiopia [8]. The model 
predicted an increase in rabies transmission with a maximum prevalence in 2024 and 2026 for both humans and 
livestock respectively and a combination of interventions was suggested. In another study, [12] a susceptible-
exposed-infectious-vaccinated (SEIV) model for dog-human transmission of rabies considering domestic and 
stray dogs was proposed and showed that rabies in Guangdong province in China would decrease gradually 
before increasing again, indicating that in this case culling for disease control is futile. Differences in the dog 
populations, especially with regards to roaming patterns and contacts with wildlife areas require different 
modelling approaches to fit the conditions. 

The specificity of our research considers three subgroups of dogs; domestic dogs with clear owners, stray 
dogs roaming the streets and Maasai dogs travelling alongside livestock and herdsmen. In this study, dog mass 
vaccination has been compared to stray dog culling in terms of its effects on rabies transmission risk. 

2. Materials and Methods 

2.1 Model Formulation 

We developed a basic transmission risk model tailored to areas with similar settings as Arusha, to measure 
the effect of culling and vaccination. The formulated model has three dog subgroups, which are domestic dogs, 
stray dogs and Maasai dogs. Each population is categorized into Susceptible, Exposed, Infectious and 
Vaccinated individuals and a SEIV model was formulated. 
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The susceptible class consists of currently disease free individuals. The exposed class contains individuals 
who have been contracted the virus but do not show symptoms of the disease. The infectious class consists of 
individuals who were exposed to the disease, developed clinical symptoms of rabies and will die. Finally, the 
vaccinated class consists of individuals formally susceptible or exposed to the disease but now vaccinated. The 
formulated model is a system of differential equations, which has been derived from the compartmental 
diagram in Figure 1. 

The model is developed based on the following assumptions; the susceptible populations are recruited via 
birth rate α. Any kind of dog which is exposed to bodily fluid from another dog is exposed. Dogs in each group 
have equal probability of dying a natural death. Populations are considered homogeneous with regard to each 
dog’s probability of being infected. Once a dog reaches the infectious stage, death is 100% certain. All 
parameters of the model are positive and they are introduced in table 1. 

TABLE 1. PARAMETER DESCRIPTION 

Parameter Description 

𝛼𝛼𝑑𝑑 ,𝛼𝛼𝑠𝑠 ,𝛼𝛼𝑚𝑚 Annual births of domestic dog, stray dog and Maasai dog populations respectively. 

𝛿𝛿𝑑𝑑 ,𝛿𝛿𝑠𝑠 , 𝛿𝛿𝑚𝑚 Death rate due to rabies for domestic dog, stray dog and Maasai dog populations respectively. 

𝜔𝜔𝑑𝑑 ,𝜔𝜔𝑠𝑠,𝜔𝜔𝑚𝑚 The loss rate of vaccination immunity for domestic dog, stray dog and Maasai dog populations respectively. 

𝜇𝜇𝑑𝑑 ,𝜇𝜇𝑠𝑠 ,𝜇𝜇𝑚𝑚 Natural death rate of domestic dog, stray dog and Maasai dog populations respectively. 

𝛽𝛽𝑑𝑑 ,𝛽𝛽𝑠𝑠 ,𝛽𝛽𝑚𝑚 Rate at which infectious stray dogs infect susceptible domestic dog, stray dog and Maasai dog populations 
respectively. 

𝜌𝜌𝑑𝑑 ,𝜌𝜌𝑠𝑠 ,𝜌𝜌𝑚𝑚 The incubation period in domestic dog, stray dog and Maasai dog populations respectively. 

𝜎𝜎𝑑𝑑 ,𝜎𝜎𝑠𝑠 ,𝜎𝜎𝑚𝑚 Vaccination rate of susceptible domestic dog, stray dog and Maasai dog populations respectively. 

𝛹𝛹𝑚𝑚𝑑𝑑 ,𝛹𝛹𝑠𝑠𝑑𝑑 ,𝛹𝛹𝑑𝑑𝑠𝑠 ,𝛹𝛹𝑚𝑚𝑠𝑠 Number of dogs migrated from Maasai to domestic, stray to domestic, domestic to stray and Maasai to stray 
dogs' populations respectively. 

𝜇𝜇𝑐𝑐 Average culling rate of stray dogs. 

 

Fig.1. Flow diagram for rabies transmission among dog subgroups. 

2.2 Model Compartment and Dynamics 

From the above assumptions, definition of variables and parameters, the model flow diagram depicts the
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dynamics of rabies transmission among domestic dogs, stray dogs and Maasai dogs as shown in Figure 
1.Parameters αi where, i = d, s, m represent annual births of domestic dog, stray dog and Maasai dog 
populations respectively. The parameters ρi where, i = d, s, m represent the latency rates of domestic dogs, 
stray dogs and Maasai dogs so that 1/ρi where, i = d, s, m are the corresponding incubation periods. 

