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Abstract 

Object classification in an image does not provide a complete understanding of the information contained in it. 

Visual relation information such as “person playing with dog” provides substantially more understanding than 

just “person, dog”. The visual inter-relations of the objects can provide substantial insight for truly 

understanding the complete picture. Due to the complex nature of such combinations, conventional computer 

vision techniques have not been able to show significant promise. Monolithic approaches are lacking in 

precision and accuracy due to the vastness of possible relation combinations. Solving this problem is crucial to 

development of advanced computer vision applications that impact every sector of the modern world. We 

propose a model using recent advances in novel applications of Convolution Neural Networks (Deep Learning) 

combined with a divide and conquer approach to relation detection. The possible relations are broken down to 

categories such as spatial (left, right), vehicle-related (riding, driving), etc. Then the task is divided to 

segmenting the objects, estimating possible relationship category and performing recognition on modules 

specially built for that relation category. The training process can be done for each module on significantly 

smaller datasets with less computation required. Additionally this approach provides recall rates that are 

comparable to state of the art research, while still being precise and accurate for the specific relation categories. 

 

Index Terms: Visual Relation Recognition, Deep Learning, Computer Vision. 
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1. Introduction 

In an image, recognition of the objects in the world fails to provide a full understanding [1]. Visual relation 

information such as “car in front of the door” provides substantially more understanding than just “car, door”. 

Speech description of “person behind the counter” helps the person navigate much better than “person,  
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counter”. To the visually impaired person, knowing the visual inter-relations of the objects can provide 

substantial insight for truly understanding their surroundings [2], this also applies to image recognition. Visual 

Relation of Objects refers to the contextual relations that two or more objects on an image can have besides 

their own classification. An object can be above, below, on the left or right of another object, this is the spatial 

relation of two or more objects. A person may be interacting with an object in some way (e.g. person ride cycle) 

this is the contextual or action based relation of multiple objects [13]. Today’s state of the art systems can 

recognize and classify individual objects separately with near-human accuracy [4,5]. 

 

 

Fig.1. Visual Relation Recognition  

The objects can be segmented to their respective pixels as well [6,7]. However, while identifying objects can 

provide some primary understanding of the image, a large amount of information remains unexplored. 

Extracting the spatial and visual relationships can provide a deeper understanding into the image. 

Understanding such relationships are especially crucial in fields such as autonomous driving, robotics (obstacle 

avoidance), manufacturing (object manipulation), aerial reconnaissance, human-computer interaction, etc. 

In recent years, significant progress has been made in this area [2,3,6,8] by novel usages of Convolutional 

Neural Networks and Recurrent Neural Networks. The advancements in deep learning has opened up new ways 

to experiment in this domain. Larger datasets such as ImageNet, Visual Genome and Visual Relationship 

Dataset have made it possible for researchers to use more data-intensive methods of model training and the 

emergence of these datasets have brought more researchers to this topic. 

 

 

Fig.2. “Scene Graphs are Defined by the Objects in an Image (Vertices) and their Interactions (Edges). The Ability to Express Information 

about the Connections between Objects Make Scene Graphs a useful Representation for Many Computer Vision Tasks.” [12] 

Using deep learning methods combined with linguistic models, Fei-Fei Li, et al has achieved significant 

success and other works have followed this trend of combining linguistic knowledge with visual knowledge in 

their models. Some researchers considered object recognition and relation recognition as two separate tasks and 

then attempted to join these interpretations meaningfully [1,5] others approach it as a single task and perform 

direct image to object-relation retrieval [3]. Some researchers are now also using Reinforcement Learning 
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techniques to improve upon CONV Net models [4,9]. The most commonly used output representations of the 

visual relations in the image are natural language descriptions [1,5,10] and scene graphs [3,6,10] with objects 

as nodes and relations as their connecting edges. Most work in this area relies on the Visual Genome Dataset as 

it was one of the first large-scale datasets to contain contextual relationship labels along with other labels. 

Cewu Lu, et al have introduced a new dataset named Visual Relationship Dataset [5] 

 

 

Fig.3. Visual Relations (Dashed Boxes) Presented as Natural Language Descriptions [14]. 

2. Related Work 

The mature field of image recognition has produced some noteworthy datasets such as CIFAR-10, COCO, 

ImageNet etc. However, datasets which include visual relation information are not so numerous, and the Visual 

Genome dataset has been repeatedly used as a benchmark for many of the notable works [2,3,6]. 

