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Abstract 

To measure the difference of two fuzzy sets / intuitionistic sets, we can use the distance measure and 

dissimilarity measure between fuzzy sets. Characterization of distance/dissimilarity measure between fuzzy 

sets/intuitionistic fuzzy set is important as it has application in different areas: pattern recognition, image 

segmentation, and decision making. Picture fuzzy set (PFS) is a generalization of fuzzy set and intuitionistic set, 

so that it have many application. In this paper, we introduce concepts: difference between PFS-sets, distance 

measure and dissimilarity measure between picture fuzzy sets, and also provide the formulas for determining 

these values. We also present an application of dissimilarity measures in multi-attribute decision making. 

 

Index Terms: Picture fuzzy set (PFS), difference between PFS-sets, distance measure and dissimilarity 

measure between picture fuzzy sets, multi-attribute decision making. 

 

© 2018 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research 

Association of Modern Education and Computer Science 

1. Introduction 

In many practical problems, we need to compare two objects. Therefore, the question of the process and the 

way to compare those objects is important. There are some models to measure difference between objects, as a 

general axiomatic framework for the comparison of fuzzy set. (Bouchon et al. [1]). Fuzzy set and intuitionistic 

fuzzy set have been used a lot in practical math problems [6,8,9,11]. Distance measure between fuzzy sets and 

intuitionistic fuzzy sets is also important for many practical applications (Ejegwa et al. [4], Hatzimichailidis et 

al. [6], Lindblad et al. [8], Muthukumar et al. [12]). Besides, dissimilarity measure between fuzzy 

sets/intuitionistic fuzzy set is also studied and applied in various matters (Li [7], Faghihi [5], Nguyen [13], 
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Mahmood [10]).  

In 2014, Cuong introduced the concept of the picture fuzzy set (PFS-sets) [2], in which a given set is 

represented by three memberships: a degree of positive membership, a degree of negative membership, and a 

degree of neutral membership. After that, Son gave the applications of the picture fuzzy set in clustering 

problems in [15, 16, 17]. Nguyen et al. [14] use picture fuzzy sets to applied for Geographic Data Clustering. 

Van Dinh et al. [18] introduce the picture fuzzy set database. Cuong and Hai [3] studied some fuzzy logic 

operators for picture fuzzy sets. Nguyen et all [15] investigate the equivalence of two picture fuzzy set and 

apply them in clustering. But, difference between PFS-sets and dissimilarity between picture fuzzy sets (the 

concepts are important in application of picture fuzzy sets) are not yet been research. 

In this paper, we introduce the concept of difference between PFS-sets, distance measure operators and 

dissimilarity measure operators between picture fuzzy sets. The rest of paper, in section 2, we recall the concept 

of picture fuzzy set and we introduce the new concept difference between PFS-sets. The function of distance 

measure between PFS-sets is defined in section 3. After that, we introduce the function of dissimilarity measure 

between PFS-sets in section 4. We also illustrate with numerical examples the above measures in decision 

making in section 5. In section 6, we apply the dissimilarity measure in the multiple-attribute decision making. 

2. Basic Notions 

Definition 1.  

A picture fuzzy set (PFS) is defined by:  

𝐴 = {(𝑢, 𝜇𝐴(𝑢), 𝜂𝐴(𝑢), 𝛾𝐴(𝑢))|𝑢 ∈ 𝑈} 

where: 𝜇𝐴 is a positive membership function, 𝜂𝐴 is neural membership function,  𝛾𝐴 is negative membership 

function of A, in there:  𝜇𝐴(𝑢), 𝜂𝐴(𝑢), 𝛾𝐴(𝑢) ∈ [0,1] and  

0 ≤ 𝜇𝐴(𝑢) + 𝜂𝐴(𝑢) + 𝛾𝐴(𝑢) ≤ 1, for all 𝑢 ∈ 𝑈. 

 We denote 𝑃𝐹𝑆(𝑈) is a collection of picture fuzzy set on 𝑈. In which: 

𝑈 = {(𝑢, 1, 0, 0)|𝑢 ∈ 𝑈} 

and: 

∅ = {(𝑢, 0, 0, 1)|𝑢 ∈ 𝑈}. 

 For 𝐴, 𝐵 ∈ 𝑃𝐹𝑆(𝑈), then: 

 

+ Union of 𝐴 and 𝐵 is defined by: 

𝐴 ∪ 𝐵 = {(𝑢, 𝜇𝐴∪𝐵(𝑢), 𝜂𝐴∪𝐵(𝑢), 𝛾𝐴∪𝐵(𝑢))|𝑢 ∈ 𝑈} 

where: 

μA∪B(u) = max{μA(u), μB(u)}, 

ηA∪B(u) = min{ηA(u), ηB(u)} ,
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γA∪B(u) = min {γA(u), γB(u)}. 