2.3 Model Equations 

From the compartmental diagram we formulate a set of twelve differential equations as shown below: 

( )

( )

( )

( )

( )

( )

( )

(

d
d d d sd md ds d d d s d

d
d d s d d d

d
d d d d d

d
d d d d d

s
s s s ds ms sd s s c s s s

s
s s s s s s

s
s s s s s

s
s s

dS
V I S

dt
dE

S I E
dt

dI
E I

dt
dV

S V
dt

dS
V I S

dt
dE

S I E
dt

dI
E I

dt
dV

S
dt

α ω µ σ β

β µ ρ

ρ µ δ

σ ω µ

α ω σ µ µ β

β µ ρ

ρ µ δ

σ ω

= + +Ψ +Ψ −Ψ − + +

= − +

= − +

= − +

= + +Ψ +Ψ −Ψ − + + +

= − +

= − +

= − )

( )

( )

( )

( )

s s s

m
m m m ms md m m m s m

m
m m s m m m

m
m m m m m

m
m m m m m

V

dS
V I S

dt
dE

S I E
dt

dI
E I

dt
dV

S V
dt

µ

α ω µ σ β

β µ ρ

ρ µ δ

σ ω µ






















 +


 = + −Ψ −Ψ − + +



= − +



= − +



= − +

 (1) 

with, 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

d d d d d

s s s s s

m m m m m

N t S t E t I t V t
N t S t E t I t V t
N t S t E t I t V t

= + + +
= + + +
= + + +

   (2)  

Where 𝑁𝑁𝑖𝑖, 𝑖𝑖 =  𝑑𝑑, 𝑠𝑠,𝑚𝑚 is the total of domestic dogs, stray dogs and Maasai dogs’ population at time t. 

2.4 Invariant Region 

The model represented by the system 1 of differential equations which deals with domestic dogs, stray dogs
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and Maasai dogs, will be analyzed in the feasible region Φ and all state variables and parameters are assumed 
to be positive for all t≥0. The invariant region will be obtained through Theorem 1. 

 
Theorem 1 
All solutions of the system 1 are contained in the region Φ ∈ ℝ12and Φ = Φd ∪ Φs ∪ Φm 
Proof 
The model of the system 1 was grouped into domestic dogs Nd, stray dogs Ns and Maasai dogs Nm, such 
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And Φ is the positive invariant region for system 1. 
Thus, 

4 4 4
d s m + + +Φ = Φ ∪Φ ∪Φ ∈ × ×       (4) 

From that, it is sufficient to consider model system 1 in the region Φ, and it can be shown to be positively 
invariant. The model can be considered as epidemiologically and mathematically well-posed. 

 

3. Model Analysis 

3.1 Disease Free Equilibrium Points (DFE) 

To find the disease free equilibrium points we set the right hand side of equations of system 1 equal to zero. 
In the absence of attack or in the absence of rabies, Ed = Id = Vd = Es = Is = Em = Im = Vm = 0. Then the 
disease free equilibrium (DFE) 𝜀𝜀0will be 𝜀𝜀0 = (𝑆𝑆𝑑𝑑0, 0,0,0, 𝑆𝑆𝑠𝑠0, 0,0,𝑉𝑉𝑠𝑠0, 𝑆𝑆𝑚𝑚0 , 0,0,0) 
 
where 

( )( )
( ) ( )

( )
( ) ( )

0 0

0 0

,  ,

,  

s s ds sd ms sd ds md sd
d s

d d c s s s s s s

s ds ms s sd m md ms
s m

c s s s s s s m m

S S

V S

µ ω αα
µ σ µ µ ω µ µ σ ω

α α α
µ µ ω µ µ σ ω µ σ

+ Ψ −Ψ +Ψ +−Ψ +Ψ +Ψ
= =

+ + + + +

Ψ +Ψ + −Ψ −Ψ −Ψ
= =

+ + + + +

   (5) 

The disease free equilibrium points for stray dogs populations that is Vs  cannot be zero because once 
susceptible stray dog is vaccinated, it transfer to the vaccinated class. Hence the disease free equilibrium point 
of the system 1 exists and it is given by 
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3.2 The Basic Reproduction Number 𝑅𝑅0 

The basic reproduction number R0 can be defined as the expected number of secondary infections produced 
by an index case in a completely susceptible population [24]. The basic reproduction number can be used to 
assess whether a newly infectious disease can invade a population [3]. R0 <  1 implies that, on average, an 
infected individual results in less than one newly infected individual during its infectious period, and the 
infection cannot grow. Conversely, if R0 >  1 , on average, each infected individual creates more than one new 
infection, and the disease can raid the population. We used a next generation operator method proposed by Van 
den Driessche and Watmough (2000) [27]. 

