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Abstract 
 
Adversaries to any system restlessly continues to sought effective, non-detectable means to aid them successful 
penetrate secure systems, either for fun or commercial gains. They achieve these feats easily through the use of 
malware, which keeps on the rise, an ever-growing and corresponding overpopulated malware zoo. As such, 
information technology industry will continue to encounter via these escapades, both monetary and prestigious 
losses. Malware by design aims to alter the behaviour of its host by self-replicating its genome or codes unto it. 
They are quite fascinating in that on execution, some malware change their own structure so that its copies 
have same functionality but differ in signature and syntax from the original or parent virus. This makes 
signature detection quite unreliable. Study investigates detection of metamorphic malware attacks using the 
Boyer Moore algorithm for string-based signature detection scheme. 
 
Index Terms: String Matching Algorithm, Malware Detection, Metamorphics,  Pattern Matching, Code 
Obfuscation. 
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1. Introduction 

Today’s society dependence on digitally transmitted data is drastically on the rise along with the growing 
need to dissuade adversaries from unauthorized access to such data. This has led to advances in security and 
forensics – with the use of firewalls, gateways and other mechanisms that helps to seek and ensure data security 
via integrity and privacy.  This  is  quite  a  herculean  task – as  its  trending  direction  focuses  now  more on  
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intrusion detection systems to monitor data traffic so as to identify resources misuse, unauthorized use and 
abuse on networks [37]. 

Viruses (or malware) are a fascinating creation – in that they are malicious programs that attach themselves 
to a host or a system, modifies its host’s internal structure as it infects the system by attaching its signature 
(string or code) to its host’s internal design, and consequently, alters the behaviour of its host’s internal 
working(s). Thus, malware self-replicates its signature as codes that are attached onto a machine without the 
user’s consent, and spreads by attaching a copy of itself to some part of program file. It attacks system 
resources and is designed to deliver a payload that aims to corrupt program, delete files, reformat disks, crash 
network, destroy critical data or embark on other damage to the host machine [12, 48, 7].  

As they infect a host, they sometimes modify themselves to include better and possibly, an evolved copy of 
themselves as copied unto the host – so that as they spread from one host to another – they create variants of the 
original virus in other infected host systems [4, 5, 6]. The use of Internet for data transfer has become a soft 
target for their widespread to help wreak havoc, faster globally. Early detection of viruses is thus, imperative to 
minimize the damage caused [9, 48, 7].  

As the field of data security continues to experience quite a huge growth resulting from threats and attacks 
constantly perpetuated by hacker and crackers via the use of malware – various studies exists that have also 
successfully implemented a plethora of tools to help combat this menace. The average losses per company due 
to computer intrusion detection have constantly been on the decrease since 2002 [3, 32]. Even with the daily 
increase with watchful eyes and systems in place – there is no need to relax, as new attacks are on the rise. 
These attacks have been observed to be targeted towards criminal and commercial purposes to include (and not 
limited to) espionage, blackmail, social engineering, fraud etc [48, 9, 31]. 

1.1. Statement of Problem 

Studies have shown that AVs effectiveness has decreased against unknown or zero-day attacks. 
Evolutionary heuristics and modeling have been successfully applied to many research studies in malware 
detection with the following problems and caveats: 
The changing intent of virus makers keeps the study of virus intrusion consequently on the rise and inevitable.  
Independent testing on major virus scanners consistently shows none to yield a 100% detection, irrespective of 
the heuristics employed. Thus, all scanners must yield an acceptable rate of false-positive and true-negative 
results, identifying benign files as malware [19-20]. 
The chaotic and evolvable nature of metamorphics and its range of complications as it provides a backdoor for 
other crimes – makes it critical and imperative, to early and accurate detect and classify malware intrusion. 
Carefully supervised diagnosis can be often mundane and time-wasting of man-hours. This, also in some 
instances yields inconclusive results for evolving signature strings – all of which will amount to increased 
false-positive and true-negative results. The understudied string matching algorithm has been successfully 
employed in effectively classifying malwares as in Section II. 
Most evolutionary models employ hill-climbing methods, which are often limited by speed that traps their 
solution at local maxima – resolved via string-based signature model (good-rule suffix shift) as in Section 3. 
Often, the search for optima in most evolutionary model is cumbersome as no one method yield better optima 
than hybrids. Also, with hybrid, there are the issues of data conflicts and conflicts arising from the statistical 
methods (combined) adopted. Also, the virus strings have to be encoded unto the adopted model. As resolved 
in Section II, malware strings are not encoded. Thus, no data pre-processing is required or needed – so that the 
model also completely is devoid of model overtraining, over-fitting and over-parameterization. 