+ Intersection of 𝐴 and 𝐵 is defined by: 

𝐴 ∩ 𝐵 = {(𝑢, 𝜇𝐴∩𝐵(𝑢), 𝜂𝐴∩𝐵(𝑢), 𝛾𝐴∩𝐵(𝑢))|𝑢 ∈ 𝑈} 

Where: 

𝜇𝐴∩𝐵(𝑢) = min{𝜇𝐴(𝑢), 𝜇𝐵(𝑢)},  

𝜂𝐴∩𝐵(𝑢) = min{𝜂𝐴(𝑢), 𝜂𝐵(𝑢)}, 

 𝛾𝐴∩𝐵(𝑢) = max {𝛾𝐴(𝑢), 𝛾𝐵(𝑢)}. 

+ Subset: 𝐴 ⊂ 𝐵 iff {

𝜇𝐴(𝑢) ≤ 𝜇𝐵(𝑢)

𝜂𝐴(𝑢) ≤ 𝜂𝐵(𝑢)

𝛾𝐴(𝑢) ≥ 𝛾𝐵(𝑢)

. 

 

Now, we define an operator called difference between picture fuzzy sets. 

Definition 2.  

An operator − ∶ 𝑃𝐹𝑆(𝑈) × 𝑃𝐹𝑆(𝑈) → 𝑃𝐹𝑆(𝑈) is a difference between PFS-sets if it satisfies properties: 

 

(D1) 𝐴 ⊂ 𝐵 iff 𝐴 − 𝐵 = ∅, 

(D2) If 𝐵 ⊂ 𝐶 then 𝐵 − 𝐴 ⊂ 𝐶 − 𝐴, 

(D3) (𝐴 ∩ 𝐶) − (𝐵 ∩ 𝐶) ⊂ 𝐴 − 𝐵, 

(D4) (𝐴 ∪ 𝐶) − (𝐵 ∪ 𝐶) ⊂ 𝐴 − 𝐵, 
 

For all 𝐴, 𝐵, 𝐶 ∈ 𝑃𝐹𝑆(𝑈). 

Theorem 1.  

The function − ∶ 𝑃𝐹𝑆(𝑈) × 𝑃𝐹𝑆(𝑈) → 𝑃𝐹𝑆(𝑈) given by: 

𝐴 − 𝐵 = {(𝑢, 𝜇𝐴−𝐵(𝑢), 𝜂𝐴−𝐵(𝑢), 𝛾𝐴−𝐵(𝑢))|𝑢 ∈ 𝑈}, 

where: 

𝜇𝐴−𝐵(𝑢) = max { (0, 𝜇𝐴(𝑢) − 𝜇𝐵(𝑢)}, 

𝜂𝐴−𝐵(𝑢) = max {0, 𝜂𝐴(𝑢) − 𝜂𝐵(𝑢)}, 

𝛾𝐴−𝐵(𝑢) = {

1 − 𝜇𝐴−𝐵(𝑢) − 𝜂𝐴−𝐵(𝑢) 𝑖𝑓 𝛾𝐴(𝑢) > 𝛾𝐵(𝑢)

min {
1 + 𝛾𝐴(𝑢) − 𝛾𝐵(𝑢),

 1 − 𝜇𝐴−𝐵(𝑢) − 𝜂𝐴−𝐵(𝑢)
} if  𝛾𝐴(𝑢) ≤ 𝛾𝐵(𝑢)

 

                                                                     (1)
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is a difference between PFS-sets. 

Proof.  

It is easy to see that 

0 ≤ 𝜇𝐴−𝐵(𝑢) + 𝜂𝐴−𝐵(𝑢)+𝛾𝐴−𝐵(𝑢) ≤ 1 

for all 𝑢 ∈ 𝑈. 

We verify all condition in definition 2: 

o With condition (D1).  

+ 𝐴 ⊂ 𝐵 ⟹ 𝐴 − 𝐵 = ∅ is obvious. 

+ If 𝐴 − 𝐵 = ∅ then 

𝜇𝐴−𝐵(𝑢) = max(0, 𝜇𝐴(𝑢) − 𝜇𝐵(𝑢)} = 0, 

𝜂𝐴−𝐵(𝑢) = max{0, 𝜂𝐴(𝑢) − 𝜂𝐵(𝑢)} = 0 

so that 𝜇𝐴(𝑢) ≤ 𝜇𝐵(𝑢) and 𝜂𝐴(𝑢) ≤ 𝜂𝐵(𝑢); 

Hence 𝛾𝐴−𝐵(𝑢) = 1 so that 𝛾𝐴(𝑢) ≥ 𝛾𝐵(𝑢).  

It means that 𝐴 ⊂ 𝐵.  

o With condition (D2). 

