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Abstract 
We choose a better pseudo-random number generator from a list of eight pseudo-random number generators 
derived from the library function rand() in C/C++, including rand(); i.e. a random number generator which is 
more random than all the others in the list. rand() is a repeatable pseudo-random number generator. It is called 
pseudo because it uses a specific formulae to generate random numbers, i.e. to speak the numbers generated are 
not truly random in strict literal sense. There are available several tests of randomness, some are easy to pass 
and others are difficult to pass. However we do not subject the eight set of pseudo random numbers we 
generate in this work to any known tests of randomness available in literature. We use statistical technique to 
compare these eight set of random numbers. The statistical technique used is correlation coefficient. 
 
Index Terms: pseudo-random number generator, library function, correlation coefficient. 
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1. Introduction 

The A sample program in C++ to generate 50 random members and print them is given below. 
//A Sample Program to generate 50 random numbers 
#include <iostream> 
#include <stdlib.h> 
using namespace std; 
int main() 
{ 
unsigned long int a[51]; 

int i; 
for(i=1;i<=50;i++)
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{ 
a[i]=rand(); 
cout<<"  "<<a[i]; 
if(i%10==0) cout<<endl; 
} 
return 0; 
}  

  rand() is a library function contained in header file <stdlib.h>, it is a pseudo-random number generator 
(pRNG) which returns pseudo-random integer in the range 0 to 32767. It is repeatable, in the sense that every 
time above program is run the same sequence of random numbers are generated. One of the routines of rand() 
is illustrated below [1]. 

unsigned long int next = 1; 
int rand(void) 
{ 
  next = next * 1103515245 + 12345; 
  return (unsigned int)(next/65536) % 32768; 
} 

   Note that the random numbers are generated from a specific formula as given in routine, this mathematical 
formula is subject to change with time with attempts to generate better random numbers. Therefore this 
generator is called pseudo. However, because the numbers generated amongst themselves do not have any 
pattern they are called random numbers. 

   In this work we consider following 8 formulae of random number generators, all derived from the library 
function rand(), including rand() itself also as one of the formula. 

Formula 1: randሺ ሻ 

Formula 2: 
୰ୟ୬ୢ ሺ ሻ∗୰ୟ୬ୢሺ ሻ

୰ୟ୬ୢሺ ሻ
 

Formula 3: 
୰ୟ୬ୢሺ ሻయ

୰ୟ୬ୢሺ ሻమ 

Formula 4: 
୰ୟ୬ୢሺ ሻయ

୰ୟ୬ୢሺ ሻ∗୰ୟ୬ୢሺ ሻ
 

Formula 5: 
୰ୟ୬ୢሺ ሻర

୰ୟ୬ୢሺ ሻయ 

Formula 6: 
ሾ୰ୟ୬ୢሺ ሻ∗୰ୟ୬ୢሺ ሻሿమ

୰ୟ୬ୢሺ ሻయ  

Formula 7: 
୰ୟ୬ୢሺ ሻఱ

୰ୟ୬ୢሺ ሻర
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Formula 8:  
୰ୟ୬ୢሺ ሻల

୰ୟ୬ୢሺ ሻఱ 

  In all of these formulae the effective power of rand() has been kept as one, but they generate different 
sequences of random numbers. So, a natural question that arises is, “Which is a better pseudo-random number 
generator amongst these eight ?” We answer this question in the sections to follow. 

   There are several other random number generators available in literature. In [2] following minimal 
standard random number generator has been proposed. 

I୨ାଵ ൌ aI୨ ሺmod mሻ 

a ൌ  7ହ ൌ 16807,   m ൌ  2ଷଵ െ 1 ൌ 2147483647 

   [3] gives three random number generators ran0, ran1, ran2 based on the minimal standard discussed above. 
ran0 is a minimal standard. However, ran0 shows a low-order serial correlations. ran1 removes this defect of 
ran0 by shuffling its output. ran2 combines the generators ran0 and ran1 to give the best generator amongst 
ran0, ran1 and ran2. [4] chooses two different generators and combine them by either addition or subtraction to 
give a composite generator with very long periods, for eg., upto 2ଵ଺଴. 

  However, in contrast, in our present work we do not take two different generators to find the composite 
generator but instead use the same generator rand() and combine them by multiplication and division. One 
advantage generating random numbers this way is that the range is increased, from 0 to infinity. We get infinity 
when value of rand() placed in denominator comes out to be 0. The largest integer generated in 1,00,000 
iterations of pRNG given by formula 3 above is 4290421316, which is far more bigger than 32767 (the largest 
integer generated by rand() alone). Thus we have come up with pRNGs with a far more different and totally 
new recipe than the earlier works published in literature. The practical problem with pRNG generating infinity 
is that the computer does not understand it and the computer program will stop working after that. A remedy to 
this problem has been given in Result section to follow. 

