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Abstract 

Newcastle is a viral disease of chicken and other avian species. In this paper, the stability analysis of the 

disease free and endemic equilibrium points of the Newcastle disease model of the village chicken in the 

absence of any control are studied. The Hurwitz matrix criterion is applied to study the stability of the 

Newcastle disease free equilibrium point, .0Q  The result shows that the disease free equilibrium point is locally 

asymptotically stable iff the principle leading minors of the Hurwitz Matrix, 
nG  (for nℝ  ) are all positive. 

Using the Castillo Chavez Theorem we showed that, the disease free equilibrium point is globally 

asymptotically when .10 R  Furthermore, using the logarithmic function and the LaSalle’s Theorem, the 

endemic equilibrium point is found globally asymptotically stable for .10 R  Finally the numerical simulations 

confirm the existence and stability of the equilibrium points of the model. This reveals that, proper 

interventions are needed so as to decrease the frequently occurrence of the Newcastle disease in the village 

chicken population. 
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1. Introduction 

A dynamical system ),( tXX   is a function which describes the time dependence of a point, X ℝ
n
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)0for( n  in a geometrical space [4, 11]. A steady state solution, )(tX , is an equilibrium point of a dynamical 

system  XtXX ),,( ℝ
n

 if satisfies the condition 0,0)0*,(Μ  tX  [11, 19, 21]. The solution )(tX

of a dynamical system is stable if, for any arbitrarily small 0 , there exists 0 such that, for any 

trajectory )(tX for which  )0(*)0( XX , then the inequality  )0(*)0( XX  is satisfied 0t  [19]. 

It is also stable iff all initial trajectories in an open set X ℝ
n

 move towards )(tX and remain near it 0t

and is unstable if moves away from )(tX  [21, 24, 25]. 

The steady state solution is referred as a disease free if the population is free from the disease whilst referred 

as the endemic if the disease persists in the population [16]. In this paper we study the existence and stability of 

both disease free equilibrium point (DFEP) and the endemic equilibrium point (EEP) of the Newcastle disease 

(ND) model developed by [6]. We apply a Hurwitz Matrix criterion to study the local stability of the disease 

free equilibrium point and the Castillo Chavez theorem [5] to study the global stability of the disease free 

equilibrium point. In addition, we apply the La Salle’s invariant principle and the Lyapunov method to study 

the stability of the endemic equilibrium point. Lastly, we use simulations to verify the analytical solutions of 

the ND model with environment and wild birds reservoirs. The motivation of this paper is to understand the 

existence and stability of the equilibrium points of the Newcastle disease model when wild birds are considered 

as the reservoir of the Newcastle disease virus. However, no study till yet in the field have considered the wild 

birds and environment as the secondary sources of ND. 

2. Related Works 

Several stability analysis methods have been applied by different scholars when analyzing their 

epidemiological models [2, 16, 17, 18, 19, 21]. 

[12] used the trace and determinant method to study the local stability of the disease free equilibrium point of 

their models. In this method, the signs of trace and determinant of the variational Jacobian matrix decides the 

local stability of the disease free equilibrium point. [2] used the Lyapunov function to prove the global stability 

of the disease free equilibrium point of Dengue disease infection Model. [19] used a linearizion method to 

study the behavior of the disease free equilibrium point of a deterministic Epidemiological Model with Pseudo-

recovery. Additionally, [19] used a Lyapunov function method to study the stability of the endemic equilibrium 

point of his model. Moreover, [2, 17, 21] used Metzler matrix theorem to study local stability of the disease 

free equilibrium point of their models. Further, a Lyapunov method and the La Salle’s theorem are used by [21] 

to study the stability of the endemic equilibrium point of Malaria model.  [16] used the Center Manifold 

theorem to study the global stability of the endemic equilibrium point of the Malaria model. In our model, the 

Hurwitz matrix criterion is applied to study the stability of the Newcastle disease free equilibrium point, 