With 𝐵 ⊂ 𝐶, we have 

𝜇𝐵(𝑢) ≤ 𝜇𝐶(𝑢), 𝜂𝐵(𝑢) ≤ 𝜂𝐶(𝑢) and 𝛾𝐵(𝑢) ≥ 𝛾𝐴(𝑢). 

So that: 

𝜇𝐵−𝐴(𝑢) = max(0, 𝜇𝐵(𝑢) − 𝜇𝐴(𝑢)} 

≤ max(0, 𝜇𝐶(𝑢) − 𝜇𝐴(𝑢)} 

= 𝜇𝐶−𝐴(𝑢), 

𝜂𝐵−𝐴(𝑢) = max(0, 𝜂𝐵(𝑢) − 𝜂𝐴(𝑢)} 

≤ max(0, 𝜂𝐶(𝑢) − 𝜂𝐴(𝑢)} 

= 𝜂𝐶−𝐴(𝑢). 

With negative membership function, we consider some cases: 

 

If 𝛾𝐴(𝑢) ≤ 𝛾𝐶(𝑢) ≤ 𝛾𝐵(𝑢) then
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𝛾𝐵−𝐴(𝑢) = 1 − 𝜇𝐵−𝐴(𝑢) − 𝜂𝐵−𝐴(𝑢) 

≥ 1 − 𝜇𝐶−𝐴(𝑢) − 𝜂𝐶−𝐴(𝑢) = 𝛾𝐶−𝐴(𝑢) 

If 𝛾𝐶(𝑢) ≤ 𝛾𝐴(𝑢) ≤ 𝛾𝐵(𝑢) then 

𝛾𝐵−𝐴(𝑢) = 1 − 𝜇𝐵−𝐴(𝑢) − 𝜂𝐵−𝐴(𝑢) 

≥ 1 − 𝜇𝐶−𝐴(𝑢) − 𝜂𝐶−𝐴(𝑢). 

So that 

𝛾𝐵−𝐴(𝑢) ≥ min {
1 + 𝛾𝐴(𝑢) − 𝛾𝐶(𝑢) ,

 1 − 𝜇𝐶−𝐴(𝑢) − 𝜂𝐶−𝐴(𝑢)
} =  𝛾𝐶−𝐴(𝑢). 

If 𝛾𝐶(𝑢) ≤ 𝛾𝐵(𝑢) ≤ 𝛾𝐴(𝑢) then 

𝛾𝐵−𝐴(𝑢) = 1 − 𝜇𝐵−𝐴(𝑢) − 𝜂𝐵−𝐴(𝑢)  

≥ 1 − 𝜇𝐶−𝐴(𝑢) − 𝜂𝐶−𝐴(𝑢)  

and 

 𝛾𝐵(𝑢) − 𝛾𝐴(𝑢) ≥ 𝛾𝐶(𝑢) − 𝛾𝐴(𝑢). 

So that: 

𝛾𝐵−𝐴(𝑢) = min {
1 + 𝛾𝐴(𝑢) − 𝛾𝐵(𝑢),

1 − 𝜇𝐴−𝐵(𝑢) − 𝜂𝐴−𝐵(𝑢)
}   

≥ min {
1 + 𝛾𝐴(𝑢) − 𝛾𝐶(𝑢),

 1 − 𝜇𝐶−𝐴(𝑢) − 𝜂𝐶−𝐴(𝑢)
} 

= 𝛾𝐶−𝐴(𝑢). 

o Similarity, it is possible to show that conditions (D3) and (D4) are also satisfied. 

Example 1. Given 𝑈 = {𝑢1, 𝑢2, 𝑢3} and two PFS-sets:  

𝐴 = {

(𝑢1, 0.7, 0.2, 0.1),
(𝑢2, 0.6, 0.1, 0.1),
(𝑢3, 0.6, 0.1, 0.2)

},  𝐵 = {

(𝑢1, 0.6, 0.3, 0.1),
(𝑢2, 0.7, 0.05, 0.2),
(𝑢3, 0.4, 0.4, 0.1)

}. 

Then, computing by Eq.(1) in theorem 1, we have: 
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𝐴 − 𝐵 = {

(𝑢1, 0.1, 0.0, 0.9),
(𝑢2, 0.0, 0.05, 0.9),
(𝑢3, 0.2, 0.0, 0.8)

} 

3. Distance Mesure of Picture Fuzy Sets 

In this section, we define the distance measure between picture fuzzy sets. 

Definition 3. 