There are several tests of randomness available in literature. Some are easy as given in [5,6]. Marsaglia has 
worked exhaustively on these tests. Together with [7] he made up the Diehard Battery of Tests of Randomness 
which are included in a CD-ROM [8]. Tests more stringent than the Diehard Battery of Tests of Randomness: 
(1) The gcd Test, (2) The Gorilla Test and (3) The Birthday Spacings Test are given in [9]. These are a 
distillation of the Diehard Battery of tests.  

 These tests investigate absolute randomness amongst the members of data itself, i.e. they say whether a 
given sequence of unsigned integers is random or not. They, however, do not tell whether a given sequence is 
more random or not as compared to some other sequence. Hence in our present work we use the statistical 
technique of correlation coefficient to measure randomness in the sequence. This technique measures the 
relative strengths of randomness between different data sets. The data set with a lower value of correlation 
coefficient is more random than the data set with a higher value.    

 In C/C++ there is another library function srand(seed) to generate pseudo-random numbers [1]. With the use 
of this library function, every time we generate random number it is with a different seed, i.e. we can get 
different sequences of random numbers every time we run this routine. However, in this work we do not 
consider random numbers generated with srand(seed) library function. We will deal with this routine in future 
work. 

2. Correlation coefficient 

   Correlation coefficient, strictly speaking, is a measure of linear interdependence between two variables, say x 
and y of a data set [10]. We use it in our present work to measure the relative strength of randomness in
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multiple data sets. It is denoted by the letter r. 

2.1 Formula of correlation coefficient 

      Consider the following data set 

x  xଵ  xଶ  ......  x୧  …..  x୬ 

y  yଵ  yଶ  …….  y୧  …..  y୬ 

Let X ൌ  x୧ െ xµ and Y ൌ  y୧ െ yµ 

      where xµ and yµ are respectively the means of variables 𝑥 and 𝑦. 
      Then 

r ൌ  
Σ X Y

n σ୶ σ୷
 

      where  𝜎௫ is standard deviation of variable 𝑥 and 𝜎௬ is standard deviation of variable 𝑦.  
      Using the mathematical definition of standard deviation, the above equation for 𝑟 can also be written as  

r ൌ  
Σ X Y

√Σ Xଶ Σ Yଶ
 

2.2 Interpretation of correlation coefficient 

     The value of 𝑟 varies between -1 and 1. A high value of correlation coefficient shows strong correlation 
between the variables considered where as a low value shows weak correlation. Regardless of the sign the same 
numerical value of the positive correlation coefficient and the negative correlation coefficient shows a 
correlation of equal strength. 
       r ൌ 0 happens when the scatter of points (x୧ , y୧),  i ൌ 1,2, … . , n is totally random. r ൐ 0 happens when the 
line of best fit to the data set has positive slope. r ൏ 0 happens when the line of best fit to the data set has 
negative slope. As randomness in the scatter of points of the data set about the line of best fit reduces 
correlation coefficient moves away from 0. Thus correlation coefficient gives an idea of the relative strength of 
randomness between different data sets. 
       In our present work we generate respectively 50, 100, 200, 300 and 400 random numbers by eight different 
formulae proposed in section 1 and find the correlation coefficient of each, for half of the data with respect to 
the other half, i.e. one half of the data is assumed the variable x and the other half is assumed the second 
variable y. Thus for the generation of 50 random numbers, sample size is 25 and we denote the absolute value 
of correlation coefficient for this sample size as 𝑟ଶହ . Thus for the sample sizes of 50, 100, 150 and 200 
respectively the absolute values of correlation coefficients are denoted as 𝑟ହ଴, 𝑟ଵ଴଴, 𝑟ଵହ଴ and 𝑟ଶ଴଴. 

