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Abstract 

One of the most widely used techniques to look into transient behaviour of vibrating systems is the Krylov-

Bogoliubov-Mitropolskii (KBM) method, which was developed for obtaining the periodic solutions of second 

order nonlinear differential systems of small nonlinearities. Later on, this method was studied and modified 

by numerous scholars to obtain solutions of higher order nonlinear systems. This article modified the method 

to study the solutions of semi-submerged sphere in a liquid which is floating owing to the gravitational force 

and the upward pressure of the liquid. This paper suggests that the results obtained for different sets of initial 

conditions by the modified KBM method correspond well with those obtained by the numerical method. 

 

Index Terms: Asymptotic solution, perturbation solution, oscillatory system, half submerged sphere. 
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1. Introduction 

A perturbation method has been used by Krylov and Bogoliubov [1] to discuss transients in the second 

order nonlinear differential system with a small nonlinearity 

2

0 ( , )x x f x x                                                                                                                                            (1) 

where over dots denote the first and second order differentiation with respect to t, 0 0, 
 
  is a sufficiently 

small parameter and ( , )f x x  is the nonlinear function. Bogoliubov and Mitropolskii [2] amplified and 
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justified this method and then in present the method is a well-known method as Krylov-Bogoliubov-

Mitropolskii (KBM) [1, 2] method in the literature of nonlinear oscillations. Later, the method was extended 

by Popov [3] to the following damped oscillatory system 

22 ( , )x kx x f x x                                                                                                                                   (2) 

where 0.k    Mendelson [4] has rediscovered the Popov’s results. If k  , then it is clear that the 

system (2) becomes non-oscillatory. Murty, Deekshatulu and Krisna [5] have used the MBK method to 

discuss transients in equation (2) for the over-damped case, .k   Murty [6] has presented a unified KBM 

method for solving equation (2). Sattar [7] has found a solution of (2) characterized by critically damping, i.e. 

.k   Later, Shamsul [8] has extended the unified method of Murty [6] to critically damped nonlinear 

systems. Here, a semi-submerged sphere in a liquid under oscillations due to the gravitational force is 

considered and derived the governing equation for this system. The solution of the system for both oscillatory 

and damped oscillatory motions is also investigated. In these cases, therefore, the eigenvalues are pure 

imaginary and complex conjugate for undamped and damped motions respectively. The obtained perturbation 

results reveal well coincidence with the numerical results obtained by using Mathematica for different sets of 

initial conditions as well as different sets of eigenvalues. 

2. Related Work 

During last several decades in the 20th century, some Russian scientists like Mandelstam and Papalexi [9], 

Krylov and Bogoliubov [10], Bogoliubov and Mitropolskii [11] jointly worked on the nonlinear dynamics. To 

solve nonlinear differential equations there exist some methods, among the methods, the method of 

perturbations, i.e., an asymptotic expansion in terms of a small parameter is the most advanced. A simple 

analytical method was presented by Murty and Deekshatulu [12] for obtaining the time response of second 

order nonlinear over-damped systems with small nonlinearity based on the Krylov-Bogoliubov method of 

variation of parameters. Lin and Khan [38] have also used the KBM method for some biological problems, 

and Bojadziev et al. [13] have investigated periodic solutions of nonlinear systems by the KBM and Poincare 

method and compared the two solutions. Osiniskii [14] has also extended the KBM method to a third order 

nonlinear partial differential equation with initial friction and relaxation. Mulholland [15] studied nonlinear 

oscillations governed by a third order differential equation. Lardner and Bojadziev [16] investigated nonlinear 

damped oscillations governed by a third order partial differential equation. They introduced the concept of 

“couple amplitude” where the unknown functions kk BA ,  and kC  depend on the both amplitude a and b. 

Bojadziev [17], and Bojadziev and Hung [18] used at least two trial solutions to investigate time dependent 

differential systems one is for resonant case and the other is for the non-resonant case. But Shamsul used only 

one set of vibrational equations, arbitrarily for both resonant and no resonant cases. Shamsul et al. [19] 

presented a general form of the KBM method for solving nonlinear partial differential equations. Raymond 

and Cabak [20] examined the effects of internal resonance on impulsive forced nonlinear systems with two-

degree-of-freedom. Later, Shamsul [21, 22] has extended the method to nth order nonlinear systems. Shamsul 

[23, 24] has also extended the KBM method for certain non oscillatory nonlinear systems when the 

eigenvalues of the unperturbed equation are real and negative. Ali Akbar et al. [25] extended the KBM 

method which present in [26] for the fourth order damped oscillatory systems. Ali Akbar et al. [27] presented 

a unified KBM method for solving nth order nonlinear systems under some special conditions including the 

case of internal resonance. Ali Akbar et al. [28] also extended the theory of perturbation for fourth order 

nonlinear systems with large damping. Abul Kawser et al. [29] present an Asymptotic Solution for the Third 

Order Critically Damped Nonlinear System in the Case for Small Equal Eigenvalues. 
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3. Formulation of the System 

Let us suppose that a semi-submerged sphere of radius R  is floating in a liquid and x  is the instantaneous 

displacement of its diametric plane from the equilibrium position. 