2. Literature Revie
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2.1. Types of Malware 

Viruses are classified into [13, 14, 8, 33-34]:  
 

1. Simple virus replicates itself if launched. It gains control of the system, attaches copy of itself to another 
program as it spreads. After which, it transfers control back to host program. It is easily detected via 
search/scan for a defined sequence of bytes, known as a signature to find the virus,  

2. Encrypted Viruses scrambles its signature – making it unrecognizable at its execution. Its decryption 
routine transfers control to its decrypted virus body so that each time it infects a new program, it makes 
copy of both the decrypted body and its related decryption routine. It then encrypts a copy and attaches 
both to a target system. It uses an encryption key to encrypt its body. As the key changes, it scrambles its 
body so that virus appears different from one infection to another. Such virus is difficult to detect via 
signature. Thus, antivirus must scan for a constant decryption routine instead. 

3. Polymorphics consists of a scrambled body, a mutation engine and decryption routine. Its decryption 
routine first, gains control of the system by decrypting its scrambled body and mutation engine. It then 
transfers control to the scrambled body to locate a new file in the host machine to infect via memory 
mapping. After which, it then copies its body and mutation engine into host machine’s RAM, and invokes 
its mutation engine to randomly generate new decryption routine to decrypt its body with little or no 
semblance to the previous routine. It then appends this newly encrypted body, a mutation engine and 
decryption routine to the newly infected file. Thus, the encrypted body and the decryption routine, varies 
from one infection to another. With no fixed signature and decryption routine, no two infections are alike. 

4. Metamorphics avoid detection by rewriting completely, its code each time it infects a new host and its 
file(s). Its engine accomplishes such features via code obfuscation and metamorphism. And, this in most 
cases – is 90% of its assembly language codes. 

 
Malware (viruses in general) have 3-modules described as: (a) infect, an internal faculty of malware’s design 

mechanism that depicts how to modify its host system, and replicating or copying itself unto the host, (b) 
trigger details how and when to deliver the malware’s payload, and (c) payload details what damage and the 
extent of it holds once the host is infected by the malware. Even so, trigger and payload are often optional in 
some malware such as worms [36, 49]. 

2.2. Malware Intrusion Detection 

Intrusion is any set of action that attempts to compromise integrity, confidentiality, privacy and availability 
of system (or network) resources. The intruder (or adversary) initiates such intrusive action. Malware often 
intrudes into a host machine’s privacy. Thus, antiviruses are developed as means to monitors such data (over 
network connections) and determines if it is an intrusive activity via a malware, or not. If an intrusive action is 
detected, the antivirus performs one of these: (a) alerts such intrusion by flagging access to data by the malware, 
(b) logs in a message into the system and requires the administrator to analyze immediately, and (c) ends such 
adversary connections or access to the data, amongst other functions [9]. 

Threats via such intrusion can be initiated externally or internally [49-51, 37, 9] – resulting in 2-types: (a) 
external (where an adversary has no authorized access to resources; But, he then attacks a host through the 
means of malware penetration), and (b) internal (where such adversary has authorized access to resources). 
However, to ensure data security and integrity, many organizations implement use of antiviruses, firewalls, 
application gateways as their first step line of defense against intrusive actions. 