A function 𝐷 ∶ 𝑃𝐹𝑆(𝑈) × 𝑃𝐹𝑆(𝑈) → [0,+∞) is a distance measure between PFS-sets if it satisfies follow 

properties 

 

(i) PF-dist 1: 𝐷(𝐴, 𝐵) = 0 iff 𝐴 = 𝐵, 

(ii) PF-dist 2: 𝐷(𝐴, 𝐵)  = 𝐷(𝐵, 𝐴), for all 𝐴, 𝐵 ∈ 𝑃𝐹𝑆(𝑈), 

(iii) PF-dist 3: 𝐷(𝐴, 𝐶) ≤ 𝐷(𝐴, 𝐵) + 𝐷(𝐵, 𝐶), for all 𝐴, 𝐵, 𝐶 ∈ 𝑃𝐹𝑆(𝑈).  
 

There are many formulas that determine the distance between two picture fuzzy sets. 

Theorem 2. 

Given 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} is an universe set. For 𝐴, 𝐵 ∈ 𝑃𝐹𝑆(𝑈). We have some distance measure between 

picture fuzzy sets 

(i) 𝐷𝐻(𝐴, 𝐵) =  
1

3𝑛
∑ [

|𝜇𝐴(𝑢𝑖) − 𝜇𝐵(𝑢𝑖)|

+|𝜂𝐴(𝑢𝑖) − 𝜂𝐵(𝑢𝑖)|

+|𝛾𝐴(𝑢𝑖) − 𝛾𝐵(𝑢𝑖)|

]𝑛
𝑖=1                                                                                             (2) 

(ii) 𝐷𝐸(𝐴, 𝐵) =
1

𝑛
{∑ [

(𝜇𝐴(𝑢𝑖) − 𝜇𝐵(𝑢𝑖))
2

+(𝜂𝐴(𝑢𝑖) − 𝜂𝐵(𝑢𝑖))
2

+(𝛾𝐴(𝑢𝑖) − 𝛾𝐵(𝑢𝑖))
2

]𝑛
𝑖=1 }

1

2

                                                                                      (3) 

(iii)   𝐷𝐻
𝑚(𝐴, 𝐵) =

1

𝑛
∑ max [

|𝜇𝐴(𝑢𝑖) − 𝜇𝐵(𝑢𝑖)|,
|𝜂𝐴(𝑢𝑖) − 𝜂𝐵(𝑢𝑖)|

|𝛾𝐴(𝑢𝑖) − 𝛾𝐵(𝑢𝑖)|
, ]𝑛

𝑖=1                                                                                     (4) 

(iv) 𝐷𝐸
𝑚(𝐴, 𝐵) =

1

𝑛
{∑ max [

|𝜇𝐴(𝑢𝑖) − 𝜇𝐵(𝑢𝑖)|
2,

|𝜂𝐴(𝑢𝑖) − 𝜂𝐵(𝑢𝑖)|
2

|𝛾𝐴(𝑢𝑖) − 𝛾𝐵(𝑢𝑖)|
2

, ]𝑛
𝑖=1 }

1

2

                                                                              (5) 

We easy to verify that the functions in  theorem 2  are satisfies properties of distance measure between 

picture fuzzy sets (def. 3). In there, 𝐷𝐸(𝐴, 𝐵) is usually used to measure the distance of objects in geometry, 

𝐷𝐻(𝐴, 𝐵) is used in the information theory. 

 

Example 2. Assume that there are two patterns denoted by picture fuzzy sets on 𝑈 = {𝑢1, 𝑢2, 𝑢3} as follows: 
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𝐴1 = {

(𝑢1, 0.609, 0. 091, 0.298),
(𝑢2, 0.651, 0.231, 0.059),
(𝑢3, 0.792, 0.095, 0.106)

}, 

 𝐴2 = {

(𝑢1, 0.291, 0. 365, 0.134),
(𝑢2, 0.438, 0.468, 0.065),
(𝑢3, 0.816, 0.169, 0.006)

}.  

 𝐴3 = {

(𝑢1, 0.679, 0. 215, 0.014),
(𝑢2, 0.239, 0.617, 0.086),
(𝑢3, 0.917, 0.045, 0.011)

} 

Then we have the results: 

 

+ Using the Eq.(2) we obtain: 

𝐷𝐻(𝐴1, 𝐴2) = 0.156667;  

𝐷𝐻(𝐴1, 𝐴3) = 0.174778;  

𝐷𝐻(𝐴2, 𝐴3) = 0.139667; 

+ Using the Eq.(3) we have 

𝐷𝐸(𝐴1, 𝐴2) = 0.56632;  

𝐷𝐸(𝐴1, 𝐴3) = 0.66899; 

𝐷𝐸(𝐴2, 𝐴3) = 0.52468.  