Partial volume the sphere from the bottom of height h  is, 

21
(3 )

3
hV h R h                                                                                                                                           (3) 

Volume of half sphere, 32

3
RV R  

Partial volume of sphere from the bottom of height R x  is, 

2 2( ) (3 ) ( ) (2 )
3 3

R xV R x R R x R x R x
 

       

 

 

Fig.1. Submerged Sphere in A Liquid is Set into Vibration 

Thus the volume of the partial part of height x from the diametric plane is of the sphere is, 

2 33
3

x R x RV V V R x x



     

R 

x 
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Suppose m is the mass of the sphere, 
1m
 
is the mass of the liquid occupied by the volume xV

 
of the sphere, 

  is the density of the liquid, 
1

2


 

is the density of the sphere and g
 
is the gravitational force. Suppose the 

semi-submerged sphere is oscillating in the liquid without damping, then the Newton’s second law of motion 

gives 

1mx m g   

i.e.
3 2 32

3
3 3

R x R x x g


        

i.e. 
3

3

3

2 2

g g
x x x

R R
                                                                                                                                       (4) 

Also if the half submerged sphere is floating in the liquid under damping, then the equation of the system is 

given by 

3

3

3
2

2 2

g g
x kx x x

R R
                                                                                                                                     (5) 

where 2k  is the damping constant. 

Consider a second order weakly nonlinear ordinary differential system 

22 ( , )x kx x f x x                                                                                                       (6) 

where over dots are used for the first and second derivatives of x with respect to t ; k  is a non-negative 

characteristic parameter,   is a sufficiently small parameter and ( , )f x x  is the nonlinear function. As the 

equation is second order, so, we shall get two eigenvalues, for damped oscillatory system the eigenvalues are 

complex conjugate i.e. k i  , where 2 2  and ,k k      and for the oscillatory systems i.e. 0k  , 

then the eigenvalues of system (6) are i . 

When 0   the solution of the corresponding linear equation (6) is 

 0 0( ,0) cos sinktx t e a t b t                                                                                                                     (7) 

where 0a  and 0b  are arbitrary constants. 

Now we seek a solution of (6) that reduces to (7) as the limit 0  . We look for an asymptotic solution of 

(6) in the form 

    2
1( , ) cos sin , , ( )ktx t e a t b t u a b t O                                                                                           (8) 

where a  and b  are functions of t, defined by the first order differential equations 
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 

 

1

1

, , ......

, , .......

da
A a b t

dt

db
B a b t

dt





 

 

                                                                                                                                   (9) 

Now differentiating (8) two times with respective to t, substituting for the derivatives ,x x  and x  in (6), 

utilizing relations (9) and comparing the coefficients of various powers of  , we get for the coefficients of  : 

   

1 1
1 1

2
021 1 1

12

2 cos 2 sin

2 2 , ,

kt A B
e B t A t

t t

u u u
k k u f a b t

t tt

   



      
       

     

  
     

 

                                                                                          (10) 

where 
   0

0 0,f f x x  and  0 cos sinktx e a t b t   . 

For the oscillatory system to obtain the solution, we have to put 0k   and replacing   by   in (10). 

Thus for oscillatory system, we get 

   
2

021 1 1
1 1 12

2 cos 2 sin , ,
A B u

B t A t u f a b t
t t t

    
     

          
     

                                               (11) 

Usually, equation (10) or (11) is solved for the unknown functions 1 1,A B  and 1u  under the assumption that 

1u  does not contain first harmonic terms. We shall follow this assumption (early imposed by KBM [1, 2]) 

partially to obtain approximate solutions of nonlinear systems with large damping. We assume that 1u does 

not contain first harmonic terms of  0
f . 