2.3. Metamorphic Malware 
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Metamorphic viruses as noted above, changes their internal code structure and appearance while keeping its 
functionality. It does this via code obfuscation methods as in Fig 1. Its engine reads in a virus executable, 
locates the codes to be transformed using the method locate_own_code module. Each engine has its 
transformation rule that defines how a particular opcode or a sequence of opcodes is to be transformed. Decode 
module extracts the rules by disassembling. Analyze module analyzes current copy of virus and determines 
what transforms must be applied to generate the next morphed copy. Mutate module performs the actual 
transformations by replacing an instruction (set) with the other its equivalent code; While, Attach module 
attaches the mutated or transformed copy to a host [21, 48, 15, 22, 34, 8, 7]. 

 
 
 
 
 
 

Fig. 1. Distinct Signature of Metamorphic Virus 

A typical metamorphic engine consists: (a) disassemble which disassembles binary codes, (b) shrinker 
replaces some codes with single equivalent, (c) expander replaces codes with other codes that perform same 
action, (d) swapper reorders codes by swapping unrelated codes, (e) relocator assigns and relocate relative 
references such as jumps and call, (f) garbager inserts whitespaces do-nothing codes, and (g) cleaner reverses 
the actions of garbager by removing whitespaces instructions [24]. Feats of metamorphic engine includes: (i) 
must handle assembly opcode, (ii) shrinker and swapper to process more than one instruction concurrently, (iii) 
garbager is moderately used so as not to affect actual instructions, and (iv) swapper analyzes each instruction so 
as not to affect next instructions’ execution [15, 22, 25, 10]. 

2.4. Metamorphic Code Obfuscation Methods 

Metamorphic engine uses code obfuscation to yield morphed copies of original program. Obfuscated code is 
more difficult to understand and can generate different looking copies of a parent file as it operates on both 
control flow and data section of a program. Code obfuscation is achieved via [26, 27, 28]: 

 
1. Register Usage Exchange/Rename modifies register data of an instruction without changing the codes itself, 

which remain constant across all morphed copies. Thus, only the operands changes. 
2. Dead Code inserts whitespaces, which do not affect its code execution via a block or single instruction so 

as to change codes’ appearance while retaining functionality.  
3. Subroutine Permutation aims to reorder subroutines so that a program of many subroutines can generate (n-

1)! varied permutations, whose addition will not affect its functionality as this is not important for its 
execution.  

4. Equivalent Code Substitution replaces instruction with its equivalent instruction (or blocks). A task can be 
achieved in different ways. Same feat is used in equivalent code substitution. 

5. Transposition/Permutation – modifies program execution order only if there is no dependency amongst 
instructions. 

6. Code Reorder inserts unconditional and conditional branch after each instruction (or block), and defines 
branching instructions to be permuted so as to change the programs’ control-flow. Conditional branch is 
always preceded by a test instruction which always forces the execution of the branching instruction. 

7. Subroutine Inline/Outline is similar to dead code insertion in that subroutine call are replaced with its 
equivalent code as Inline inserts arbitrary dead code in a program; while outline converts block of code into 

Locate 
own code Decode Analyze Mutate Attach 
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subroutine and replace the block with a call to the subroutine. It essentially does not preserve any logical 
code grouping. 

2.5. Antivirus / Malware Detection Mechanisms 

Antiviruses have been successfully implemented and used to detect, prevent and remove malware from host 
machines. Antiviruses (AV) have been broadly classified to use different strategies grouped into: heuristic 
search, cyclic redundancy check, logic search and spy on processes to scan for viruses. [32, 30] malware 
intrusion can be detected using the following schemes, basically classified into: 