We considered system 1 without vaccination i.e. ω =  σ =  0. In this case we also do not have culling, 
which means μc  =  0. 

Let fi(x) be the rate of appearance of new infection in compartment i, vi−(x) be the rate of transfer of 
individuals out of compartment i and vi+(x) be the rate of transfer of individuals into compartment i by all other 
means, and it is assumed that each function is continuously differentiable at least twice in each variable. The 
disease transmission model of system 1 consists of non-negative initial conditions together with the following 
system of equations: ẋ = Fi(x) = fi(x) − vi(x)wherevi = vi− − vi+.We now consider expressions in which the 
infection is in progress. That is Ed, Id,  Es, Is, Em, Im 
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By rearranging equations of system 1 without vaccination from exposed to infectious classes of dogs’ 
subgroups with a system of equations given by 7. Let F be a non-negative n × n matrix and V be a non-singular 
N-matrix such that 
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with 1 ≤ i, j ≤ n.The point ε0 is the disease free equilibrium point in 6 without vaccination where 
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We consider classes in which the disease is in progress. Using the linearization technique, we get the Jacobian 
matrices of 𝑓𝑓 and 𝑣𝑣 at the disease free equilibrium point 𝜀𝜀0as shown below: 

( )

( )

( )

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0

0 0 0 0 00 0 0 0 0
 ,

0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 00 0 0 0 0

0 0 0 0 0 0

d d ds md sd

d
d d

d d d
s s ds md sd

s s
s

s s s

m m
m m ms md

s m m

m

F V

β α
µ

µ ρ
ρ µ δ

β α
µ ρ

µ
ρ µ δ

µ ρ
β α ρ µ δ

µ

 −Ψ +Ψ +Ψ
 
  +      − + + Ψ +Ψ −Ψ   + = =   − +   +  −Ψ −Ψ  − +  
 
  







 (10) 

( )( )

( )( )

( )( )

1

1 0 0 0 0 0

1 0 0 0 0

10 0 0 0 0

10 0 0 0

10 0 0 0 0

10 0 0 0

d d

s d s d

d d d d d d

s s

s

s s s s s s

m m

m

m m m m m m

V

µ ρ
µ ρ ρ ρ

µ δ µ ρ µ δ

µ ρ
ρ

µ δ µ ρ µ δ

µ ρ
ρ

µ δ µ ρ µ δ

−

 
 + 
 − −
 + + + 
 
 

+ 
=  
 

+ + + 
 
 
 +
 
 
 + + +  (11)

 

We now multiply 𝐹𝐹  and 𝑉𝑉−1and then compute the Eigen values of the resulting matrix 𝐹𝐹𝑉𝑉−1  and choose the 
maximum Eigen value as the basic reproduction number 𝑅𝑅0 which is given by 
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3.3 Effective Reproduction Number 𝑅𝑅𝑒𝑒 

The effective reproduction number Recan be defined as the average number of secondary cases that one 
index case generates over the course of its infectious period [7]. The prevalence of infection increases or 
decreases according to whether Reis greater than or less than one, respectively [6]. Here we consider the 
presence of control methods. In our case we have vaccination and culling. In this case ω, μc and σwill not take 
on zero values. So we include them and follow the same procedures usedin computing R0 and this will result in 
the spectral radius (dominant Eigen value) Re = ρFV−1of FV−1given by 
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Numerical computations of R0 and Re were done using the data collected from Mbwa wa Africa and the Ministry 
of Agriculture, Livestock Development and Fisheries of The United Republic of Tanzania. 

TABLE 2. VALUES OF PARAMETERS USED AT DFE 

Parameter Value (year-1) Source 

𝜶𝜶𝒔𝒔 The annual births of stray dogs 2.5 × 102 [22] 

𝜹𝜹𝒔𝒔 Death rate due rabies for stray dogs 0.22 [4] 

𝝎𝝎𝒔𝒔 Loss rate of vaccination immunity for stray dogs 0.1 Assumption 

𝝁𝝁𝒔𝒔 Natural death rate of stray dogs 0.32 [20] 

𝜷𝜷𝒔𝒔 Rate of infection of stray dogs 1.7864 × 10−4 Data 

𝝆𝝆𝒔𝒔 The incubation period of stray dog 0.83778234 [17] 

𝝈𝝈𝒔𝒔 Vaccination rate of the susceptible stray dogs 0.25174 Data 

𝚿𝚿𝒎𝒎𝒔𝒔 Average number of Maasai dogs that migrate to stray dogs population 35 Fitting 