3. Result 

3.1 Result based on Formula 1 to Formula 8 as stated above in section 1 

       A sample C++ program to generate 200 random numbers by Formula 3 given in section 1, and calculate 
correlation coefficient is given below.
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//A Sample Program to calculate correlation coefficient 
#include <iostream> 
#include <stdlib.h> 
#include <math.h> 
using namespace std; 
int main() 
{ 
unsigned long int a[201]; 
int i; 
unsigned long int x[101],y[101]; 
double sum1=0.0,sum2=0.0,sum3=0.0; 
double xavg,yavg; 
double r; 
int j; 
for(i=1;i<=200;i++) 
{ 
a[i]=pow(rand(),3)/pow(rand(),2); 
cout<<"  "<<a[i]; 
if(i%10==0) cout<<endl; 
} 
cout<<endl<<endl; 
cout<<"Correlation coefficients"; 
 
for(j=1;j<=100;j++) 
{ 
x[j]=a[j]; 
y[j]=a[100+j]; 
sum1=sum1+double(x[j]); 
sum2=sum2+double(y[j]); 
} 
xavg=sum1/100.0; 
yavg=sum2/100.0; 
sum1=0.0; 
sum2=0.0; 
sum3=0.0; 
for(j=1;j<=100;j++) 
{ 
sum1 = sum1+(double(x[j])-xavg)*(double(y[j])-yavg); 
sum2 = sum2+pow((double(x[j])-xavg),2); 
sum3 = sum3+pow((double(y[j])-yavg),2); 
} 
r = fabs(sum1/sqrt(sum2*sum3)); 
cout<<endl<<endl<<" r="<<r; 
 
return 0; 
} 

  The correlation coefficient calculated is 𝑟ଵ଴଴, it is the absolute value. Similarly we calculate the absolute 
values of all the correlation coefficients for all the formulae given in section 1; and the same is plotted below. 

From Fig.1 we see that the curve for formula 5 is the closest to 0, on an average. This means that the
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absolute value of correlation coefficient is the smallest for formula 5, on an average, for all sample sizes and 
hence the randomness of the numbers generated by pRNG formula 5 is the greatest amongst the eight pRNG 
formulae stated.  

 However, from Fig.1 we can also find out mathematically the average of absolute value of correlation 
coefficient |𝑟|௔௩௚  for each formula. 
|𝑟|௔௩௚  = Area under the curve for a chosen formula from Fig. 1/(200-25) 
or |𝑟|௔௩௚ = [0.5ሺ𝑟ଶହ ൅ 𝑟ହ଴ሻ25 ൅ 
                0.5ሺ𝑟ହ଴ ൅ 𝑟ଵ଴଴ሻ50 ൅ 
                0.5ሺ𝑟ଵ଴଴ ൅ 𝑟ଵହ଴ሻ50 ൅ 
                0.5ሺ𝑟ଵହ଴ ൅ 𝑟ଶ଴଴ሻ50] / 175 
    The value of |𝑟|௔௩௚   formula wise is given below. 
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Fig 1: The absolute value of correlation coefficients vs. sample size N for formula 1 to formula 8 

Table 1: value of |𝑟|௔௩௚ for formula 1 to formula 8 

Formula |𝑟|௔௩௚ 

Formula 1 0.1028517 

Formula 2 0.0423519 

Formula 3 0.0232212 

Formula 4 0.0411278 

Formula 5 0.0165323 

Formula 6 0.0255519 

Formula 7 0.034642 

Formula 8 0.0809405 
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  We see from Table 1 that the absolute value of correlation coefficient is the lowest for formula 5, i.e. the 
linear interdependence between one half of random numbers generated and the other half is the least for 
formula 5. 

3.2 Result based on new formulae of pRNG as stated below 

       One problem with pseudo-random number generators stated in formula 2 to formula 8 above in section 1 
is that if the value of library function rand() placed in denominator in above formulae turns out to be zero, then 
the number generated is infinity and our computer program will stop to generate any further random numbers. 
We faced this problem with random number generator given by formula 2 above in section 1 in iteration 
number 8400. To overcome this problem we propose below following new formulae of pRNGs derived from 
the library function rand() of C/C++. 

Formula 9: 
୰ୟ୬ୢ ሺ ሻ∗୰ୟ୬ୢሺ ሻ

୰ୟ୬ୢሺ ሻାଵ
 

Formula 10: ୰ୟ୬ୢሺ ሻయ

୰ୟ୬ୢሺ ሻమାଵ
 

Formula 11: 
୰ୟ୬ୢሺ ሻయ

୰ୟ୬ୢሺ ሻ∗୰ୟ୬ୢሺ ሻାଵ
 

Formula 12: 
୰ୟ୬ୢሺ ሻర

୰ୟ୬ୢሺ ሻయାଵ
 

Formula 13: ሾ୰ୟ୬ୢሺ ሻ∗୰ୟ୬ୢሺ ሻሿమ

୰ୟ୬ୢሺ ሻయାଵ
 

Formula 14: 
୰ୟ୬ୢሺ ሻఱ

୰ୟ୬ୢሺ ሻరାଵ
 

Formula 15:  ୰ୟ୬ୢሺ ሻల

୰ୟ୬ୢሺ ሻఱାଵ
 

 For these 7 formulae, i.e. formula 9 to formula 15, and formula 1 we generate respectively 50000, 100000 
and 200000 random numbers and find the correlation coefficient of each, for half of the data with respect to the 
other half, i.e. one half of the data is assumed the variable x and the other half is assumed the second variable y. 
Thus for the generation of 50000 random numbers, sample size is 25000 and we denote the absolute value of 
correlation coefficient for this sample size as 𝑟. Thus for the sample sizes of 50000 and 100000 respectively the 
absolute values of correlation coefficients are denoted as 𝑟ଵand 𝑟ଶ. 