+ By same way with Eq.(4) we achieve 

𝐷𝐻
𝑚(𝐴1, 𝐴2) = 0.655; 

𝐷𝐻
𝑚(𝐴1, 𝐴3) = 0.821; 

𝐷𝐻
𝑚(𝐴2, 𝐴3) = 0.711; 

+ Finally, we using the Eq.(5), we have 

𝐷𝐸
𝑚(𝐴1, 𝐴2) = 0.409;  

𝐷𝐸
𝑚(𝐴1, 𝐴3) = 0.5158; 

𝐷𝐸
𝑚(𝐴2, 𝐴3) = 0.4533.
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4. Dissimilarity of Picture Fuzy Sets 

In this section, we introduce the concept of dissimilarity for picture fuzzy sets.  

Definition 4.  

A function 𝐷𝑀 ∶ 𝑃𝐹𝑆(𝑈) × 𝑃𝐹𝑆(𝑈) → 𝑅 is a dissimilarity measure between PFS-sets if it satisfies follow 

properties: 

 

(i) PF-Diss 1: 𝐷𝑀(𝐴, 𝐵) = 𝐷𝑀(𝐵, 𝐴) 

(ii) PF-Diss 2: 𝐷𝑀(𝐴, 𝐴)  =  0. 

(iii) PF-Diss 3: If 𝐴 ⊂ 𝐵 ⊂ 𝐶 then 

𝐷𝑀(𝐴, 𝐶) ≥ max{𝐷𝑀(𝐴, 𝐵), 𝐷𝑀(𝐵, 𝐶)}. 

for all 𝐴, 𝐵, 𝐶 ∈ 𝑃𝐹𝑆(𝑈). 

Theorem 3. 

Given 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛}  is an universe set. For any 𝐴, 𝐵 ∈ 𝑃𝐹𝑆(𝑈) , we define a 

function𝐷𝑀𝐶(𝐴, 𝐵): 𝑃𝐹𝑆(𝑈) × 𝑃𝐹𝑆(𝑈) → 𝑅 is defined by:  

𝐷𝑀𝐶(𝐴, 𝐵) =
1

3𝑛
∑ [

|𝑆𝐴(𝑢𝑖) − 𝑆𝐵(𝑢𝑖)|

+|𝜂𝐴(𝑢𝑖) − 𝜂𝐵(𝑢𝑖)|
]𝑛

𝑖=1                                                                                                     (6) 

Where: 

𝑆𝐴(𝑢𝑖) = |𝜇𝐴(𝑢𝑖) − 𝛾𝐴(𝑢𝑖)|, and 

𝑆𝐵(𝑢𝑖) = |𝜇𝐵(𝑢𝑖) − 𝛾𝐵(𝑢𝑖)| 

Then, 𝐷𝑀𝐶(𝐴, 𝐵)  is a dissimilarity measure between PFS-sets. 

Proof.  

We check that 𝐷𝑀𝐶 satisfies the conditions of definition 3. Indeed, we have:  

 

PF-Diss 1 and PF-Diss 2 are obviously.  

With PF-Diss 3, if 𝐴 ⊂ 𝐵 ⊂ 𝐶 we have  

{

𝜇𝐴(𝑢𝑖) ≤ 𝜇𝐵(𝑢𝑖) ≤ 𝜇𝐶(𝑢𝑖)

𝜂𝐴(𝑢𝑖) ≤ 𝜂𝐵(𝑢𝑖) ≤ 𝜂𝐶(𝑢𝑖) 

𝛾𝐴(𝑢𝑖) ≥ 𝛾𝐵(𝑢𝑖) ≥ 𝛾𝐶(𝑢𝑖)

 

for all 𝑢𝑖 ∈ 𝑈.  

So that: 

𝑆𝐴(𝑢𝑖) = |𝜇𝐴(𝑢𝑖) − 𝛾𝐴(𝑢𝑖)| 
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≥ 𝑆𝐵(𝑢𝑖) = |𝜇𝐵(𝑢𝑖) − 𝛾𝐵(𝑢𝑖)| , 

𝑆𝐵(𝑢𝑖) = |𝜇𝐵(𝑢𝑖) − 𝛾𝐵(𝑢𝑖)|  

 ≥ 𝑆𝐶(𝑢𝑖) = |𝜇𝐶(𝑢𝑖) − 𝛾𝐶(𝑢𝑖)|  

and  

|𝜂𝐴(𝑢𝑖) − 𝜂𝐶(𝑢𝑖)| ≥ max {|𝜂𝐴(𝑢𝑖) − 𝜂𝐵(𝑢𝑖)|, | 𝜂𝐵(𝑢𝑖) − 𝜂𝐶(𝑢𝑖)|}.  

Hence 

𝐷𝑀𝐶(𝐴, 𝐶) ≥ 𝑚𝑎𝑥{𝐷𝑀𝐶(𝐴, 𝐵), 𝐷𝑀𝐶(𝐵, 𝐶)}. 

It means PF-Diss 3 satisfy. 