4. Solution of the System 

Oscillatory Motion: For the oscillatory motion from equation (4), we have 

33

2

g
x x

R
x                                                                                                                                                 (12) 

where
3

 
2

g

R
   

Thus the solution of equation (12) is given by putting 0k   and replacing   by   in equation (8), we get 

 1( , ) cos sin , ,x t a t b t u a b t                                                                                                             (13) 

where 
3

2

g

R
  . 
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Comparing equation (12) with the equation (6), we obtain 

3( , )f x x x  

 

   

0 3

3 2 3 2

3 2 2 3

Therefore, [ cos sin ]

3 3
cos sin

4 4

1 3 3 1
cos3 sin 3

4 4 4 4

f a t b t

a ab t b a b t

a ab t a b b t

 

 

 

 

   

   
      
   

                                                                    (14) 

Substituting 
(0)f  from equation (14) into equation (11), we obtain 

 

   

2 21 1

1 1

3 2 3 2

3 2

1

2 3

3 3
cos sin

4 4

1 3 3 1

2 sin cos

cos3 sin 3
4 4 4

2 cos sin

4

A B
A t t B t t D

a ab t b

u
t t

a b t

a ab t a b b t

     

 







  

   
      
   

 
     

 

                                                                     (15) 

According to our assumption, 1u does not contain first harmonic terms of  0
f , the following equations can 

be obtained by comparing the coefficients of sin t  and cos t  the higher argument terms of sin t  and 

cos t  as 

 2 2 3 2

1

3 3
4

2 2
D A b a b

 
                                                                                                                        (16) 

 2 2 3 2

1

3 3
4

2 2
D B a ab

 
                                                                                                                      (17) 

 2 2 3 2 2 3

1

1 3 3 1
cos3 sin3

4 4 4 4
D u a ab t a b b t  

   
       

   
                                                                                       (18) 

The solutions of the equations (16) to (18) are respectively 

3 2

1

3( )

8

b a b
A




                                                                                                                                           (19) 

3 2

1

3( )
 

8

a ab
B




                                                                                                                                                (20) 

2 3 3 2

1 2

(3 )cos3 ( 3 )sin3

32

ab a t b a b t
u

 



  
                                                                                                (21)
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Substituting the values of 1A , 1B  from equations (19) and (20) into equation (9), we obtain 

3 23( )
 

8

da b a b

dt





                                                                                                                                       (22) 

3 23( )
 

8

db a ab

dt





                                                                                                                                        (23) 

Therefore, under the transformation, cosa c   and sinb c  
 
equations (21) to (23) respectively 

become 

3

1 2
cos(3 3 )

32

c
u t


                                                                                                                               (24) 

And 0c   

23

8

c



 

 

That is 
0c c                                                                                                                                                 (25) 

2

0

3
 

8

c t
 


                                                                                                                                                (26) 

Thus by substituting cosa c   and sinb c  
 
into equation (13) and after simplification it becomes 

    1, cosx t c t u                                                                                                                           (27) 

Therefore, equation (27) represents a first order oscillatory solution of equation (12), where 
1, ,c u
 
is 

given by equations (25), (26) and (24). 

 

Damped Oscillatory Motion: For the damped oscillatory motion, we have from equation (5) 

33
2

2

g
x kx x x

R
                                                                                                                                        (28) 

where 
32

g

R
   

Comparing equation (28) with the equation (6), we obtain 

3( , )xf x x
                                                                                                                                                   (29)
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Therefore, 
 0 3[ ( cos sin )]ktf e a t b t    

                 

3 3 2 3 2

3 2 2 3

3 3 3 3
cos sin

4 4 4 4

1 3 3 1
cos3 sin 3

4 4 4 4

kte a ab t b a b t

a ab t a b b t

 

 

    
      

   

   
       
    

                                                             (30) 

where 23

2

g
k

R
   . 

Substituting 
(0)f  from equation (30) into equation (10), we obtain 

   

1 1

1

3 3 2 3 2

3 2 2

2

1

3

1

3 3
cos

2 sin

sin
4 4

1 3 3 1
cos3 sin 3

4

cos 2 cos sin

3
2

2

4 4 4

kt

kt

A B
e A t t B t t

t

e a ab t b a

t

g
D kD b t

a ab t a

R

b b t

u

     

 

 





  
    


  



   
       
 

  

 
   




 

 

                                                       (31) 

Since 1u does not contain first harmonic terms, the following equations can be obtained by comparing the 

coefficients of sin t  and cos t  the higher argument terms of sin t  and cos t  as 

      2 2 2 3 2 3 2

1

3
4

2

ktD A e k a ab b a b                                                                                         (32) 

      2 2 2 3 2 2 3

1

3
4

2

ktD B e a ab k a b b                                                                                             (33) 

2 3 3 2 3 2 3

1

3 1 3 3 1
2 cos3 sin3

2 4 4 4 4

kt ktg
D kD u e t a ab e t a b b

R
       

          
     

                                           (34) 

The solutions of the equations (32) to (34) are respectively 

    
 

2 3 2 3 2

1 2 2

3

8

kte k a ab b a b
A

k





   
 


                                                                                                    (35) 

    
 

2 3 2 3 2

1 2 2

3
 

8

kte k b a b a ab
B

k





    



                                                                                                     (36)
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3
2 3 2 2

1 4 2 2 4

2 3 2 2

(3 ){3 sin 3 ( 2 )cos3 }
16( 5 4 )