This dataset is widely used for training CNN and also to measure and compare the performance and accuracy 

of approaches to ensure appropriate comparison. Some approaches which approach visual relation recognition 

as a separate task than object recognition require customization or creation of datasets, whereas single model 

approaches have used these datasets as raw input to their systems. 

Methods benchmarked on the VRD and Visual Genome dataset can be compared directly, and it can be seen 

that in natural language representations of visual relations Zhang, et al [2] have shown improvements upon the 

results achieved by Lu, et al [9]. While, even though Xu, et al [6] have shown better performance and accuracy 

than Liang, et al [10] on graph-based representations of visual relations, their method requires RGB-D depth 

data, which was not required by the former, and limit the application of their method significantly. 

Building upon these works, some have attempted at a speech representation of these outputs, Graves [1,2], 

Elamri, et al have shown some progress by applying these methods and then putting them through Text to 

Speech systems and achieved some notable results but much work remains to be done [15]. In this paper we 

attempt to overcome some of the problems of the mentioned works while also improving the general purpose 

usage of visual relation recognition. 
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Table 1. A Chronological Overview of Some Recent Notable Works and their Methods are presented as a Table Below: 

Name Method Representation Datasets 

Karpathy, et 

al [12] 

“deep neural network model that infers the 

latent  alignment between segments of 

sentences and the region of the image that 

they describe” 

Natural Language 

Descriptions 

Flickr 8K, Flickr 30K and MS COCO 

Lu, et al [9] “learning visual appearance models for its 

objects and predicates and using the 

relationship embedding space learned from 

language” 

Natural Language Caption VRD and Visual Genome 

Zhang, et al 

[2] 

“VTransE Network builds upon an object 

detection module(e.g., Faster-RCNN), and 

then incorporates the proposed feature 

extraction layer and the translation 

embedding for relation prediction” 

Natural Language Caption VRD and Visual 

Genome 

Liang, et al 

[10] 

“language priors to build a directed 

semantic action graph G, where the nodes 

are nouns, attributes, and predicates, 

connected by directed edges that represent 

Semantic correlations with explicitly encode 

the semantic embeddings of previously 

extracted phrases in the state vector.” 

Scene Graph VRD and Visual 

Genome 

Xu, et al [6] “model passes messages containing 

contextual information between a pair of 

bipartite sub-graphs of the scene graph, and 

iteratively refines its predictions using 

RNNs” 

Scene Graph Visual 

Genome and NYU Depth v2 

Baier, et al [8] “The model takes as input a raw image and 

combines it with a semantic prior, which is 

derived from the training data. Both types of 

information are fused, to predict the output, 

which consists of relevant bounding boxes 

and a set of triples describing the scene” 

Natural Language 

Descriptions 

VRD 

3. Proposed Research Methodology 

Most visual relation recognition models can have divided into two approaches, some researchers consider 

object recognition and relation recognition as two separate tasks and then attempt to join these interpretations 

meaningfully [1,6], others approach it as a single task and perform direct image to object-relation retrieval. We 

approach this task with a divide and conquer approach and attempt to break down the task of relation 

recognition into smaller, comparatively approachable computer vision tasks. 

3.1.  Proposed Model 

We propose a multi-module model which combines object detection, object segmentation, masking, and 

relation category estimation, and a collection of fully connected Conv. Nets for relationship detection of two 

subjects. Most current research in this domain are using a single final module for prediction the relation of the 
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objects, while this is preferred from a performance perspective, it makes the work of the network very 

expansive. In that approach, for any combination of two objects, all relationship outcomes are considered and 

evaluated. But if human perceptions are considered, when recognizing the relation of two objects, humans do 

not generally consider all relations. There is an understanding of what limited combination of relations two 

subjects or objects can have depending on what the objects are. So we propose a model where first objects are 

detected from an image, then for each pair of objects the probability of contextual relations between them is 

considered using a linguistic subject, predicate, object probability analysis. Then only the most probable 

combination of relations is considered and a segmented image containing only the two objects in consideration 

are put through specialized modules or networks to detect which relation actually exists in the image. 

3.2.  Model 

● Use Mask RCNN [17] to detect objects and segment them. 