We have some dissimilarity measure in theorem 3, as follows. 

Theorem 4. 

Given 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} is an universe set. For any 𝐴, 𝐵 ∈ 𝑃𝐹𝑆(𝑈). We have: 

(i) 𝐷𝑀𝐻(𝐴, 𝐵) =  
1

3𝑛
∑ [

|𝜇𝐴(𝑢𝑖) − 𝜇𝐵(𝑢𝑖)|

+|𝜂𝐴(𝑢𝑖) − 𝜂𝐵(𝑢𝑖)|

+|𝛾𝐴(𝑢𝑖) − 𝛾𝐵(𝑢𝑖)|

]𝑛
𝑖=1                                                                                           (7) 

(ii) 𝐷𝑀𝐿(𝐴, 𝐵) =
1

5𝑛
∑

[
 
 
 

|𝑆𝐴(𝑢𝑖) − 𝑆𝐵(𝑢𝑖)|

+|𝜇𝐴(𝑢𝑖) − 𝜇𝐵(𝑢𝑖)|

+|𝜂𝐴(𝑢𝑖) − 𝜂𝐵(𝑢𝑖)|

+|𝛾𝐴(𝑢𝑖) − 𝛾𝐵(𝑢𝑖)|]
 
 
 

𝑛
𝑖=1                                                                                             (8) 

(iii) 𝐷𝑀𝑂(𝐴, 𝐵) =
1

√3𝑛
∑ [

(𝜇𝐴(𝑢𝑖) − 𝜇𝐵(𝑢𝑖))
2

+(𝜂𝐴(𝑢𝑖) − 𝜂𝐵(𝑢𝑖))
2

+(𝛾𝐴(𝑢𝑖) − 𝛾𝐵(𝑢𝑖))
2

]𝑛
𝑖=1

1

2

                                                                                     (9) 

are the dissimilarity measure between picture fuzzy sets.  

The proof of this theorem is similar to the theorem 3. 

 

Example 3. Assume that there are two patterns denoted by picture fuzzy sets on 𝑈 = {𝑢1, 𝑢2, 𝑢3} as follows 

𝐴1 = {

(𝑢1, 0.609, 0. 091, 0.298),
(𝑢2, 0.651, 0.231, 0.059),
(𝑢3, 0.792, 0.095, 0.106)

}, 

𝐴2 = {

(𝑢1, 0.291, 0. 365, 0.134),
(𝑢2, 0.438, 0.468, 0.065),
(𝑢3, 0.816, 0.169, 0.006)

}.
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𝐴3 = {

(𝑢1, 0.679, 0. 215, 0.014),
(𝑢2, 0.239, 0.617, 0.086),
(𝑢3, 0.917, 0.045, 0.011)

} 

+ Using Eq.(6) we have: 

𝐷𝑀𝐶(𝐴1, 𝐴2) = 0.360667; 

𝐷𝑀𝐶(𝐴1, 𝐴3) = 0.524333; 

𝐷𝑀𝐶(𝐴2, 𝐴3) = 0.415667; 

+ Using Eq.(7) we have 

𝐷𝑀𝐻(𝐴1, 𝐴2) = 0.145556; 

𝐷𝑀𝐻(𝐴1, 𝐴3) = 0.139111; 

𝐷𝑀𝐻(𝐴2, 𝐴3) = 0.164222;  

+ Using Eq.(8) we obtain 

𝐷𝑀𝐿(𝐴1, 𝐴2) = 0.193267; 

𝐷𝑀𝐿(𝐴1, 𝐴3) = 0.1728; 

𝐷𝑀𝐿(𝐴2, 𝐴3) = 0.213467; 

+ Finally with Eq.(9) we get the results:  

𝐷𝑀𝑂(𝐴1, 𝐴2) = 0.188774; 

𝐷𝑀𝑂(𝐴1, 𝐴3) = 0.174893; 

𝐷𝑀𝑂(𝐴2, 𝐴3) = 0.222998; 

5. Numerical Examples for using New Measures in Partern Recognition 

In this section, we will give some examples using distance and dissimilarity measure 𝐷𝑀(𝐴, 𝐵) in decision 

making. Note that when using similar measure, there are two patterns 𝐴1, 𝐴2and a sample 𝐵. If 𝐷𝑀(𝐴1, 𝐵) <
𝐷𝑀(𝐴2, 𝐵) the we consider that sample 𝐵 belongs to the pattern 𝐴1.  

 

Example 4. Assume that there are two patterns denoted by picture fuzzy sets on 𝑈 = {𝑢1, 𝑢2, 𝑢3} as follows 

𝐴1 = {

(𝑢1, 0.1, 0. 1, 0.1),
(𝑢2, 0.1, 0.4, 0.3),
(𝑢3, 0.1, 0.0, 0.9)

},
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𝐴2 = {

(𝑢1, 0.7, 0. 1, 0.2),
(𝑢2, 0.1, 0.1, 0.8),
(𝑢3, 0.1, 0.1, 0.7)

}. 