𝚿𝚿𝒔𝒔𝒔𝒔 Average number of stray dogs that migrate to domestic dogs 

population 

17 Fitting 

𝚿𝚿𝒔𝒔𝒔𝒔 Average number of domestic dogs that migrate to stray dogs 

population 

56 Fitting 

𝝁𝝁𝒄𝒄 Average culling rate of stray dogs 0.01792 Data 

We now substitute the parameter values to the expression found in 12 and 13 to have 
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Without any control measure the result of R0 is greater than one which shows that the disease will invade the 
population.
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With the current vaccination coverage, Re is more than one and this shows that the disease still perseveres. 
This implies that more efforts should be taken to fight against rabies transmission. We have simulated the 
effective reproduction number with some variations in vaccination coverage and a combination of vaccination 
and culling methods. It shows that, by increasing the vaccination of stray dogs, there is a possibility of rabies to 
die out. The combination of vaccination and culling was found to be the best way to fight against rabies disease 
transmission in Arusha town. In the simulation, R0 is without any control, Re1 is the current 25% vaccination 
coverage, Re2 is the 40% vaccination coverage and Re3 is the combination of 60% vaccination coverage and 
40% culling. 

 

Fig.2. Reproduction number for different vaccination coverages and combination of vaccination and culling. 

 

Fig.3. Reproduction number for different culling coverages
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From Figure 2 we can see that Re3 < Re2 < Re1 < R0. This indicates that if we increase vaccination in the 
stray dog population, the effective reproduction number decreases and become less than one. Due to the high 
transmission rate of rabies from stray dogs to domestic dogs and Maasai dogs, combination of measures is 
eagerly recommended as it makes the effective reproduction number less than one. In this case R0 is the current 
40% culling of stray dogs, Re1 is the 50% culling, Re2 is the 60% culling and Re3 is the 70% culling whereby 
the 25% current vaccination rate is kept constant. 

From Figure 3 we see that culling alone has got a very minute impact in combating rabies transmission risk. 
The effect observed is for 25% vaccination coverage only. Therefore, if other practicalities such as costs are 
disregarded, using a combination of vaccination and culling to control rabies transmission has the highest 
impact, with increased vaccination coverage. 

4. Stability Analysis 

4.1 Local Stability of the Disease Free Equilibrium Points 

Theorem 2 
If Re <  1, then 

• The disease-free equilibrium ε0 of system 1 is locally asymptotically stable; 
• The disease-free equilibrium ε0 of system 1is globally asymptotically stable in the region Φ 

Next we derive the Jacobian matrix of system 1 by differentiating each of the equation of system 1 in terms of 
state variables 𝑆𝑆𝑑𝑑 ,𝐸𝐸𝑑𝑑 , 𝐼𝐼𝑑𝑑 ,𝑉𝑉𝑑𝑑 , 𝑆𝑆𝑆𝑆,𝐸𝐸𝑆𝑆 , 𝐼𝐼𝑆𝑆,𝑉𝑉𝑆𝑆, 𝑆𝑆𝑚𝑚,𝐸𝐸𝑚𝑚, 𝐼𝐼𝑚𝑚,𝑉𝑉𝑚𝑚 at the disease free equilibrium point from 6 to have 
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µ ρ
ρ µ δ

σ
µ σ ω

ρ µ δ
σ

− +


 − +


− +


− +
=

− +

− +

− +











 
 
 
 
 
 
 
 
 
 
 

 (16)

 

where
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( ) ( )

( )( )
( ) ( )

( )( )
( ) ( )

( ) ( ) ( )

( )

,  ,

,  

,  ,  ,

H= ,  

d d ds md sd d d ds md sd

d d d d

s s s ds sd ms s s s s ds sd ms s

c s s s s s s c s s s s s s

s m md ms s m md ms
s s

m m m m

d d

A B

C D

E F G

I

β α β α
µ σ µ σ

β µ ω α β µ ω α
µ µ ω µ µ σ ω µ µ ω µ µ σ ω

β α β α
µ ρ

µ σ µ σ

µ ρ

− −Ψ +Ψ +Ψ −Ψ +Ψ +Ψ
= =

+ +

− + Ψ −Ψ +Ψ + + Ψ −Ψ +Ψ +
= =

+ + + + + + + +

− −Ψ +Ψ −Ψ +Ψ
= = = − +

+ +

− + = −( ) ( ) ( ),  ,  K=s s m m m mJµ ω µ ρ µ ω+ = − + − +

 (17) 

The Eigen values of the Jacobian Matrix are: 

( )

( )

( ) ( )

( ) ( )

2

2

2 2

2 2

1 4 2
2
1 4 2
2

1 2 2
2
1 2 2
2

d d

d

m m

m

d d

m m

s s s s s s

s s s s s s

d d d

m m m

c s s c s c s s s s

c s s c s c s s s s

D

D

δ µ
µ

δ µ
µ

µ ρ
µ ρ

ρ δ ρ δ µ ρ

ρ δ ρ δ µ ρ

µ σ ω
µ σ ω

µ ω σ µ σ µ ω µ σ ω

µ ω σ µ σ µ ω µ σ ω

− −
 −
 − −


−
 − −


− −

 − + − − − − 
 
 + − − − − 
 

− − −
− − −

 − − + − + + + − − − 
 
 − + + − + + + − − − 
 










 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 (18)