 
1. Signature (rule-based) maintains an attack database, of signatures using various heuristics or rule set that 

includes a list of the major feats about a process (or data packet). They are created by experts with the 
antivirus sniffing each process passing through the system, compares them against its database, and if a 
match is found, it generates an alert; Else, it proceeds [9]. Its demerits includes: (a) it requires previous 
knowledge of known attacks to generate accurate rules, (b) are completely blind to new unrecorded attack, 
(c) false negative classifications that result from feats not in the rules knowledgebase and not an attack are 
often on the rise, and (d) addition of new rules enlarges the knowledgebase, and processes comparison that 
often overwhelms the antivirus processing program so that it fails to detect attacks and network anomalies. 
Thus, it scans the memory for processes and thread with specific signatures. To evade detection and 
circumvent such detection techniques/schemes, virus makers create a new string of viruses, which alters 
their structure but keeps its functionality via code obfuscation (metamorphic) means. 

2. Anomaly-based scheme simply creates a profile statistics of all unusual threads and processes executing 
within the system memory through their streams of control message protocol. It also scan’s for sudden 
exponential growth in access to data or execution memory required via code emulation technique, which 
creates a virtual machine or sandbox (controlled environment, honey pot) unto which the virus is allowed to 
run and execute. Thus, host files are also allowed to execute within it and scanned for virus. Once the virus 
is detected, it is no longer a threat as it is run in a controlled environment that limits its damage to the host 
machine. It does not rely on prior knowledge to detect undocumented, new attacks; [16, 17, 48]. This 
scheme also poses continually a herculean task, which aims to effectively distinguish normal memory data 
and resource traffic from statistically-unusual traffic. Its only demerit however, is that it can often yield high 
false-positives classification rates [52]. 

 
Antivirus is been found to cripple system’s performance. And, any incorrect classification by it often leads 

to security breach – as they run at the operating system’s kernel. The success however, of antivirus that uses 
heuristics techniques, depends on a right balance between false-positives and true-negatives. Today, malware 
may no longer be executables. Macros can present security risk and antivirus heavily relies on signature-
detection. Metamorphic and polymorphic viruses, evades and makes signature detection, quite ineffective [18]. 

3. Materials and Experimental Methodology 

3.1. Virus Abstract Representation 

Study uses real permutation metamorphic engine (as adopted for generation of Zmist., Zperm and Zmorph 
viruses). It uses substitution, transposition and trash (all permutation) methods to build viruses of the same 
functionality. The engine changes its opcode, generating new variants from old versions authored by Zombie 
and extracted from VX Heaven [29]. Zmist at the point of release, was one of the most complex binary viruses 
ever written. It uses Entry-Point Obscuring that supports a unique code integration scheme, and occasionally
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inserts jumps after each instruction in a section, pointing to the next instruction. It extremely modifies files 
from one generation to next through extreme camouflage. This, makes Zmist better suited for the study [12, 11, 
24, 9]. 

3.2. String Matching Algorithm 

Many attacks that aim to exploit services often carry specific strings in their packet(s) payload. Attacks on 
web-servers for instance often try to invoke the perl or any shell interpreter to gain access to a root shell or 
arbitrary commands like wget. Other exploits that use buffer overruns also carry specific commands called 
signatures strings. Such attacks are detected by using the string matching algorithm that search through 
packet(s) payload for such signatures (or strings). The problem however, arises because often – these signatures 
or suspicious strings can be encodes anywhere in the payload and its key-space (i.e. the number of strings to 
find) is potentially large. Different methods can be used to find and address such issue. 

3.3. Boyer Moore Algorithm (BMA) 

Boyer Moore’s algorithm is one of the most efficient string matching algorithms available as it actually does 
find matches in a sub-linear search time. It achieves this by simply scanning through the key string from left to 
right. On a miss, the key string is shifted a pre-computed number of characters to the right until a match of the 
current character occurs. Then, the next character not yet matched is considered. Since the length of the key 
string and the position of the current character is known, the number of characters on which the match of the 
key string can occur can be computed. Fig. 2 matched the characters depicted as upper-case letters. On 
inspecting it, we note that the algorithm can find the exact string matches in a sub-linear search time. Its 
demerit(s) is that: (a) in the search for multiple key strings in a payload – the algorithm is quite inefficient, and 
(b) each key string is stored in its entirety. 