Now, there is a sample:  

𝐵 = {

(𝑢1, 0.4, 0.0, 0.4),

 (𝑢2, 0.6, 0.1, 0.2),
(𝑢3, 0.1, 0.1, 0.8)

} 

Question: which pattern does 𝐵 belong to? 

+ Applying the distant measure 𝐷𝐻(𝐴, 𝐵) (i.e. Eq. (2)) we have: 

𝐷𝐻(𝐴1, 𝐵) = 𝐷𝐻(𝐴2, 𝐵) = 0.2 

+ Applying the dissimilarity measure 𝐷𝑀𝐿(𝐴, 𝐵) in Eq.(8) we have:  

𝐷𝑀𝐿(𝐴1, 𝐵) =
2.1

15
 < 𝐷𝑀𝐿(𝐴2, 𝐵) =

2.7

15
. 

In this example, we see that using the distant measure 𝐷𝐻(𝐴, 𝐵) can not be used to classify the sample 𝐵. But, 

we can see that 𝐵 belongs to pattern 𝐴1 if we use the dissimilarity measure 𝐷𝑀𝐿(𝐴, 𝐵).  

 

Example 5. Assume that there are three patterns denoted by picture fuzzy sets on 𝑈 = {𝑢1, 𝑢2, 𝑢3} as follows 

𝐴1 = {

(𝑢1, 0.4, 0. 5,0.1),
(𝑢2, 0.7, 0.1, 0.1),
(𝑢3, 0.3, 0.3, 0.2)

}, 

𝐴2 = {

(𝑢1, 0.5, 0. 4, 0.0),

 (𝑢2, 0.7, 0.2, 0.1),
(𝑢3, 0.4, 0.3, 0.2)

}. 

 𝐴3 = {

(𝑢1, 0.4, 0. 4, 0.1),
(𝑢2, 0.6, 0.1, 0.1),
(𝑢3, 0.4, 0.1, 0.4)

} 

Now, there is a sample: 

𝐵 = {

(𝑢1, 0.1, 0.1, 0.6),
(𝑢2, 0.7, 0.1, 0.2),
(𝑢3, 0.8, 0.1, 0.1)

} 

Question: which pattern does 𝐵 belong to? 

+ Applying the dissimilarity measure 𝐷𝑀𝐿(𝐴, 𝐵) in Eq.(8) we have:  
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𝐷𝑀𝐿(𝐴1, 𝐵) = 𝐷𝑀𝐿(𝐴3, 𝐵) =
2.1

9
; 

𝐷𝑀𝐿(𝐴2, 𝐵) =
2.2

9
. 

+ Applying the distance measure 𝐷𝐸(𝐴, 𝐵) in Eq.(3) we have: 

𝐷𝐸(𝐴1, 𝐵) = 0.9; 

𝐷𝐸(𝐴2, 𝐵) = 0.916515139; 

𝐷𝐸(𝐴3, 𝐵) = 0.8366600265 

In this example, we see that using the dissimilarity measure 𝐷𝑀𝐻(𝐴, 𝐵) can not be used to classify the 

sample 𝐵. But, we can see that 𝐵 belongs to pattern 𝐴3 if we use the distance measure 𝐷𝐸(𝐴, 𝐵). 

 

Example 6. Assume that there are three patterns denoted by picture fuzzy sets on 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4} as 

follows: 

𝐴1 = {
(𝑢1, 0.3, 0. 4, 0.1), (𝑢2, 0.3, 0.4, 0.1),
(𝑢3, 0.6, 0.1, 0.2), (𝑢4, 0.6, 0.1, 0.2)

} 

 𝐴2 = {
(𝑢1, 0.4, 0. 4, 0.1), (𝑢2, 0.3, 0.2, 0.4),

 (𝑢3, 0.6, 0.1, 0.3), (𝑢4, 0.5, 0.2, 0.2)
} 

𝐴3 = {
(𝑢1, 0.4, 0. 4, 0.1), (𝑢2, 0.3, 0.1, 0.3),
(𝑢3, 0.6, 0.1, 0.2), (𝑢4, 0.5, 0.2, 0.1)

} 

Now, there is a sample: 

𝐵 = {
(𝑢1, 0.35, 0.65, 0), (𝑢2, 0.55, 0.35, 0.1),
(𝑢3, 0.65, 0.1, 0.1), (𝑢4, 0.6, 0.15, 0.2)

} 

Question: which pattern does 𝐵 belong to? 