 

From the above Eigen values we see that they are all negative but if 

( )24 2s s s s s sDρ δ ρ δ µ ρ+ − < + +     (19) 

and 

( ) ( )2 22 2s s c s c s c s s sω σ µ σ µ ω µ µ σ ω− + + + < + + +   (20) 

then the Disease Free Equilibrium point is locally asymptotically stable. 
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4.2 Global Stability of Disease Free Equilibrium Points 

In this case we employ the method suggested by [19] to scrutinize the global stability of disease free 
equilibrium point of system 1.Our model represented in system 1 has the following structure. 

( )0 1

2

dx A x x A y
dt
dy A y
dt

ε
 = − +

 =


   (21) 

Where; 𝑥𝑥 ∈ ℝ+ standsforsusceptible and vaccinated individuals. 𝑦𝑦 ∈ ℝ+
𝑛𝑛  stands for exposed and infectious 

individuals.𝑥𝑥𝜀𝜀0 is a vector at DFE point 𝜀𝜀0  of the vector length 𝑥𝑥 . With reference to the system 1 we define

( )( )
( ) ( )
( )

( ) ( )

0

0

,  and 

0

d ds md sd

d d

d d

s s ds sd ms sd d

c s s s s s ss s

s s s ds sd ms s

m m c s s s s s s

m m m md ms

m m

S E
V I
S E

x y x
V I
S V
V I

ε

α
µ σ

µ ω α
µ µ ω µ µ σ ω

α α
µ µ ω µ µ σ ω

α
µ σ

−Ψ +Ψ +Ψ
 +
        + Ψ −Ψ +Ψ +     + + + +    = = =     Ψ −Ψ +Ψ +        + + + +           −Ψ −Ψ
 +



( )( )
( ) ( )
( )

( ) ( )
0

 

d ds md sd
d

d d

d

s s ds sd ms s
s

c s s s s s s

s ds sd ms s
s

c s s s s s s

m md ms
m

m m

m

S

V

S

x x
V

S

V

ε

α
µ σ

µ ω α
µ µ ω µ µ σ ω

α α
µ µ ω µ µ σ ω

α
µ σ

−Ψ +Ψ +Ψ  −  + 
 
 

+ Ψ −Ψ +Ψ +  −  + + + +  → − =
  Ψ −Ψ +Ψ +
 −

+ + + + 
  −Ψ −Ψ  −
  +
  

  

(22) 

 To test for global stability of the disease free equilibrium we need to prove the following; 
• 𝐴𝐴 should be a matrix with real negative Eigen values, 
• 𝐴𝐴2 should be a Metzler matrix. 

Using system 1 together with the representation in 21 the two equations can be written as shown below.
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( )

d ds md sd
d

d d

dd d d sd md d d d d ds d d s

sd d d d d d
s

s s s ds ms s s s c s sd s s s

s s s s s s

m m m m m ms md m m m m s

m m m m m m

S

VV S S S I
S V V S

V S S S I
A

S V V
V S S S I

S V V

α
µ σ

α ω µ σ β
µσ ω µ

α ω σ µ µ β
σ ω µ

α ω µ σ β
σ ω µ

−Ψ +Ψ +Ψ
−

+

+ +Ψ +Ψ − − −Ψ − 
 − −  −
 + +Ψ +Ψ − − + −Ψ −

= 
− − 

 + − −Ψ −Ψ − −
 

− −  

( )( )
( ) ( )
( )

( ) ( )

( )
( )
( )

1

d

s ds sd ms s d

c s s s s s s s

ss ds sd ms s
s

mc s s s s s s

mm md ms
m

m m

m

d d s d d d

a d d d d

s s s s s s

E
I
E

A
I

V V
I

S

V

S I E
E I

S I E

ω α
µ µ ω µ µ σ ω

α α
µ µ ω µ µ σ ω

α
µ σ

β µ ρ
ρ µ δ
β µ ρ
ρ

 
 
 
      + Ψ −Ψ +Ψ +    + + + +    +   Ψ −Ψ +Ψ +   −  + + + +      −Ψ −Ψ   −
 +
 
 

− +
− +
− +

( )
( )
( )

2

d

d

s

s s s s s s

m m s m m m m

m m m m m m

E
I
E

A
E I I

S I E V
E I I

µ δ
β µ ρ
ρ µ δ


















   
   
   
   
 =   

− +   
   − +   
 − +     

(23)

 

MatricesA, A1 and A2 are of order 6 × 6. Using elements of x of the Jacobian matrix of system 1 at ε0 and 
representation in 21 we get 

( )
( )

( )
( )

( )
( )

( )
( )

( )

