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Abstract 

The generalized Normal distribution is obtained from normal distribution by adding a shape parameter to it. 

This paper is based on the estimation of the shape and scale parameter of generalized Normal distribution by 

using the maximum likelihood estimation and Bayesian estimation method via Lindley approximation method 

under Jeffreys prior and informative priors. The objective of this paper is to see which is the suitable prior for 

the shape and scale parameter of generalized Normal distribution. Simulation study with varying sample sizes, 

based on MSE, is conducted in R-software for data analysis. 

 

Index Terms: Generalized Normal distribution, Newton-Raphson method, incomplete gamma function, joint 

posterior distribution, Fisher Information, Lindley approximation, Mean square error. 
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1. Introduction 

The generalized normal (GN) distribution, also known as power exponential, exponential error or 

generalized Gaussian distribution extends the normal distribution by adding a shape parameter. Being a 

generalization of the normal and Laplace distributions, this distribution is perhaps the most widely used in 

areas such as signal processing, quantitative finance, medicine, telecommunication, information systems, 

physics, analytical chemistry, cybernetics, energy and fuels, biology, nanotechnology, neurosciences, 

operations research and management science, reliability and risk. Additionally to the mean and variance, the 

GN distribution has the shape parameter p, which is a measure of the peakedness of the distribution, however, 

it seems that there is not a closed-form expression for estimating p. 
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Various generalizations of the normal distribution are in use. The most well-known among them appears to 

be that proposed by Nadarajah (2005); his version alters the kurtosis, adjusting the sharpness of the peak, but 

maintains a zero-skew symmetry. Varanasi and Aazhang (1989) discuss parameter estimation for the GN 

distribution by using the methods of maximum likelihood and moments. Box (1973) first discussed its 

characters as well as the Bayes inference. GN distribution has been widely adopted in signal processing. 

Gharavi and Tabatabai (1988) adopted it to approximate the marginal distribution in image processing. 

A random variable X is said to follow a (GN) distribution if its PDF is given by 
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where the parameters

 

0, p denote the mean and shape parameters of GN distribution respectively, is the 

standard deviation of the GN distribution. The shape parameter p denotes the rate of decay: the smaller p, the 

more peaked for the PDF, and the larger p, the flatter for the PDF, so it is also called as the decay rate. In most 

of the applications the mean can be considered as zero, i.e., µ = 0, then we will be focused on estimating the 

parameter of the GN distribution with two parameter. 

For 1p , GN distribution reduces to Laplace or double Exponential distribution, for 2p , GN 

distribution reduces to Normal distribution and for the limiting cases of p, we can obtain a distribution close to 

the uniform distribution as p→0. Like the normal distribution, equation (1) is bell-shaped and unimodal with 
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The GN distribution is symmetric w.r.t. μ, hence the odd order central moments are zero; i.e., 
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Let 0  and let XXY   , then the PDF of Y is given by 
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The factor 2 in the denominator vanishes to make Y > 0. Thus the absolute moments of X are given by 
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The variance of X is given by putting r = 2 in (4) and is given by 
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The expectation is still μ but variance depends on the shape parameter p and decreases with respect to p. The 

CDF of GN distribution is given by 
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In addition to the complementary incomplete gamma function mentioned above, the calculations in this 

paper use the Euler’s psi function defined by    x
dx

d
x  log . This special function can be found in 

Prudnikov et al. (1990) and Gradshteyn & Ryzhik (2000). 

2. Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) method is the general method of estimating the parameters of 

a statistical model given observations, by finding the parameter values that maximize the likelihood of making 

the observations given the parameters. To obtain the MLE of ,and p we assume that )...,,,( 21 nxxxX  is 

a random sample from  p,GN   defined in (3), then the likelihood function of pand
 
is given by 
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and the log-likelihood is given by 
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Then the MLE of pand is obtained by the solution of the equation 
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which depends on the shape parameter p . 
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Substituting the value of   from (8), we get 
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Equation (9) can be solved by the iteration method of Newton-Raphson using 
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where  kpf  is denoted by (9) and 
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where  
 
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z
z




  denotes the digamma function  z   denotes the trigamma function. Thus p̂  is obtained 

by choosing the initial value of kp and iterating the procedure till it converges. When p̂  is obtained, ̂  can be 

obtained from (8). 
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3. Fisher Information of GN Distribution 