In its naive model, the Boyer-Moore algorithm successively aligns the pattern P with the text T, and checks 
to see if the pattern string P matches the opposing characters of T. Further, after the check is complete, P is 
shifted right relative to T. The Boyer-Moore algorithm contains three (3) ideas not contained in its naive model 
as: (a) right to left scan, (b) bad character shift rule, and (c) good suffix shift rule. Thus, the method examines 
fewer than m + n characters (at an expected sub-linear-time), and that (with a certain extension) runs in linear 
worst case time [53] as in Fig 1 below. 

In some scenarios, it is necessary to find a group of similar strings instead of an exact match. This is equal to 
a string search using wildcards. For example, instead of searching for the string perl.exe, one can search for 
p*rl.exe – which will also produce a result of perl.exe, parl.exe, pearl.exe etc. Basically, two mechanisms exists 
that are based on two different ideas on how to handle character substitution or insertions namely: 
 Substitution Error allows the replacement of one or more characters in a key search string. So, instead of 

searching the whole key string, only some positions are considered. This method cannot find character 
insertions or deletions. 

 Resemblance – here, the similarities of the two strings are measured by dividing the number of characters 
they have in common by the length of the longer string. Formally, this equals the division of the intersection 
by the union. Resemblance thus, can handle character insertion and deletion (where it exists). Its drawback 
is that the character positions are not taken into account. So the two strings perl.exe and lexe.rpe have 
resemblance one. Clearly, this is not what we want. To overcome this, the order or position numbers can be 
introduced. 
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Fig. 2. Boyer Moore algorithm 

3.4. The BMA: Experimental Model and Its Workings 

The ideas that make BMA quite powerful and flexible are explained as thus: 
 
1. Right to Left Scan – In any alignment given a set of text T and pattern string P, BMA first checks for the 

occurrence of P in the text by scanning characters from right to left (rather than from left to right as in 
naive model). For the alignment of P against T (as in fig. 3) – to check if P occurs in T, BMA starts at the 
right end of P by: (a) first compares T(9) with P(7). A match is found – so, it then compares T(8) with 
P(6), and so on and so forth, moving right to left until it finds a mismatch when comparing T(5) with P(3). 
At that point, the pattern string P is shifted right relative to T (the amount for the shift is discussed in the 
bad rule and good rule suffix). Then, the comparisons begin again at the right end of P. However, if the 
pattern string P is shifted one place to right after each mismatch, or after an occurrence of the pattern 
string P is found – then its worst-case run-time is given by O(nm) like its naive model (at which point it 
is unclear why we reverser engineered the model to compare characters from right to left). Cases where 
shifts of more than one position (large shifts) occurs, also abounds in many typical applications. These 
are resolved using the bad rule and good rule suffix shifts discussed below. 

 
 
 
 
 

 
 
 

Fig. 3. Modified Boyer Moore algorithm 
 

 

Payload 

Key string 

g c a t c a c a g a g a t t a c a c a g t a c g 

g a t t a c a 

No match, shift 1 

Payload 

Key string 

g c a t c a c a g a g a t t a c a c a g t a c g 

g a t t A C A 

No match, shift 9 

Payload 

Key string 

g c a t c a c a g a g a t t a c a c a g t a c g 

G A T TA C A 

Match found, continue… 

 