1

2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
,

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0
0 0 0 0

0 0

d d d d d

d d d

s c s s s

s s s

m m m m m

m m m

d d d d

d d d

s s

S

S
A A

S

S

A

µ σ ω β
σ ω σ

µ µ ω β
σ ω µ

µ σ ω β
σ ω µ

µ ρ β
ρ µ σ

µ ρ

 − +  
   − +   
   − +

= =   
− +   

   − +   
− +     

− +
− +

− +
=

( )
( )

( )

0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

s s

s s s

m m m m

m m

S

S

β
ρ µ δ

β µ ρ
ω δ

 
 
 
 
 

− + 
 − + 

− +    
Now we have deduced that, matrix A is an upper triangular matrix with Eigen values being real and negative 
located in its main diagonal. The Eigen values are – (μd + ρd), – (μd + σd), – (μs + ρs), – (μs + δs), – (μm +
ρm)  and – (μm + δm) . The off diagonal elements of matrix A2  are non-negative since all parameters are 
positive which proves that it is a Metzler matrix. This also shows that the disease free equilibrium points of 
system 1 is globally asymptotically stable in the region Φ. This brings us to the following crucial theorem. 

Theorem 3 
The disease free equilibrium point is globally asymptotically stable in the region Φ if Re <  1 and unstable 
in the region Φ if  Re >  1 . 

(24) 
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5. Endemic Equilibrium Points 

5.1 Existence of Endemic Equilibrium Points 

We equate the right hand side of system 1 to zero to be able to compute the equilibrium points of system 1. If 
the endemic equilibrium points of system 1 exist, they are given by 

( )* * * * * * * * * * * * *
0 , , , , , , , , , , ,d d d d s s s s m m m mS E I V S E I V S E I Vε =    (25) 

where 

* * * * *
* * * *

* ,  ,  ,  d d d ds md sd d s d d d d d
d d d d

d d d d d dd d s d

V I S E S
S E I V

I
α ω β ρ σ

µ ρ δ µ µ ωµ β σ
+ −Ψ +Ψ +Ψ

= = = =
+ + ++ +

  (26) 

* * * * *
* * * *

* ,  ,  ,  s s s sd ms ds s s s s s s s
s s s s

s s s s s ss c s s s

V I S E S
S E I V

I
α ω β ρ σ

µ ρ δ µ µ ωµ µ β σ
+ −Ψ +Ψ +Ψ

= = = =
+ + ++ + +

  (27) 

* * * * *
* * * *

* ,  ,  ,  m m m ms md m s m m m m m
m m m m

m m m m m mm m s m

V I S E S
S E I V

I
α ω β ρ σ

µ ρ δ µ µ ωµ β σ
+ −Ψ +Ψ

= = = =
+ + ++ +

  (28) 

Local Stability of the Endemic Equilibrium 
We employed the following theorem as explained by Paul et al., (2016) [20] to describe and prove the local 

stability of the endemic equilibrium points of system 1. 
Theorem 4(Routh-Hurwitz Criterion) 
Given a polynomial 𝑃𝑃(𝜆𝜆) = 𝜆𝜆𝑛𝑛 + 𝑎𝑎1𝜆𝜆𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛−1𝜆𝜆 + 𝑎𝑎𝑛𝑛 

Where the coefficients 𝑎𝑎𝑖𝑖 are real constants, 𝑖𝑖 = 1, . . ,𝑛𝑛 define the 𝑛𝑛 Hurwitz matrices using the coefficients 𝑎𝑎𝑖𝑖 of 
the characteristic polynomial: 

[ ]

1

1 3 2 1
1

1 1 2 3 3 2 1 5 4 3 2
3 2

5 4 3

1 0 0 0
1 0 1 0

1
, , ,..., 0

0 0 0 0

n

n

a
a a a a

a
H a H H a a a H a a a a

a a
a a a

a

 
         = = = =           
  







     

     

 

    (29)

 

Note that, ai=0ifj >  0. All of the roots of the polynomial P(λ) are negative or have negative real part if the 
determinants of all Hurwitz matrices are positive: det Hj >  0;  j =  0,1,2, … , n. More details on Routh-Hurwitz 
criterion are given by Paul et al., (2016) and Sambo et al., (2013) [21,22]. Consider the first part of system 1. 
The Jacobian matrix of that part is given by 

( )
( )

( )
( )

0

0 0
0 0

\
0 0
0 0 0

d d d s d

d s d d

d d d

d d

I
I

J

µ σ β ω
β µ ρ

ε
ρ µ δ

µ ω

 − + +
 − + =  − +
 

− +  

 (30)
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Through computations, we derive the following characteristic polynomial. 
( ) 4 3 2P A B C Dλ λ λ λ λ= + + + +    (31) 