● Calculate all non-repeating pair combination of objects. 

● Remove pairs that cross a proximity threshold. 

● For each pair calculate which relation category is most probable using subject, predicate, object term 

frequency-inverse document frequency. 

● Make new segmented images containing only the pairs, apply masking, and run the new images through 

the module specialized for detecting that relation category. 

● Output the relationship with the highest confidence for each pair. 

 

 

Fig.4. Object Segmentation, Linguistic Relation Category Estimation, and Relation Prediction Pipeline 

3.3.  Mask RCNN 

Mask RCNN [17] by Kaiming He, Georgia Gkioxari, et al, is a flexible and general framework for object 

instance segmentation. Their approach efficiently detects objects in an image and also produces segmentation 

masks for each object. 
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3.4.  Relation Category Estimation 

 

Fig.5. Linguistic Relation Category Estimation 

When two objects are car and motorcycle, the most probable relation between them falls into one category: 

spatial. But if the objects are person and motorcycle, then the person may be riding it as well. Using term 

frequency-inverse document frequency for object, predicate, object probability calculation, given two objects, 

the probable category of the relation between them can be estimated. 

3.5.  Relation Category Specific Modules 

For each relation category, a separate module is trained using segmented images of the two objects with 

transparent color masking applied for determining the order. For example, the spatial relation category 

prediction module has only four output confidences: front, behind, left, right 

If we consider even these only 4 relations, combined with 11 selected relevant classes: The probable 

combinations are 11𝐶2 × 4 = 220. But we break this task into two parts, detect from 11 object classes, and then 

detect from 4 relation classes.  By applying such a divide and conquer model, the task becomes vastly less 

complicated, and accuracy increases as well. 

Only the module for spatial relation recognition is trained and tested in this research. 

4. Experimental Results and Discussion 

4.1.  Dataset 

The Mask RCNN [17] model is trained on MS COCO; pre-trained weights are used for this module. For 

training relation recognition, a custom dataset is used by taking 27000 images using the MS COCO python 

API, and then validation is done on 526 images. The train, validation split is 48:1. 
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4.2.  Evaluation 

Our experiment is validated on 526 images where relation does not exist over 96 images and 480 images 

contain at least one relation.  Our model identifies 390 relations accurately and 82 relations are wrongly 

detected.8 relations cannot be identified at all. Relation detection accuracy is 84.38%. 

Table 2. Experimental Outcome overview 

Images Tested 576 

Relation exist 480 

Relation does not exist 96 

Relation detected correctly 390 

Wrongly relation detected 82 

The relation cannot be detected 8 

 

Based on our findings we generate a binary matrix where we divide our findings into two classes such as 

relation exist and relation does not exist where wrongly detected relation considers as it identified as relation 

does not exist. Here “+” is for Relation exist and “-” is for Relation does not exist. 

Table 3. Binary Metrics 

 
             Predicted Class Total 

instances              +           - 

Actual 

Class 

     + 

 
            390                     90 480 

     -               0                       96   96 

 

Our Proposed model has an 84.38% detection rate, 81.25% Recall rate and 100% of Precision rate. Relation 

existence percentage is 83.33% where missed detection is only 18.05% and has a mAP of 0.74. Comparing 

with other models our proposed model outperforms all of them. Feature-based relation extraction with SVM 

[16] had a 49.5% of Precision and 63.1% of Recall where our model has an 81.25% Recall rate and 100% of 

Precision. Visual appearance module combined with language module [9] got 82.7% of Precision but have a 

low mAp of 0.592 where our model although got a low precision of 81.25% but higher mAP of 0.74. 

Our model has a higher relation existence percentage of 83.33% where Feature-based relation extraction with 

SVM model [16] has a 70% relation existence. 

Table 4. Detection Rate, Recall, Precision Rate, Mean Average Precision (MAP) of our Proposed Model and Existing Results based on the 

Parameters Mentioned 

 Detection Rate 

 

Recall Rate 

 

Precision Rate 

 

Mean Average 

Precision (mAP)  

Our Model 84.38% 81.25% 100% 

 

0.74 

Feature-based relation 

extraction with SVM 

[16] 

N/A 49.5% 63.1% N/A 

Variation-structured 

Reinforcement 

Learning[10] 

N/A 13.34% N/A N/A 

Visual appearance 

module combined with 

language module [9] 

N/A 82.7% N/A .592 
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Table 5. Relationship Detection, Predication Detection, Relation Existence Percentage, Missed Detection Rate of our Proposed Model and 

Existing Results based on the Parameters Mentioned. 

