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Abstract 

Selection criteria, crossover and mutation are three main operators of genetic algorithm’s performance. A lot of 

work has been done on these operators, but the crossover operator has a vital role in the operation of genetic 

algorithms. In literature, multiple crossover operators already exist with varying impact on the final results. In 

this article, we propose two new crossover operators for the genetic algorithms. One of them is based on the 

natural concept of crossover i.e. the upcoming offspring takes one bit from a parent and next from other parent 

and continuously takes bits till last one. The other proposed scheme is the extension of two-point crossover 

with the concept of multiplication rule. These operators are applied for eight benchmark problems in parallel 

with some traditional crossover operators. Empirical studies show a remarkable performance of the proposed 

crossover operators. 
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1. Introduction 

Genetic algorithms (GAs) are stochastic-based approaches which depend on biological evolutionary 

processes proposed by John Holland in the 1960s. He discussed the GAs in his book “Adaptation in Natural 

and Artificial Systems” published in the 1975 [1]. GAs rely on one of the most important criteria of Darwin: 

survival of the fittest. GAs established some codes on population chromosomes which work under some 

assumptions. Goldberg [2] discussed the GAs with various applications cited in the literature. 

GAs [3-10] are robust and heuristic-based optimization methods. These methods mainly focus on selection 
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processes which are very common in genetics. The individuals which are environment-friendly transfer their 

genetic properties to the next generations. Application of GAs is also common in operation research, sciences 

and engineering etc. The main advantage of GAs over other optimization techniques is that they have not stuck 

off on local optima most of the time. GAs separate objective function from the related constraints when it is 

used as search criterion. A detailed study of university course timetabling problem using multi population 

hybrid GAs [11]. 

GAs start from the randomly generated strings of the initial population. The performance of each string is 

measured to evaluate its departure from the optimal solution when used as an objective function. All possible 

candidate solutions are evaluated one by one to find the best one. Genetic information is exchanged between 

these candidates after they are nominated as parents. The crossover is an exchange of information from parents 

to offspring. Mutation randomly changes within some of these offspring, which introduces change among the 

strings of the population. The population created in such a manner replaces the old one after crossover and 

mutation operators. This process continues until its convergence criterion is met. A generation is a complete 

cycle of all these processes. The sketch of a typical genetic algorithm is depicted in Fig. 1. 

 

 

Fig.1. Layout of a Typical Genetic Algorithm 

The main objective of this study is to presents the performance of crossover operators that have the major 

impact on the GAs process. The purpose of crossover operator is to vary the individual’s quality by combining 

the desired characteristics from both parents. A comprehensive study about various crossover operators has 

been performed and some suggestions for selection among these operators have been introduced and reviewed 

[12]. Some of the traditional crossover operators are; one-point, two-point, multi-point, uniform, discrete, 

heuristic and arithmetic etc. A comprehensive study shows that with large search space, the GAs using uniform 

crossover outperform the ones using one-point and two-point crossover operators [13]. In general, however, 

their theory also suggested that GAs with crossover should outperform those without crossover operator (i.e. 

mutation only). 

A large number of binary-represented crossover operators used in GAs and results confirmed with a high 

efficiency of two-point and uniform crossover operators [14]. GAs application to dimension optimization 

problems to compare various crossover operators and suggested that two-point crossover operator is best [15-

17]. A comparison study among four binary crossover operators was done by Wu and Chow [18]. A theory 

suggests that multi-point crossover operator in terms of fast progress becomes very slow when compared to the 

one-point crossover [19]. A comparative study of different crossover operators with varying population size 

suggests that two-point crossover performs better when population size is large, otherwise uniform crossover 

operator [20]. An author showed in his study that uniform crossover operator is more efficient when compared 

with two-point crossover [21]. A study about the effect of different behavior of crossover operators found 

improved results of combining the two crossover operators [22, 23]. The other study is conducted with 

assessing the performance of traveling salesman problem by using various crossover operators [24]. In this 
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study, we also proposed two new crossover operators (forward-backward and same-opposite crossover) to 

check the behavior of GAs with other traditional crossover operators on several benchmarks. 