2

2 2

4

3 3 3 3 6 3
      

2 2 2 3 2 2 3

      

d d d d s d d

d d d d d d d d d d d d d d d d d d d s d d s d d s d d

s d d d d

d d d d d d d d d d d d d d d d d d d d d d d d d d d d

A I

B I I I
I

C

δ µ ρ β σ ω

δ µ δ ρ δ σ δ ω ρ µ µ σ µ ω µ ρ σ ρ ω β δ β µ β ρ
β ω σ ω

δ µ ρ δ µ σ δ µ ω δ µ δ ρ σ δ σ ω δ ρ ω µ ρ σ µ ρ ω µ ρ

= + + + + +

= + + + + + + + + + + + +
+ +

= + + + + + + + + + +
2 2 3

2

2 2 2 3

2

2 3 3 4 2 2

      2 3

      +

d d d d d d d d d d d s d d d s d d d s d d d d s d d d

s d d d s d d s d d d

d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

d d d d

I I I I

I I I

D

µ σ ω µ σ µ ω µ ρ σ ω β δ µ β δ ρ β δ µ ω β µ ρ

β µ ω β µ β ρ µ

δ µ ρ σ δ µ ρ ω δ µ ρ δ µ σ ω δ µ σ δ µ ω δ µ δ ρ σ ω µ ρ σ ω

µ ρ σ µ

+ + + + + + + + +

+ +

= + + + + + + + + +
2 3 2 3 3 4 2

2 3      
d d d d d d d d d d d d s d d d d s d d d d s d d d

s d d d d s d d d d s d d d s d d

I I I

I I I I

ρ ω µ ρ µ σ ω µ σ µ ω µ β δ µ ρ β δ µ ω β δ µ

β δ ρ ω β µ ρ ω β µ ω β µ

+ + + + + + + + +

+ + +

(32) 

From the characteristic polynomial represented in 31 we have the following Hurwitz matrix 

4

1 0 0
1

0
0 0 0

A
C B A

H
D C B

D

 
 
 =
 
 
 

 

 

 

 (33)

 

The determinant of the Hurwitz matrix is 𝐷𝐷(ABC − C2 − A2D). 
From the Routh-Hurwitz criteria of Theorem 4, we see that the determinant of Hurwitz matrix will be 

positive if the following conditions hold true. A > 0, C > 0, D > 0  and ABC > C2  + A2D .Recall that all 
parameters of our model and all coefficients of the characteristic polynomial are positive as shown in equation 
32. We combine all requirements and deduce that all roots of the polynomial represented in 31 are negative and 
hence we prove that the first part of system 1 is locally asymptotically stable. Moreover, we consider the 
second part of system 1. The Jacobian matrix is given by 

( )
( )

( )
( )

0

0
0

\
0 0

0 0

s s c s s s s s

s s s s s s

s s s

s s s

I S
I S

J

σ µ µ β β ω
β µ ρ β

ε
ρ µ δ

σ µ ω

 − + + +
 − + − =  − +
 

− +  

 

 (34)

 

Consider the characteristic polynomial 

( ) 4 3 2
1 1 1 1P A B C Dλ λ λ λ λ= + + + +     (35)
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1

1
2

2
1

4
3 3 3 3

      3 3 6

2 2 2 3

c s s s s s s s

c s c s c s c s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s

c s s c s s c s s c s s c s s c s s c s c s s

A I
B I I I

S

C S

µ β δ µ ρ σ ω
µ δ µ ρ µ ω µ µ β δ β µ β ρ δ µ δ ρ δ σ δ ω µ ρ

µ σ µ ω µ ρ σ ρ ω β ρ

µ δ ρ µ δ ω µ δ µ µ ρ ω µ µ ρ µ µ ω µ µ µ β ρ

= + + + + + +
= + + + + + + + + + + +

+ + + + + −

= + + + + + + −
2

2 2 2 2 3

2

      2 2 3 2 2

      2 3 2 2 3 3 3 4
      2

s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s

I

I I I I I I

S S S

β δ µ

β δ ρ β δ ω β µ ρ β µ ω β µ β ρ ω δ µ ρ δ µ σ

δ µ ω δ µ δ ρ σ δ ρ ω µ ρ σ µ ρ ω µ ρ µ σ µ ω µ
β µ ρ β ρ σ β ρ ω

+ +

+ + + + + + + + +

+ + + + + + + + + −
− −

2 2 2 3
1

2 2

2 3

      

      

s

c s s s c s s s c s s s c s s c s s s c s s c s s c s c s s s s

c s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s

D S

S I I I I I I

I I

µ δ ρ ω µ δ µ ρ µ δ µ ω µ δ µ µ µ ρ ω µ µ ρ µ µ ω µ µ µ β ρ ω

µ β µ ρ β δ µ ρ β δ µ ω β δ µ β δ ρ ω β µ ρ ω β µ ρ

β µ ω β µ δ µ ρ σ δ µ ρ

= + + + + + + + −

− + + + + + + +

+ + + 2 2 2 3 2 2

3 3 3 4 2      
s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s sS S S

ω δ µ ρ δ µ σ δ µ ω δ µ µ ρ σ µ ρ ω

µ ρ µ σ µ ω µ β µ ρ σ β µ ρ ω β µ ρ

+ + + + + +

+ + + + − − −

(36) 