3. Model Formulation 

In formulation of the model it is assumed that, the birth rate and death rate of the village chicken are the 

same. These populations are recruited at a constant birth )(tNc  and )(tNw with )(tNc
and )(tNw

as the total 

population of the village chicken and wild birds respectively. According to [6], the wild birds population )(tNw

is partitioned into susceptible )(tSw
, exposed )(tEw

, the mildly infected wild birds )(tI r
and severely infected

)(tI w
. The mild infected wild birds are not capable of transmitting the ND to other birds. The Village chicken 

population is partitioned into susceptible )(tSc
, exposed )(tEc

and the severely infected )(tI c
. The 

contaminated environment is denoted by )(tH The model assumed that the transmission of the NDV among 

the hosts is primarily through direct contact between the infected and susceptible chicken is the primary route  
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for NDV while the contact of susceptible chicken with either contaminated environment or reservoir wild birds 

is the secondary route of the virus transmissions [7, 13]. Village chicken spread the ND virus after developing 

the clinical signs within the incubation period of two to fifteen days [1, 20, 23]. Furthermore, we assumed that 

the severely infected village chicken, severely infected wild birds, and the mildly infected wild birds all shed 

NDV into the environment at the rate c  and w respectively. Other parameter of the model system 

(1) Are described as in the table below; 

Table 1. Parameters used for the ND Model System (1) 

 
Parameter Description 

a  Contact rate between the susceptible and mildly infected wild birds 

b  Contact rate between mildly infected wild birds and susceptible Chicken 

  Contact rate between severely infected and susceptible wild birds Contact rate between severely infected and the 

susceptible chicken 
  Contact rate between severely infected and susceptible chicken 

k  Half saturated constant of NDV in the environment 

d  Probability of chicken and wild birds to get infections from the environment 

  Probability of the exposed wild bird to become severely infected 

c  Shading rate of NDV from severely infected village chicken to the environment 

w  Shading rate of NDV from mild and severe infected wild birds to the environment 

  Recruitment rate and Natural mortality death rate of the hosts 

v  Clearance rate of the NDV from the environment 

w  Disease induced death rate in wild birds population 

c  Disease induced death rate in the village chicken population 

  Progression rate of ND for village chicken and wild birds 

3.1.  Equations of the Model 

From the model flow descriptions found in [13], we have the following system of ODEs 

                                                                                    (1)
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with the initial conditions; 0)0( cS , 0)0( cE , 0)0( cI , 0)0( wS , 0)0( wE , 0)0( wI , 0)0( rI , 

0)0( H , )()()()( tItEtStN cccc   and )()()()()( tItItEtStN rwwww   

4. Analysis of the Model 

4.1.  The Basic Reproduction Number, 0R  

As shown in [13], the Basic Reproduction Number of the model system (1) is; 

                                           (2) 

where 

 

4.2.  Equilibrium Points of the Model System 

Proposition 4.1 The model system has two equilibrium points, disease free equilibrium point 

}0,0,0,,0,0,{0

wc NNQ   and the endemic equilibrium point },,,,,,,{ ******** HIIESIESQ rwwwccc . 

where  

                                                                                          (3) 

Substituting cS into cE and cE  into cI  we get 

                                                                                                                                 (4) 

                                                                                                                   (5)
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By considering the force of infections in chicken, cI is obtained by solving the equation 

                                                                                                                                (6) 

Where 

                                                                                                          (7) 

     (8) 

Also in the wild birds population we have the following steady states; 

                                                                                                        (9) 

                                                                                                               (10) 

                                                                                                                 (11) 

                                                 (12) 

 

       (13) 

From equation )3( to )13( , the solution 0 wc   gives the disease free equilibrium points while 

0c and 0w gives the endemic equilibrium point of the model in the system (1). 

4.3.  Local stability of the Disease Free Equilibrium Point
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The stability analysis of the disease free equilibrium point )( 0Q  of the model system (1) is examined by the 

Hurwitz Matrix criterion [22]. The Jacobian matrix  0QJ is found by differentiating each equation of the 

model system trw ..  its state variables at 0Q . Thus, the Jacobian matrix of the model system at 0Q is then given 

by 

                                                               (14) 

From matrix )14( the first two roots of )( 0QJ are given by 0)(    and 0)(   . Then the 

reduced )66(  matrix become 

                                                                                       (15) 

with 

w

c

N

N
bn  , 

k

N
ds c and 

k

N
dt w . Then characteristic polynomial for the matrix is defined as 

                                                                    (16) 

The corresponding Hurwitz matrix is then given by 

                                                                                                                 (17)
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where, 

 

 

 

The disease free equilibrium point is locally asymptotically stable iff the principal leading minors of nG are 

all positive for .6...,,2,1n  
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Thus 

 

 

 

The disease free equilibrium point )( 0Q of a model system )1( is LAS if 
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We therefore establish a theorem; 

Theorem 4.1 )(G is stable iff the leading principal minors of nG  nallFor( ℝ )
are all positive and thus 

the disease free equilibrium point is LAS . 