For estimation procedures, the Fisher information matrix for n observations is required. It is used in the 

asymptotic theory of MLE and Jeffreys prior The second-order derivatives of equation (7) are: 
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Now, since ),(~ pGNX  , given in (3), we have the following results: 
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The elements of the Fisher information matrix are, therefore, given by: 
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Thus, the Fisher information matrix is given by: 
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4. Lindley Approximation of α and p under Jeffreys Invariant Prior 

Bayesian approximation has found good sources provided by the works by Ahmad et.al (2007, 2011) 

discussed Bayesian analysis of exponential distribution and gamma distribution using normal and Laplace 

approximations. Sultan and Ahmad (2015) obtained Bayesian estimation of generalized gamma distribution 

using Lindleys approximation technique for two parameters. Fatima and Ahmad (2018) studied the Bayes 

estimates of Inverse Exponential distribution using various Bayesian approximation techniques like normal 

approximation, Tierney and Kadane (T-K) approximation methods. 

The GN distribution has not been discussed in detail under the Bayesian approach. Our present study aims to 

obtain the Bayesian estimators for the shape and scale parameter of the GN distribution based on Lindley 

approximation technique. A simulation study is also discussed with concluding remarks. 

For a Bayesian analysis of the GN distribution, we can use different prior distributions for the model 

parameters pand . The Jeffreys invariant prior (Box and Tiao (1973)) and Gelman et al. (1995) for 

pand  is given as: 

     2/1
det, pIpg                                                                                                                                 (14) 

where  pI ,  is the joint Fisher information matrix defined in (13). Thus, the Jeffreys invariant prior for 

pand
 
is given by: 
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where K is a normalizing constant defined as 
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These integrals cannot be simplified in to a closed form. However, using the approach developed by Lindley 

(1980), one can approximate these Bayes estimators in to a form containing no integrals. This method provides 

a simplified form of Bayes estimator which is easy to use in practice. The basic idea in Lindley approach is to 

obtain Talyor Series expansion of the function involved in posterior moment. Lindley proposed the ratio for 

obtaining Bayes estimates as 
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When   0,1,
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 hhhhph  , the Lindley approximation for   under Jeffreys prior is 

obtained as 
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When   0,1,
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 hhhhpph  , the Lindley approximation for p  under the non-

informative prior is obtained as 
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5. Lindley Approximation of α and p under Uniform and Gamma Prior 

Assuming that 

 

has a Uniform prior density given by 

  0,1  g
 

and p has gamma prior with known hyper-parameters a and b given as 
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where K is a normalizing constant defined as 
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When   0,1,
222111
 hhhhph  , the Lindley approximation for   under uniform prior is 



 Bayesian Approach to Generalized Normal Distribution under Non-Informative and Informative Priors 29 

obtained as 
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When   0,1,
111222
 hhhhpph  , the Lindley approximation for p  under the gamma prior 

is obtained as 
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6. Simulation Study 

The simulation study was conducted in R-software using the pgnorm package to examine the performance of 

Bayes estimates for the shape (p) and scale (σ) parameter of the generalized normal distribution under Jeffreys 

invariant prior and informative (Uniform and Gamma) prior using Lindley approximation technique. We 

choose n (= 20, 60, 100, 150) to represent different sample sizes, in each sequence of the ML estimates and 

Bayes estimates for the given values of p = 1, 2, 4 and σ = 2, 4, 6 the desired  ML and Bayes estimates are 

presented in Tables 1, 2 and 3. The hyper-parameter values are chosen a = (1, 1.7, 2.5) and b = (2, 3, 3.5). The 

estimators are obtained along with their respective MSE. The results are replicated 5000 times and the average 

of the results has been presented in the tables below. 
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Table 1. ML Estimates and MSE of p and σ 

n p σ p̂  MSE( p̂ ) ̂  MSE(̂ ) 

20 

1.0 2.0 1.70180  1.035623  4.26663 7.13999 

2.0 4.0 3.00955  6.12246 5.50290 4.17824 

4.0 6.0 1.74799 5.88624 5.36854 4.27863 

60 

1.0 2.0 1.43941 0.33298 2.97165 1.46411 

2.0 4.0 2.21905 0.55855 5.63489 3.56623 

4.0 6.0 4.60557 2.67606 8.23932 5.44743 

100 

1.0 2.0 1.03299 0.04012 1.82053 0.28776 

2.0 4.0 3.33154  2.73334 7.19524 10.6439 

4.0 6.0 3.81543 0.92509 8.86350 8.61033 

150 

1.0 2.0 1.04799 0.02344 2.01891 0.16495 

2.0 4.0 2.33422 3.52167 5.86343 3.75382 

4.0 6.0 3.98795 0.92848 8.41659 6.11403 

Table 2. Estimates of p and σ under Jeffreys Prior 

n p σ p̂  MSE ( p̂ ) ̂   MSE ( ̂ ) 