From the characteristic polynomial represented by 35 we have the Hurwitz matrix being given by 

1

1 1 1
5

1 1 1

1

1 0 0
1

0
0 0 0

A
C B A

H
D C B

D

 
 
 =
 
 
 

   (37) 

The determinant of the Hurwitz matrix is given by D1(A1B1C1 − C12 − A1
2D1). With reference to Theorem 4 

the determinant of Hurwitz matrix become positive iff A1 > 0, C1 > 0, D1 > 0  and A1B1C1 > C12 + A1
2D1 . 

Again, since A1 > 0, 
1

2

2
1

0 iff 3 3 3

      3 3 3 6

0 iff 2 2 2 3 2

c s c s c s c s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s

c s s c s s c s s c s s c s s c s s c s s s s s s s

B I I I I

S

C I I

µ δ µ ρ µ ω µ µ β δ β µ β ρ β ω δ µ δ ρ δ σ

δ ω µ ρ µ σ µ ω µ ρ σ ρ ω β ρ

µ δ ρ µ δ ω µ δ µ µ ρ ω µ µ ρ µ µ ω µ µ β δ µ β

> + + + + + + + + + + +

+ + + + + + >

> + + + + + + + +
2

2 2 2 2 3

1

      2 2 3 2 2 2

      3 2 2 3 3 3 4 2
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s s

s s s s s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s c s s s

I I I I I

S
S S S

D

δ ρ

β δ ω β µ ρ β µ ω β µ β ρ ω δ µ ρ δ µ σ δ µ ω

δ µ δ ρ σ δ ρ ω µ ρ σ µ ρ ω µ ρ µ σ µ ω µ β µ ρ
β ρ σ β ρ ω µ β ρ

+ + + + + + + + +

+ + + + + + + + > +
+ +

> 2 2 2 3

2 2 2 3

2 2

f 

      

      

c s s s c s s s c s s s c s s c s s s c s s c s s c s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s

I

I I I I I I I

µ δ ρ ω µ δ µ ρ µ δ µ ω µ δ µ µ µ ρ ω µ µ ρ µ µ ω µ µ β δ µ ρ

β δ µ ω β δ µ β δ ρ ω β µ ρ ω β µ ρ β µ ω β µ δ µ ρ σ

δ µ ρ ω δ µ σ δ µ ω δ µ

+ + + + + + + +

+ + + + + + + +

+ + + + 2 3 2 2 3 3 3 4

2      
s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s c s s s s c s s s sS S S S S

ρ δ µ µ ρ σ µ ρ ω µ ρ µ σ µ ω µ

β µ ρ σ β µ ρ ω β µ ρ µ β ρ ω µ β µ ρ

+ + + + + + +

> + + + +

(38) 

When all conditions hold, similarly A1B1C1 > C12 + A1
2D1 holds. Hence we can conclude that all roots of 

polynomial 35 are negative. This verifies that the second part of system 1 is locally asymptotically stable. 
Using the same procedure for the third part of system 1 will result in the same conclusion. 

Therefore, we generally conclude that the endemic equilibrium point of system 1 is locally asymptotically 
stable.



Desirable Dog-Rabies Control Methods in an Urban setting in Africa - a Mathematical Model 65 

 

6. Conclusion 

In this paper we have formulated and analyzed a deterministic mathematical model for the dynamics of 
rabies transmission. The model consists of domestic dogs, stray dogs and Maasai dogs’ population. The model 
intended to show the contribution of vaccination, culling and their combination towards the control of rabies 
transmission. 

The basic reproduction number and the effective reproduction number have been computed using next 
generation matrix operator. The results depend on the parameter values of stray dogs’ population. This is 
because, epidemiologically, stray dogs are the main source of dog-rabies transmission. This tells us that more 
effort on controlling dog-rabies transmission should be put into the stray dog population [12]. 

Using our set of parameter values, the basic reproduction number R0 and the effective reproduction number 
Re were computed and found to be 1.9 and 1.2 respectively. This indicates that the disease is endemic [8]. 

The numerical simulation for the reproduction number indicates that the combination of at least 60% 
vaccination and culling of up to 40% of the dog population would be the best measure to control dog-rabies 
transmission in Arusha region. However, this does not take into account feasibility and economic and socio-
cultural aspects. 

We have computed the disease free and endemic equilibrium points. With the use of Routh Hurwitz criteria, 
the endemic equilibrium points are locally asymptotically stable if these conditions hold. 
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