Rest of the paper is organized as: Section 2 reprints the background of crossover operators. In Section 3, we 

proposed two new operators, related benchmark functions are discussed in Section 4. Results and discussion 

are presented in Section 5 and Section 6 is focused on our conclusion. 

2. Crossover Operators 

GAs can rapidly identify discrete regions within a huge search space to concentrate the search for an 

optimum solution. This approach changes mutually defined parts of two selected individuals and obtained 

different individuals that give an opportunity to locate the optimum with new points in search space. The 

crossover operators used in this study are summarized below. 

2.1. One-point Crossover Operator 

The simplest crossover technique for GAs is one-point crossover operator. Using this technique, first, select 

two parents and then randomly selects a crossover site from the interval [1, l-1], where l is the fixed length of 

the string. All bits beyond the crossover site in either organism string is swapped between the two parent 

organisms [22, 25, 26]. This approach is depicted in Fig. 2. 

 

 

Fig.2. One-point Crossover Operator  

 

Fig.3. Two-point Crossover Operator 

2.2. Two-point Crossover Operator 

In this approach, select two points in the interval [1, l-1], where l is the fixed length of the string. After two 

selected crossover sites, the contents between these points or outer portions are exchanged between two mated  
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individuals to produce new individuals [22, 25, 26]. Note that the resulting individuals will be the same in both 

cases. This crossover operator specifically results in higher chance as compared to one-point crossover for all 

individuals who are exchanging their important bits within their chromosomal strings [27]. This approach is 

depicted in Fig. 3. 

2.3. Multi-point Crossover Operator 

In this approach, select many cut-off points in the interval [1, l-1], where l is the fixed length of the string. In 

order to separate the sites into (nc +1) portions for individuals, we will select (nc ≥ 3) crossover sites at first. For 

completion of this procedure, any one of the two groups of portions as a whole will be exchanged. The first 

group includes the set of {1st , 3rd … (2k - 1)th , where k = 1,2,...,int(nc/2 + 1 ), while the other group comprises 

rest of the portions, not being selected in first group [22]. This approach is depicted in Fig. 4. 

 

 

Fig.4. Multi-point Crossover Operator 

2.4. Uniform Crossover Operator 

This is quite different from previous crossover operators and the idea was first used Syswerda [21]. After 

selected parents, introduce a new randomly generated binary crossover mask according to same length of the 

string. The bits of offspring are duplicated from the parents as per the bits of their mask. If it is a “0” in the 

binary crossover mask, the bit is copied from the second parent otherwise from the first parent. The second 

offspring may be generated either by introducing a new mask [28] or by using complementary of the original 

mask [21]. This approach is depicted in Fig. 5. 

 

 

Fig.5. Uniform Crossover Operator 
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3. Proposed Crossover Schemes 

In search of optimum, a solid crossover operator generally uses two significant techniques, namely; 

exploration and exploitation. In exploration strategy, a deep and swift discovery examination of the design 

space is required. Every authentic exploration results in preventing the search of the local optimum. However, 

this rule is not a sufficient condition to obtain more suitable points. Whereas the exploitation technique uses 

already detected points to approaches the optimum. This process generally ends in slow convergence along 

with increased risk of locating a local optimum. Having opposite status for these two techniques, a balanced 

use of these will be more efficient while searching through crossover operator [22, 29]. 

In this section of the study, we present two newly developed crossover operators for GAs. They are used as 

alternative approaches of crossover operator which have a great balance of exploration and exploitation. First 

one is purely based on selecting the genes for both upcoming offspring from both parents alternately. Our 

second approach is the extension of the two-point crossover technique. The details about these operators are in 

the following subsections. 