Text T 

Pattern P 

x p b c t b x a b p q x c t b p q c a b 

t p a b x a b 

 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
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2. The Bad Character Rule – Suppose the last (rightmost) character string of the pattern P is y and the 
character in text T it aligns with is x ≠ y. When this initial mismatch occurs, if the rightmost position in P 
of character x – we can safely shift P to the right so that the rightmost x in P is below the mismatched x in 
T. Any shorter shift results in an immediate mismatch. Thus, the longer shift is correct (i.e. it will not 
shift past any occurrence of P in T). Again, if x never occurs in P, we can shift P completely past the 
point of mismatches in T. In these cases, some characters of T will never be examined and the method 
will actually run in sub-linear time. Again, if for a particular alignment of P against T, the rightmost n-i 
characters of P match their counterparts in T; But, next character to the left, P(i), mismatches with its 
corresponding text T(k) at position k. This rule notes that P be shifted right by max[1,i-R(T(k))] places 
(i.e. if the rightmost occurrence in P of character T(k) is in position j < i (including the possibility of j = 
0), then we shift P so that character j of P is below character k of T. Otherwise, shift P by one position. 
The essence of this shift rule is to shift P by more than one character when possible. As in example above, 
T(5) = t mismatches with P(3) and R(t) = 1. So, P is shifted right by two positions. After the shift, the 
comparison of P and T begins again at the right end of P [1, 2]. 

3. The extended bad character rule: The bad character rule is useful for mismatches near the right end of P. 
But, it has no effect if the mismatching character from T occurs in P to the right of the mismatch point. 
This is common when the alphabet is small and the text contains many similar, but not exact substrings. 
The DNA is a typical situation with only 4-alphabets. Even, in proteins, we have an alphabet of size 20, 
which contains different regions of high similarity. In both cases, we use extended bad character rule as it 
is more robust. It notes that when a mismatch occurs at position i of P and the mismatched character in T 
is x; Then, shift P to the right so that the closest x to the left of position i in P is below mismatched x in T. 
The extended rule gives larger shifts, and the only reason to prefer the simpler rule is its additional cost in 
implementing the extended rule. The simpler rule uses only O(jj) space ( is the alphabet) for array R, and 
one table lookup for each mismatch. But, the extended rule is implemented in only O(n) space, and at 
most one extra step per character comparison. Though, the amount of added space is not often a critical 
issue – the more critical question is if the longer shifts make up for the added time used by the extended 
rule. The original Boyer-Moore algorithm only uses the simpler bad character rule [1, 2]. 

4. The Good Rule Suffix – The bad character rule by itself is reputed to be highly effective in practice, 
especially for English text; But, less effective for small alphabets as it does not lead to a linear worst-case 
running time. Thus, we introduce the strong good suffix rule. The original preprocessing method, for the 
strong good suffix rule is quite difficult and somewhat mysterious (though a weaker version, is easier to 
understand). In fact, the preprocessing for the strong rule was given incorrectly [1, 2]. Suppose in a given 
alignment of P and T, a substring t of T matches a suffix of P; But, mismatch occurs at the next 
comparison to the left. Then find (if it exists) the rightmost copy t’ of t in P such that t’ is not a suffix of P 
and the character to the left of t’ in P differs from the character to the left of t in P. Shift P to the right so 
that substring t’ in P is below substring t’ in T. If t’ does not exist, then shift the left end of P past the left 
end of t in T by the least amount so that a prefix of the shifted pattern matches a suffix of t in T. If no 
such shift is possible, then shift P n-places to the right. If an occurrence of P is found, then shift P by the 
least amount so that a proper prefix of the shifted P matches a suffix of the occurrence of P in T. If no 
such shift is possible, then shift P by n-places (i.e. shift P past t in T). For example, consider the 
alignment of the pattern P in the text T in Fig. 4. 

 
When a mismatch occurs at position 8 (i.e. P(8)) and T(10) as asterisked, t = ab, and t’ occurs in P starting at 

position P(3). Thus, P is shifted right by six places resulting in the sequence string alignment as in Fig. 5 – with 
its listing as in Fig. 6 respectively. Note that the extended bad character rule would have only shifted P by only 
one place as in the example. 
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Fig. 4. Modified BMA Strong Good Suffix Shift Rule 

 
 
 
 
 
 
 
 
 

Fig. 5. Modified BMA Strong Good Suffix Shift Rule 
 
{Preprocessing stage} 

Given the pattern P, 
Compute L0(i) and l0(i) for each position i of P, and compute R(x) for each character x 2 . 