4.4.  Global stability of the Disease Free Equilibrium Point 

The global stability of the disease free equilibrium point of the ND model is done by the theorem as 

described by [5, 15, 16]. To apply the theorem, we write the model system )1( as; 

                                                                                                                  (18) 

Where X is the number of susceptible populations and I is the number of the infected populations whilst 

the disease free equilibrium point is given by }0,{ *0 xQ  . For the system (18) to be ,.. SAG two conditions 

must be fulfilled; 

 

I. 
d

( ,0)
X

F X
dt

 , 
*X is globally asymptotically stable ,.. SAG  

II. ˆ ˆ( , ) ( , ), ( , ) 0for( , )G X I BI G X I G X I X I     

 

where  is the invariant region and )0;(1 XGDB   is an M -matrix with non-negative off diagonal 

elements. If the system (18) satisfies condition I and II below then the theorem below holds: 

Theorem 4.2.  A disease free equilibrium point )( 0Q  of a model described in system (1) is globally 

asymptotically stable SAG .. if 10 R . 

Proof;
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We need to show that condition I  and II holds when 10 R . From the model system (1); the set of non-

infectious classes is given by  ),( wc SSX ℝ
2

 and for the infectious classes is given by 

 ),,,,,( HIIEIEI rwwcc ℝ
6

. The model system (1) is then transferred into the form of the system (18) 

as follows 

                                                                                                      (19) 

with }0,0,0,,0,0,{0

wc NNQ  . The system (19) is linear with the solutions t

cccc eNSNtS  ))0(()( and

t

wwww eNSNtS  ))0(()( . It is obvious that 

cc NtS )( , 
ww NtS )( as t depending on initial conditions. Thus, 0Q  is globally asymptotically 

stable and therefore condition I holds. Considering the condition number II we have; 

                                                         (20) 

We need to show that, 0)0,(ˆ),,(ˆ),(  XGIXGBIIXG  for .),( IX  

The Jacobian matrix of equation (20) at 
0Q produces an M-matrix B as follows; 

                                                             (21) 

and
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                                                            (22) 

From the matrix )21( , a matrix B comprises with all negative diagonal entries and all non-negative off-

diagonal entries.  Since )()()()( tItEtStN cccc   and )()()()()( tItItEtStN rwwww  , it 

is almost surely that cc NS )0( and ww NS )0( for )}(),({ tStS wc and hence, in the matrix )22(

we find that 0),(ˆ
1 IXG  and .0),(ˆ

3 IXG   

Also .0),(ˆ),(ˆ),(ˆ),(ˆ
6542  IXGIXGIXGIXG  Hence, 0)0,(ˆ XGi

 for, where .6...,,2,1i  

Therefore condition II holds which shows that the disease free equilibrium point 
0Q is globally asymptotically 

stable for 10 R  and hence the theorem (4.2) holds. 

4.5.  Stability analysis of Endemic Equilibrium Point, (EEP) 

In this section, we apply the Lyapunov method and the LaSalle’s Invariant principle to prove the global 

stability of the endemic equilibrium point (EEP) of the model system (1). Now, consider a continuous and 

differentiable Lyapunov function defined as; 

                                                                                                       (23) 

Where )(ti  is a positive constant factor, iy  is the 
thi  variable at compartment i  and 

*

iy  is the 

equilibrium point of the model at compartment i  where ).8...,,2,1(i Differentiating )(tL trw ..  and 

substituting the constants of the model system (1) at the endemic equilibrium point into the function (23) we 

get; 

                              (24)
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Thus from equation )24( we have, 

                                                                                                                                             (25) 

where,  

 

and 

 

Using the theorem )2.4( and the equation )24( , the global stability holds only if .0
)(


dt

tdL  Now if sr 

then 
dt

tdL )( will be negative definite which implies that .0
)(


dt

tdL  But 0
)(


dt

tdL only if 
*

ii yy  for .8...,,2,1i

Hence the largest invariant set 







 0
)(

:...,,, 821
dt

tdL
yyy

is a singleton 
.*y
 By the LaSalle’s invariant 

principle ],12[ it is then implies that .*y  is globally asymptotically stable in the invariant region if sr  and 

thus .10 R  We then establish the following 

Theorem; 

Theorem 4.3 The Endemic Equilibrium Point *Q  of a Newcastle disease transmission model (1) is globally 

asymptotically stable if .10 R  

5. Results and Discussion 

In this section, numerical simulations of the mathematical model (1) are conducted to study the dynamics of 