3.1. Forward-Backward Crossover Operator 

In nature, offspring is the mixture of two parents and normally healthier than them if parents are healthy. As 

we know that GAs work with binary numbers, so for offspring, one bit from a parent and the next bit from the 

other and the process continues till last bit. For the first offspring, take the first bit from the first parent, second 

bit from the second parent, third one from the first parent and so on. For this way of moving, we suggest the 

name of the approach is forward-backward crossover (FBX) operator. We can also suggest it another name 

with odd-even crossover (OEX) because of first offspring take all odd-order bits from first parent and even-

order bits from second parent and vice versa for the second offspring. Given two selected chromosomes 

(strings) having “m” genes (bits) as parents Pu and Pv in the following form: 

𝑝𝑢 = (𝑎𝑢1, 𝑎𝑢2, … , 𝑎𝑢𝑚) 

𝑝𝑣 = (𝑎𝑣1, 𝑎𝑣2, … , 𝑎𝑣𝑚) 

Before exploring the scheme to produce offspring, we divide it into two cases depending on the number of 

bits i.e. “m” is even or odd. We also introduce another term “k”, which is the subscript of two selected parents. 

In above selected parents k = u, v. 

If “m” is even then offspring Ci, where “i” is the subscript of required offspring as: 

𝐶𝑖 = {
𝑐𝑖𝑗 = 𝑎𝑖𝑗 ,    𝑗 = 2𝑛 − 1; 𝑛 = 1,2,3, … ,

𝑚

2

𝑐𝑖𝑗 = 𝑎𝑘𝑗 ,    𝑗 = 2𝑛; 𝑛 = 1,2,3, … ,
𝑚

2
; 𝑘 ≠ 𝑖

 

If “m” is odd then offspring Ci, where “i” is the subscript of required offspring as: 

𝐶𝑖 = {
𝑐𝑖𝑗 = 𝑎𝑖𝑗 ,  𝑗 = 2𝑛 − 1; 𝑛 = 1,2,3, … ,

𝑚 + 1

2

𝑐𝑖𝑗 = 𝑎𝑘𝑗 ,  𝑗 = 2𝑛 − 2; 𝑛 = 1,2,3, … ,
𝑚 + 1

2
; 𝑘 ≠ 𝑖

 

For more simplicity this approach is depicted in Fig. 6. 
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Fig.6. FBX Operator 

We see later in results that this approach gives a fast convergence of some given benchmark functions. We 

used MATLAB software with version R2015a to apply this new approach and perform its measure along with 

some traditional crossover operators. To apply this crossover operator, we made a MATLAB function 

“xoverforwarbackward” for the GAs tool as crossover operator for custom used. The pseudo code of our 

algorithm to verify its fast convergence is given in the Algorithm 1. 

 

 
 

 

Fig.7. SOX Operator 

3.2. Forward-Backward Crossover Operator 

In this approach, we combined our previous work [30] and two-point crossover [22, 25, 26] operators. As  
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usual in two-point crossover operator, select two sites in the interval [1, l − 1], where l is the fixed length of the 

string. After selecting the cut points, take “1” if both parallel bits are same and otherwise “0” for one offspring 

and vice versa for other offspring. We suggest the name of this novel approach is same-opposite crossover 

(SOX) operator. This approach is depicted in Fig. 7. 

To apply this crossover operator, we made another MATLAB function “xoversameopposite” for the GAs 

tool as crossover operator for custom used. The pseudo code of our algorithm to verify its fast convergence is 

given in the Algorithm 2. 

 

 

4. The Benchmarks 

There is not a hard-and-fast rule to choose a suitable optimization function to verify the performance of an 

algorithm. An application to application variation in a function depends on the nature of optimization problem, 

in terms of the rate of variation in the objective function, the number of local optima etc. [31]. A multimodal 

function has at least two local optima. In order to search for global optimum, the search process must be 

capable of eliminating the region around local optimum. The situation becomes more complicated in case of 

random distribution of local optima in search space. There is another important factor in the complexity of the 

problem is the dimensionality of the search space [32]. A detailed study of the dimensionality problem and its 

features was carried out by Friedman [33]. In order to compare the performance of the proposed crossover 

operators, we have used eight multimodal classical benchmark functions. These benchmarks have varying 

complexities that are most popular and used in several studies. The necessary information about these 

benchmarks are as follows. 