  Same algorithm is used as given in section 3.1 but with different sizes of arrays a[ ], x[ ] and y[ ]. The plot 
of 𝑟, 𝑟ଵ and 𝑟ଶ for different formulae is given below. 

From Fig.2 we see that the curve for formula 11 is the closest to 0, on an average. This means that the 
absolute value of correlation coefficient is the smallest for formula 11, on an average, for all sample sizes and 
hence the randomness of the numbers generated by pRNG formula 11 is the greatest amongst the eight pRNG 
formulae compared.
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 However, from Fig.2 we can also find out mathematically the average of absolute value of correlation 
coefficient |𝑟|௔௩௚  for each formula. 

|𝑟|௔௩௚  = Area under the curve for a chosen formula from Fig. 2/(100000-25000) 

or |𝑟|௔௩௚   = [0.5ሺ𝑟 ൅ 𝑟ଵሻ25000 ൅ 0.5ሺ𝑟ଵ ൅ 𝑟ଶሻ50000] / 75000 
    The value of |𝑟|௔௩௚   formula wise is given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2: The absolute value of correlation coefficients vs. sample size N for formula 9 to formula 15 and formula 1 

Table 2: value of |𝑟|௔௩௚ for formula 9 to formula 15 and formula 1 

Formula |𝑟|௔௩௚ 

Formula 1 0.00371158 

Formula 9 0.00041733 

Formula 10 0.00245084 

Formula 11 0.00029679 

Formula 12 0.00317576 

Formula 13 0.0039695 

Formula 14 0.00083501 

Formula 15 0.00243022 
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   We see from Table 2 that the absolute value of correlation coefficient is the lowest for formula 11, i.e. the 
linear interdependence between one half of random numbers generated and the other half is the least for 
formula 11. 

4. Conclusion and Discussion 

We can say from above result that the better pRNG (better than rand()) for short run, i.e. the number of 
iterations of random number generation algorithm around 400 is  

randሺ ሻସ

randሺ ሻଷ 

  But, however, the better pRNG (better than rand()) for long run, i.e. the number of iterations of random 
number generation algorithm equal to or in excess of 50000 is 

randሺ ሻଷ

randሺ ሻ ∗ randሺ ሻ ൅ 1
 

    This formula instead of rand() alone can be used in computer simulations, specially in Monte Carlo 
simulations. However, it is not applicable for cryptographic applications. 

       As stated earlier above, the pRNG formula 2 to formula 8 generates random numbers in the range 0 to 
infinity. Infinity as such is an undefined number, but if somehow we program our computer to manipulate 
infinity, these pRNGs are perfect random number generators and are better formulae than that given in formula 
9 to formula 15. To find a way to make the computer manipulate infinity let us calculate the largest possible 
value that a given pRNG generates without rand() becoming zero. To be clear let us take the case of formula 3. 
The extreme possibility is that the value of rand() in numerator is 32767 and the value of rand() in denominator 
is 1. Now with these values consider the following algorithm 

unsigned long int a; 

a=pow(32767,3)/1; 

  The problem with this algorithm is that it gives a warning- overflow in implicit constant conversion. And 
the value that is output to the terminal is 4294967295, which is not correct. A remedy to this problem is 
through following algorithm 

double a; 

a=pow(32767,3)/1.0; 

  The output of this algorithm is 3.51812X10ଵଷ, which is the correct value of mathematical operation carried 
out in the algorithm. So instead of creating integers if we create double precision floating point random 
numbers we immediately see a solution to infinity problem. For the particular case of formula 3 we modify our 
pRNG algorithm to create the random number “3.51812X10ଵଷ ൅ randሺሻ” whenever 0 is encountered for rand() 
in denominator. This way we have defined infinity for formula 3 to have value 3.51812X10ଵଷ ൅ randሺሻ. So if 
we create double precision floating point random numbers our pRNG formula 2 to formula 8 will turn out to be 
very-very good random number generators with exceptionally long periods. 
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