ND in village chicken population in the absence of any intervention. For the simulation we use the value of 0R

and other model parameter values as given in Table 2 . The total population of village chicken and wild birds is 

assumed to be two thousand and five thousand respectively. Using the estimated parameter values given in 

Table 2 , we obtain the basic reproduction number, 15692732754.00 R which by the theorem )2.4( the 

disease free equilibrium point 0Q  is locally asymptotically stable. However, with the values given in the Table
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2  and the estimated parameter value of ,003.0 ,0002.0w ,00083.0  and 0003.0a  we obtain 

1867182099.60 R  at the endemic equilibrium point and by the theorem )3.4( , it follows that endemic 

equilibrium point },,,,,,,{ ******** HIIESIESQ rwwwccc  exists and is globally asymptotically stable. 

Table 2. Parameter Values of the Model System 1 

Parameter Parameter value Source 

  0.067 – 0.5 1day  [1, 8, 20] 

  0.003 1day  Estimated 

b  0.21 
1day  [1, 8] 

c  0.001667 
1day  Estimated 

w  0.00002 1day  Estimated 

  0.00083 
1day  Estimated 

  2.74 –5.48 ×
410 1day  [14] 

a  0.003 
1day  Estimated 

c  0.01989 1day  [9] 

  0.9 Estimated 

d  0.001
1day  [6] 

w  0.025
1day  [7] 

v  0.00219
1day  [7] 

k  10000 virus /
3m  [6] 

5.1.   Variations of Population Variables on the Dynamics of ND Over Time 

Different initial values and the given parameter values in Table 2  are used to illustrate numerical stability of 

the disease free equilibrium point 0Q and the endemic equilibrium point *Q of the NDV transmission model 

system given in ).1( With different initial values for )(tSc
, )(tSw

, )(tI r
 and ),(tH  the curves for the severely 

infected village chicken )(tI c
 converges to zero along the time axis whilst susceptible population curves of the 

village chicken )(tSc
converges to a unique point as shown in Fig .1 (a) and Fig.1 (b). This reveals that the 

disease free equilibrium point 
0Q  exists and is Stable for .10 R  

Fig.2(a), Fig.2(b) and Fig.2(c) illustrates the numerical simulations for the endemic equilibrium point of the 

model (1). Starting with different initial values and using the parameter values given in Table 1 and 003.0 , 

,0002.0b  00083.0 and 0003.0a  for ,10 R  the state variables ),(tI c
 ),(tI w

and ),(tH populations 

curves converges to the unique points above zero. The results of these figures prove that for 10 R  the 

endemic equilibrium point ,0Q  of the model system )1( exists and is stable.  
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(a) 

 
(b) 

Fig.1. Stability of the Disease Free Equilibrium Point, (DFEP) using the Parameter Values Given for 
0 1.R   

 
(a)
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(b) 

 
(c) 

Fig.2. Stability of endemic equilibrium point, *)(Q of the model system )1( using parameter values given in table for .10 R  

6. Conclusion 

In this paper, we presented the stability analysis of the equilibrium points of the basic transmission model of 

ND for the free-range managed chicken without any control as developed by [6]. The model has two equilibria 

points, the disease free equilibrium point and the endemic equilibrium. The local stability of disease free 

equilibrium point is done analytically by using the Hurwitz Matrix method and we establish a theorem that 

under some given conditions the disease free equilibrium point is locally asymptotically stable. Using 

numerical simulations we confirmed that the disease free equilibrium point is locally asymptotically stable for 

.10 R and the infected compartments converges to zero, while the susceptible compartment converges to a 

unique point above zero. Furthermore, we presented the analysis for the stability of the endemic equilibrium 

point of the model using the Lyapunov function and the Laselle’s theorem. The analysis shows that the 

endemic equilibrium point is globally asymptotically stable when .10 R  The existence of endemic 

equilibrium point was further confirmed numerically that regardless of the values of the initial condition of the 
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state variables, the infected compartments converges to a unique point above zero which shows the persistent 

of disease in the population. Thus, the analysis presented in this paper shows that the transmission model for 

the ND among the village chicken population with the vital component of contaminated environment and wild 

birds is epidemiologically meaningful. 

This work provides an insight for looking different control strategies that considers the main agents in the 

dynamics of the ND. The controls will be helpful for the village chicken keepers in reducing the seasonal and 

periodic occurrence of the disease among village chicken population. 
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