4.1. Uneven Decreasing Maxima Function 

The uneven decreasing maxima function is one of the multimodal optimization problems. There are four 

local optima and one global optimum but the maxima decrease in height exponentially. This function was 

originally proposed in [32]. It is stated as follows: 

𝐹1 = exp (−2 log(2) ( 
𝛳−0.08

0.854
)

2

) 𝑠𝑖𝑛6 (5𝜋 (𝛳
3

4 − 0.05))                                                                               (1) 
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Where 𝛳 ∈ [0, 1], the global maximal point of the function is at 𝛳 = 0.08 and F1 = 1. 

4.2. Himmelblau Function 

In mathematical optimization, Himmelblau's function is a multimodal function, used to test the performance 

of optimization algorithms, originally proposed by Himmelblau [35]. But we used the inverted version of this 

function which is already used in [34, 36]. The function is defined by: 

𝐹2 = 200 − ( 𝛳1
2 + 𝛳2 − 11)2 − ( 𝛳1 + 𝛳2

2 − 7)2                                                                                          (2) 

Where θi ∈ [−6, 6], it has no local optimum and four global optima at approximately (3.58,-1.86), (3.0, 2.0), 

(-2.815, 3.125), and (-3.78,-3.28) and F2 = 200. 

4.3. Colville Function 

This benchmark has a highly scattered pattern of convergence taken from [37]. It is stated as follows: 

𝐹3 = 200(𝛳2 − 𝛳1
2)2 + (1 − 𝜃1)2 + 90(𝜃4 − 𝛳3

2)2 + (1 − 𝜃3)2 + 10.1((𝜃2 − 1)2 + (𝜃4 − 1)2)  +
    19.8(𝜃2 − 1)(𝜃4 −  1)                                                                                                                                       (3) 

Where θi ∈ [−10, 10], the global optimum point of the function is at (1, 1, 1, 1) and F3 = 0. This function is 

highly multimodal and difficult to locate its optimum points due to its more dimensions. 

4.4. Six-Hump Camel Back Function 

This function has six local optima, two of them are global optima within the bounded region. It has a highly 

scattered pattern of convergence taken from [37]. It is stated as follows: 

𝐹4 =  ( 4 − 2.1 𝛳1
2 +

1

3
𝛳1

4) 𝛳1
2 + 𝛳1𝛳2 + (−4 + 4 𝛳2

2) 𝛳2
2                                                                              (4) 

Where θi ∈ [−3, 3] and θ2 ∈ [−2, 2], the global optimum value of the function is F4 = −1.0316 at two different 

points (-0.0898, 0.7126) and (0.0898, -0.7126). 

4.5. Gold-Price Function 

This function has been taken from [38]. It is stated as follows: 

𝐹5 =  [1 + (𝜃1 + 𝜃2 + 1)2(19 − 14𝜃1 + 3𝛳1
2 − 14𝜃2 + 6𝜃1𝜃2 + 3𝛳2

2)]  ⨉ [30 + (2𝜃1 − 3𝜃2)2(18 −
    32𝜃1 + 12𝛳1

2 + 48𝜃2 − 36𝜃1𝜃2 +  27𝛳2
2)]                                                                                                      (5) 

Where θi ∈ [−2, 2] the function has a global minimum value of the function is F5 = 3 at (0, -1). 

4.6. Easom Function 

The Easom test function is our sixth benchmark which has the global optimum fall in a small area relative to 

the search space taken from [39]. It is stated as follows: 

𝐹6 = −𝑐𝑜𝑠(𝜃1)𝑐𝑜𝑠(𝜃2)𝑒𝑥𝑝[−(𝜃1  −  𝜋)2  −  (𝜃2  −  𝜋)2]                                                                               (6) 
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Where θi ∈ [−100,100], the function has a global optimum value of the function is F6 = −1 at (π, π). 