20 

1.0 2.0 1.84972 1.26512 2.07642 2.00822 

2.0 4.0 3.77079 8.23897 4.05533 1.92259 

4.0 6.0 3.54917 1.01794 6.02304 3.88042 

60 

1.0 2.0 1.09269 0.14849  2.03379 0.52115 

2.0 4.0 2.00275 0.51058 4.00861 0.89343 

4.0 6.0 3.85749 2.32965 6.00642 0.43292 

100 

1.0 2.0 1.05165 1.05432 2.02979 0.25644 

2.0 4.0 1.98551 0.96055 4.00205 0.43434 

4.0 6.0 3.95455 0.89309 6.00232 0.41071 

150 

1.0 2.0 1.04945 0.02359 2.01487 0.16481 

2.0 4.0 1.99519 0.16898 4.00366 0.28146 

4.0 6.0 3.95352 0.93049 6.00168 0.27412 
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Table 3. Estimates of p and σ under Gamma and Uniform prior 

n p σ 

p̂  MSE ( p̂ ) 

̂  MSE ( ̂ ) a=1 

b=2 

a=1.7 

b=3 

a=2.5 

b=3.5 

a=1 

b=2 

a=1.7 

b=3 

a=2.5 

b=3.5 

20 

1.0 2.0 1.62803 1.71924 1.80844 0.93752 1.06041 1.19668 2.04116 2.00407 

2.0 4.0 4.93438 4.56135 4.23818 13.7139 11.6638   10.1127  4.02277 1.92005 

4.0 6.0 4.25978 4.10167 3.98708 0.88218 0.82503 0.81486 6.00434 3.87991 

60 

1.0 2.0 1.05226 0.14263 1.08517 0.14263  0.87498  0.14715  2.01697 0.52030 

2.0 4.0 2.13753 2.09432 2.05689 0.52948  0.51947  0.51381  4.00344 0.89337 

4.0 6.0 4.10005 4.04608 4.00696 2.31935 2.31146 2.30939 6.00135 0.43288 

100 

1.0 2.0 1.02783 1.03763 1.04721 0.03980  0.04045  0.04126  2.01371 0.25574 

2.0 4.0 2.04208 2.02394 2.00823 0.96211 0.96091 0.96041 4.00074 0.43434 

4.0 6.0 4.01342 4.00032 3.99083 0.89120 0.89102 0.89110 6.00047 0.41070 

150 

1.0 2.0 1.03025 1.03815 1.04588 0.02206 0.02260  0.02324  2.00721 0.16464 

2.0 4.0 2.04271 2.02747 2.01428 0.17078  0.16971  0.16916  4.00152 0.28145 

4.0 6.0 4.02171 4.00654 3.99554 0.92880 0.92837 0.92835 6.00024 0.27412 

7. Discussion 

The results obtained using above programme are presented in tables 1, 2 and 3 for different values of n and 

mean (= 0) and hyper-parameters.It is observed that the values of the MSE of σ under both Jeffreys and 

Uniform prior are almost same. For the shape parameter, p, the Gamma prior provides values having less MSE 

as compared to Jeffreys prior. Also, it can beobserved that as the hyper-parameter values increase the MSE 

decreases simultaneously. 

8. Conclusion 

This paper deals with the approximation methods in case of the generalized normal (GN) distribution. The 

aim is to study the Bayes estimates of the shape and scale parameters of the generalized normal distribution. 

We observe that under informative as well as non- informative priors, the posterior variances under Jeffreys or 

Uniform prior distribution for σ are close to each other. But p has less posterior variances under Gamma prior. 

Thus, we conclude that we can prefer Jeffreys or Uniform prior distribution equally as a prior for the standard 

deviation and Gamma prior for p of GN distribution. The MSE is also seen decreasing for increasing sample 

size. Further, we conclude that the posterior variance based on different priors tends to decrease with the 

increase in sample size. It implies that the estimators obtained are consistent.
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