 Relationship 

Detection (MAP) 

Predication 

Detection  

Relation Existence 

Percentage  

 

Missed Detection Rate  

Our Model 0.74 0.813 83.33% 18.05% 

Feature-based 

relation extraction 

with SVM [16] 

N/A N/A 70% N/A 

Visual appearance 

module combined 

with language 

module [9] 

.592 N/A N/A N/A 

 

 

Fig.6. Recall Comparison of Some Relevant models 

4.4.  Discussion 

From the results, we find that our divide and conquer model provides some observable benefits over 

previous models. Although we only test and train on spatial relations as a proof of concept, we can still see 

significant improvements. Using pre-trained detection and segmentation module provides state of the art results 

for object detection, segmentation and masking out of the box. Using these results relation category prediction 

can be performed. The introduction of separate modules for different categories of relations shows that for the 

spatial relations 84.38% accuracy can be achieved. The module especially shows robustness and does not 

detect relations where none exists; as such no false positives were detected. Our model (81.25%) outperforms 

Feature-based relation extraction with SVM (49.5%) [16] And is only slightly behind Visual appearance 

module combined with language module (82.7%) when recall rate is compared.  

The advantage of our module is that the specialized modules have specific tasks with smaller output 

combinations and can be trained and tested on smaller models and smaller datasets that specialize in it. Such 

specialized modules are also more robust and provide better accuracy overall (e.g. our spatial module). But this 

approach has disadvantages as well, it cannot be one shot, and piping multiple modules together makes for a 

slower approach and compute heavy, especially if real-time vision applications are considered. 
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5. Conclusion 

Visual relation information can provide important insight into an image and enable much such as “person left 

of dog” provides substantially more understanding than just “person, dog”. Description of “person behind the 

car” helps the person navigate much better than “person, counter”. Even to a visually impaired person, knowing 

the visual inter-relations of the objects can provide substantial insight for truly understanding their 

surroundings. We propose a model using recent advances in novel applications of Convolution Neural 

Networks (Deep Learning) combined with a divide and conquer approach to relation detection. The possible 

relations are broken down to categories such as spatial (left, right), vehicle-related (riding, driving), etc. Then 

the task is divided to segmenting the objects, estimating possible relationship category and performing 

recognition on modules specially built for that relation category. Our divide and conquer model provides some 

observable benefits over previous models. Although our model has a better score of relation detection but it 

was only tested as a proof of concept on a limited number of relation categories. Large scale relation detection 

module development and tests need be performed for further investigation. The model can also be improved by 

increasing the number of training instances. The advantage of our module is that the specialized modules have 

specific tasks with smaller output combinations and can be trained and tested on smaller models and smaller 

datasets. Such specialized modules are also more robust and provide better accuracy overall (e.g. our spatial 

module). But this approach has disadvantages as well, it cannot be one shot and piping multiple modules 

together makes for a compute heavy and slower approach. 

5.1.  Contribution of the Research 

In this work, we propose a multi-module model which combines object detection, object segmentation, 

masking, and relation category estimation, and a collection of fully connected Conv. Nets for relationship 

detection of two subjects. Our proposed model first detects objects from an image, then for each pair of objects 

the probability of contextual relations between them is considered using a linguistic subject, predicate, object 

probability analysis. Then only the most probable combination of relations is considered and a segmented 

image containing only the two objects in consideration are put through specialized modules or networks to 

detect which relation actually exists in the image. By applying such a divide and conquer model, the task 

becomes vastly less complicated, and accuracy increases as well. Only the module for spatial relation 

recognition is trained and tested in this research. 

5.2.  Future Work 

Although much work has been done in a small amount of time frame, many possibilities remain unexplored. 

In future work we are interested to develop a sophisticated trainable model for relation grouping and category 

estimation. Also develop modules for more relation category, such as person-vehicle, person-animal, person-

interact-able-object etc. Our Mask RCNN trained on ms coco which can recognize only 80 types of object, this 

limits the capability of relation category estimation. Different object detection model that has more diverse 

recognizable set of objects could be used in our future work. 
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