4.7. Rastrigin Function 

The Rastrigin function, which has been taken from De Jong's standard functions [40] is being used here to 

produce frequently local optima with the addition of cosine modulation. Since it is a complex function and 

many algorithms generally are trapped on local optima, hence we have selected this function as a test function 

to compare our proposed operators. The optimization problem is stated as follows: 

𝐹7 = ∑ (10 + 𝛳𝑖
2𝐷

𝑖=1 − 10 cos(2𝜋𝛳𝑖)                                                                                                                (7) 

Where θi ∈ [−5.12, 5.12], the function has a global optimum value of the function is F7 = 0 at (0,0,...,0). 

4.8. Rosenbrock Function 

This function is a classic optimization benchmark and also known as a banana function because of its 

distinctive shape in a contour plot. The global optimum lies inside a narrow, long, parabolic shaped flat valley 

and to find an optimum point is trivial. Owing to the difficulty in converging its global optimal, this function is 

commonly used to test the performances of many optimization algorithms [40]. It is stated as follows: 

𝐹8 = ∑ (100 (𝛳𝑖
2 − 𝜃i+1)2 𝐷

𝑖=1 + (1 − 𝜃𝑖 )
2 )                                                                                                    (8) 

Where θi ∈ [-2.048, 2.048], the function has a global optimum value of the function is F8 = 0 at (1,1,...,1). 

5. Experimental Results and Discussion 

While comparing the proposed crossover operators with others, we used GAs tool of MATLAB version 

R2015a. The global optimum is the objective for all test functions. One of the main difficulties in building a 

practical genetic algorithm (GA) is in choosing suitable values of parameters such as population size, scaling 

function, selection criteria, elite count, the probability of crossover (Pc), mutation function and function 

tolerance etc. The selections of parameter value are varied to depend on the problem to be solved. 

Dimensionality of the search space D for F7 and F8 was set to 10. All compared crossover operators were 

executed 30 times (30 runs) with different and randomly chosen initial population for each function. Other 

control parameters of the algorithm for each experiment are given in Table 1. 

Table 1. Fixed Parameters for GAs Tool 

 

 

 

 

 

 

 

 

In order to show the performance of the crossover operators more clearly with the help of average and standard 

deviation (S.D) in Table 2. For function F1, the proposed FBX outperforms among all other operators with zero 

variation and all other operators work as a similar pattern. For functions F2, F4 and F6, all given crossover 

operators give optimal results for all 30 runs. The proposed SOX outperforms among all other operators with 

Population Size 

Scaling Function 

Selection Operator 

Elite Count 

Crossover Probability 

Mutation Operator 

Mutation Probability 

Function Tolerance 

50 

Proportional 

Roulette Wheel 

6% 

80% 

Swap 

10% 

1e-6 
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zero variation for functions F3 and F8. Results indicate that it has a more robust investigation and sensitivity 

with respect to the number of runs for functions F3. No other operator gives optimal result not even in a single 

run of this benchmark but works as a similar pattern. For function F5, only One-point crossover give optimal 

result in all 30 runs and proposed operators give optimum 17 and 13 out of 30 times for this function by FBX 

and SOX respectively. This function is more sensitive to fewer generations but the performance is improved 

when generations will enhance [38]. Both proposed crossover operators give optimum value in all 30 runs for 

function F7 and no other operator behave like them for this function. The simulated results show that the overall 

performance of the proposed operators outperforms among all operators. 

Since the goal of our proposed approaches are to prevent the convergence of the GA to a local optimum also 

with evaluating the performance in terms of the number of runs for which the GA gets stuck at a local optimum. 

For this point of view, a box-and-whisker plot is one of the best choices to show the variations in the simulation 

results. An outlier can easily be detected with the help of a box-and-whisker plot. Typically, a value in the data 

set is considered to be an outlier if it is greater than the third quartile by more than 1.5 times the interquartile 

range or if it is less than the first quartile by more than 1.5 times the interquartile range. So we display the 

benchmark functions results with the help of box-and-whisker plots in two figures. Fig. 8 represents the results 

of functions F1 to F4 and Fig. 9 for functions F5 to F8. 