(3 ){( 2 )sin 3 3 cos3 }

kte
u ab a k t k t

k k

a b b k t k t

   
 

   



    

    

                                                   (37) 

Substituting the values of 1,A
 1B  from equations (35) and (36) into equation (9), we obtain 

    
 

2 3 2 3 2

2 2

3

8

kte k a ab b a bda

dt k






   
 


                                                                                                 (38) 

    
 

2 3 2 3 2

2 2

3 2

8

kte k b a b a abdb

dt k






    



                                                                                               (39) 

Therefore, under the transformation, cosa c 
 
and sinb c  

 
equations (11) and (12) respectively 

become 

   
3 3

2 2

1 4 2 2 4
[( 2 )cos 3 3 3 sin 3 3 ]

16( 5 5 )

ktc e
u k t k t

k k
     

 



    
 

                                                   (40) 

And 

3 2

2 2

3

8( )

ktk c e
c

k







 


 

2 2

2 2

3

8( )

ktc e

k








 


 

Or, 
 

 
2

2

0 2 2

3
1

16

ktc
e

k k


 



  


                                                                                                             (41) 

 
 

3

20

0 2 2

3
1

16

ktc
c c e

k




  


                                                                                                                   (42) 

Thus by substituting cosa c 
 
and sinb c  

 
into equation (28) and after simplification it becomes 

  1( , ) cosktx t ce t u                                                                                                                           (43) 

Therefore, equation (43) represents a first order damped oscillatory solution of equation (28), where 

1, ,c u are given by equations (42), (41) and (40). 
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5. Results and Discussion 

To make sure the efficiency of our results, we compare our results to the numerical results obtained by the 

Mathematica program for the different sets of initial conditions. First of all, when the system is oscillatory, 

( , )x t   has been computed by the approximate solution given by equation (27) in which ,c 
 
and 

1u
 
are 

calculated by equations (25), (26) and (24) together with three sets of initial conditions. Again for damped 

oscillatory motion, equation (43) is used to compute the asymptotic solution ( , )x t  , wherein ,c 
 
and 

1u
 
are 

obtained from equations (42), (41) and (40) together with three sets of initial conditions. The corresponding 

numerical solutions for both cases have been computed by the Mathematica program for various values of t 

and all the perturbation solutions have been developed by a code in Mathematica program. Finally, we get 

different results for both oscillatory and damped oscillatory motion for different sphere and damping constant 

2k . All the results are shown in the Figure 2 to Figure 4 for oscillatory motion and Figure 5 to Figure 7 for 

damped oscillatory motion respectively. 

Corresponding Figures for Undamped Oscillatory Motion 

Perturbation Results for x t

Numerical Results for x t
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Fig.2. Comparison between perturbation and numerical results for 1.8 ,R m 29.8g ms  with the initial conditions 

0 00.10 , 20 .c m     

Perturbation Results

Numerical Results
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Fig.3. Comparison between perturbation and numerical results for 2.1 ,R m  29.8g ms  with the initial conditions 

0 00.20 , 15 .c m   
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Perturbation Results

Numerical Results
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Fig.4. Comparison between perturbation and numerical results for 2.4 ,R m  29.8g ms with the initial conditions 

0 00.30 , 5 .c m   
 

Corresponding Figures for Damped Oscillatory Motion 
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Numerical Results
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Fig.5. Comparison between perturbation and numerical results for 2.2 ,R m  1 20.2 , 9.8k s g ms   with the initial conditions 

0 00.12 , 10 .c m   
 

Perturbation Results

Numerical Results
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Fig.6. Comparison between perturbation and numerical results for 2.0 ,R m
 

1 20.15 , 9.8k s g ms   with the initial conditions 

0 00.20 , 55 .c m   
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Perturbation Results

Numerical Results
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Fig.7. Comparison between perturbation and numerical results for 1.7 ,R m  1 20.11 , 9.8k s g ms   with the initial conditions 

0 00.17 , 35 .c m     

6. Conclusions 

In this paper, we have carried out the modification of the KBM method and su ccessfully applied 

the modified method to the half-submerged sphere for oscillatory and damped oscillatory nonlinear systems. 

At first, we have derived the equations for these systems. In this article, we have been studied on semi-

submerged sphere which is oscillating in a liquid due to the gravitational force and upward pressure of the 

liquid. Based on the modified KBM method transient responses of nonlinear differential systems have 

been investigated. The second order nonlinear systems for an oscillating half submerged sphere, the 

solutions are looked for such circumstances wherein the eigenvalues are pure imaginary and complex 

conjugate for oscillatory and damped oscillatory motion respectively. For different sets of initial 

conditions the modified KBM method provides solutions which show well agreement with the 

numerical solutions. 
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