{Search stage} 
k := n; 
while k < m do 

begin 
i := n; 
h := k; 
while i > 0 and P(i) = T(h) do 

begin 
i := i - 1; 
h := h - 1; 

end; 
if i = 0 then 

begin 
report an occurrence of P in T ending at position k. 
k := k + n – l’(2); 

end 
else 

shift P (increase k) by maximum amount determined by  
the (extended) bad character rule and the good suffix rule 

end; 
end; 

 
Fig. 6. Listing of Complete BMA Pseudo-code 

* 

Text T 

Pattern P 

p r s t a b s t u b a b v q x r s t 

q c a b d a b d a b 

 

1 2 3 4 5 6 7 8 9  0 1 2 3  4 5 6 7 8  

1 2 3 4 5 6 7 8 9 0 

Text T 

Pattern P 

p r s t a b s t u b a b v q x r s t 

q c a b d a b d a b 

 

1 2 3 4 5 6 7 8 9  0 1 2 3  4 5 6 7 8  
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4. Findings and Discussion 

4.1. Findings 

To measure its classification accuracy, we measure its rate of classification and improvement percentages 
with data sets from Section II as summarized in Tables 1 and 2 respectively: 

   Pr
 ( )  

   

Number of Inccorect edict
Misclassification Rate MR

Number of Sample Set
  (1) 

Table 1. Classification Accuracy of Each model 

 
Model 

Classification Precision 
Training Data Testing Data 

Naïve BMA 89% 92% 
BMA 99.1% 99.6% 

 
Also, its improvement percentage is computed as thus: 

( ) ( )
Im  *100

( )

MR A MR B
provement Percentage

MR A


  (2) 

Table 2. Improvement Percentage 

 
Model 

Improvement % 
Training Data Testing Data 

Naïve BMA 4.52% 5.6% 
BMA 9.54% 10.3% 

 
 
Results obtained from tables 1 and 2 respectively shows that exact string matching algorithm outperforms 

their counterpart unsupervised evolutionary models [9, 48, 7]. BMA algorithm has a classification accuracy 
rate of 99.6% (i.e. with a 0.4% error rates in false-positives and true-negatives results) as opposed to 
counterpart Naïve BMA that offers a classification rate of 92%. Also, it promises an improvement rate of about 
10.3% over the Naïve BMA that offers 5.6% improvement.   

4.2. Structure 

Today, the appropriate content (signature string or code) for malware detection in minimal time is a critical 
factor. String algorithms play vital role thus. Researches by different groups in furtherance of string algorithms 
implemented at the various software abstractions aims to make pattern searching faster. In applying these to 
various applications, the best algorithm for the different scenarios can be determined. The recommended BMA 
algorithm gives reduced complexity with also reduced computation time [3, 53, 40]. The BMA algorithms 
assigned to various applications may not be best optimal; But, they are often better than most general 
algorithms. It is noted that most applications uses BMA algorithm for their effective and efficient functionality, 
as it has lesser time complexity. Also, Other algorithms depends upon the type of input and is efficient for 
certain or particular application [3, 41-42]. 

Metamorphics transform its codes as they propagate to avoid detection by using obfuscation methods to 
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alters its behaviour when it detects its execution within virtual machine (sandbox) as means to challenge a 
deeper analysis [46-47]. Virus writer use weaknesses of antiviruses which are limited to static and dynamic 
analysis. Thus, they attack these feats in system: (a) data flow, (b) control flow, (c) procedure abstract, (d) 
property verification, and (e) disassembly means to counter scans and identify such metamorphic viruses [24, 
45]. To mutate its code generation, metamorphics analyze their codes and re-evaluates the evolved, mutated 
codes generated (since complexity of transformation in the previous generation has a direct impact on its 
current state, how a virus analyses and transforms code in its current generation). Thus, they employ code 
conversion algorithm that helps them detect their own obfuscation and reordering [43-45]. 
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