In Fig. 8, one of the proposed crossover operator FBX (used in the figure as FB) shows no variation in all 30 

independent runs for the function F1. Same work by the second proposed operator SOX (used in the figure as 

SO) for F3. So for these two functions, to choose the crossover operator is sensitive to get the optimum results 

and proposed operators are the best choice. For functions F2 and F4, the GA work with efficient results by using 

any used operator, because crossover operator is not sensitive for these functions. 

In Fig. 9, one of the traditional crossover operator One-point (used in the figure as 1P) shows no variation in 

all 30 independent runs for function the F5. For F6, all operators work on a similar pattern with zero dispersion. 

Both proposed operators work outperforms for the function F7. The second proposed operator is the best choice 

for function F8. 

For significant point of view, the One-point operator gives optimum results in four out of eight benchmarks, 

its mean 50% the GA stuck-off on local optima when using this operator. Also, 70% the algorithm stuck-off on 

local optima when used Two-point, Multi-point and Uniform crossover operators. But the proposed operators 

work efficiently for these benchmark functions and only stuck-off 30% and 20% on local optima by FBX and 

SOX respectively. 

Table 2. Results Obtained by Different Crossover Operators 

Crossover Operator 

 One-point  Two-point  Multi-point  Uniform  FBX  SOX 

Function Optimal Average S.D  Average S.D  Average S.D  Average S.D  Average S.D  Average S.D 

F1 1.0000 0.9829 0.0245  0.9804 0.0452  0.9474 0.0913  0.9932 0.0177  1.0000 0.0000  0.9770 0.0455 

F2 200.00 200.00 0.0000  200.00 0.0000  200.00 0.0000  200.00 0.0000  200.00 0.0000  200.00 0.0000 

F3 0.0000 1.9084 2.5772  3.5617 2.6618  4.0009 3.3269  4.9041 3.6706  3.2219 2.9355  0.0000 0.0000 

F4 -1.0316 -1.0316 0.0000  -1.0316 0.0000  -1.0316 0.0000  -1.0316 0.0000  -1.0316 0.0000  -1.0316 0.0000 

F5 3.0000 3.0000 0.0000  6.3167 7.0949  7.7461 7.1690  8.2605 7.6724  4.3323 2.3363  5.5489 3.2050 

F6 -1.0000 -1.0000 0.0000  -1.0000 0.0000  -1.0000 0.0000  -1.0000 0.0000  -1.0000 0.0000  -1.0000 0.0000 

F7 0.0000 0.9980 0.8304  1.3294 0.7572  0.9969 0.8289  0.8641 0.8183  0.0000 0.0000  0.0000 0.0000 

F8 0.0000 3.9967 2.2158  5.1650 2.7961  4.5619 2.4692  4.4521 2.6130  2.4105 1.6580  0.0000 0.0000 
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Fig.8. Dispersion among 30 runs of functions F1 to F4 

 

Fig.9. Dispersion among 30 runs of functions F5 to F8 

6. Conclusions 

Unlike other heuristic methods, GA uses natural rules of selection, crossover and mutation to make the 

computation easier and fast. These things make it more valuable, better performing and efficient algorithm over 

those. Various crossover operators have been presented for GAs in literature. In this article, we also introduced 

two new and efficient crossover schemes for GAs. The proposed approaches provide comparative convergence 
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rate. The performance of each crossover method at the average results and also observed their sensitivity in 

different runs with the help of an absolute measure S.D. is compared through the implementation in a 

MATLAB program. On the set of multimodal testing functions, we select a set of experiments of varying 

difficulty levels. Our results in the comparative study provide the evidence of improvement in performance. 

The novel schemes might be applied to the optimization problems to compare with various benchmarks. After 

the results of benchmark functions of this study, we suggest that proposed crossovers may be good candidates 

as a crossover operator to get fast and accurate results in problems of high complexity in the fields of 

optimization. 
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