+ Applying the distance measure 𝐷𝐻
𝑚(𝐴, 𝐵) in Eq.(4) we have:  

𝐷𝐻
𝑚(𝐴1, 𝐵) = 𝐷𝐻

𝑚(𝐴3, 𝐵) = 0.7; 

𝐷𝐻
𝑚(𝐴2, 𝐵) = 0.85. 

+ Applying the dissimilarity measure 𝐷𝑀𝐶(𝐴, 𝐵) in Eq.(6) we have: 

𝐷𝑀𝐶(𝐴1, 𝐵) = 0.0875; 

𝐷𝑀𝐶(𝐴2, 𝐵) = 𝐷𝑀𝐶(𝐴3, 𝐵) = 0.1
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In this example, we see that using the distance measure 𝐷𝐻
𝑚(𝐴, 𝐵) can not be used to classify the sample 𝐵. 

But, we can see that 𝐵 belongs to pattern 𝐴1 if we use the dissimilarity measure 𝐷𝑀𝐶(𝐴, 𝐵). 

 

Example 7. Assume that there are two patterns denoted by picture fuzzy sets on 𝑈 = {𝑢1, 𝑢2} as follows 

𝐴1 = {
(𝑢1, 0.4, 0.5, 0.1),

 (𝑢2, 0.3, 0.4, 0.2)
}, 

 𝐴2 = {
(𝑢1, 0.5, 0. 4, 0.1),
(𝑢2, 0.4, 0.3, 0.1)

}. 

Now, there is a sample: 

𝐵 = {
(𝑢1, 0.1, 0.1, 0.1),
(𝑢2, 0.5, 0.5, 0.0)

} 

Question: which pattern does 𝐵 belong to? 

+ Applying the distant measure 𝐷𝐸
𝑚(𝐴, 𝐵) (i.e. Eq.(5)) we have: 

𝐷𝐸
𝑚(𝐴1, 𝐵) = 𝐷𝐸

𝑚(𝐴2, 𝐵) = 0.44721 

+ Applying the dissimilarity measure 𝐷𝑀𝑂(𝐴, 𝐵) (i.e. Eq.(9)) we have:  

𝐷𝑀𝑂(𝐴1, 𝐵) = 0.3265; 

𝐷𝑀𝑂(𝐴2, 𝐵) = 0.3041241. 

In this example, we see that using the distant measure 𝐷𝐸
𝑚(𝐴, 𝐵) can not be used to classify the sample 𝐵. 

But, we can see that 𝐵 belongs to pattern 𝐴2 if we use the dissimilarity measure 𝐷𝑀𝑂(𝐴, 𝐵). 

6. Appliction in Multiple Attribute Decision Making 

In modern decision science, the multiple attribute decision making is an important research and has been 

widely in many fields, such as economy, management, medical and so on. In this section, we will use our 

dissimilarity measure to apply in a multiple attribute decision making. It present in Example 6. 

 

Example 8. This example is developed from the example that presented by Xu (in 2007). This example is to 

evaluate the university faculty for tenure and promotion. There are six faculty candidates (alternatives), 

𝐴𝑖 , (𝑖 = 1,2, … ,6), to be evaluated, the used attributes are  𝐺1: teaching, 𝐺2: research and 𝐺3: service. In which, 

the weights of each attribute 𝐺𝑗 is 𝑤𝑗 , 𝑗 = 1,2,3; ∑ 𝑤𝑗 = 13
𝑗=1  the used weight vector is 𝑤 = (0.55, 0.25,0.2). 

The picture fuzzy decision matrix 𝑅 = (𝑟𝑖𝑗)6×3
, where 𝑟𝑖𝑗 = (𝜇𝑖𝑗 , 𝜂𝑖𝑗 , 𝛾𝑖𝑗), (𝑖 = 1,2, … ,6; 𝑗 = 1,2,3) is shown 

in Table 1. 

We denote the alternatives 𝐴𝑖 , (𝑖 = 1,2, … ,6)  and 𝐴𝑏(𝑗) = (1, 0, 0); 𝑗 = 1, 2, 3) . Then, we have  𝐴𝑏 =
(𝐴𝑏(1), 𝐴𝑏(2), 𝐴𝑏(3)) be the largest picture fuzzy number. 
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Table 1. Picture Fuzzy Decision Matrix R 

 G1 𝐺2 𝐺3 

A1 (0.61, 0.08, 0.11) (0.59, 0.04, 0.26) (0.41, 0.36, 0.08) 

A2 (0.54, 0.45, 0.01) (0.5, 0.15, 0.25) (0.66, 0.12, 0.01) 

A3 (0.72, 0.23, 0.03) (0.53, 0.05, 0.35) (0.5, 0.03, 0.08) 

A4 (0.63, 0.3, 0.06) (0.59, 0.29, 0.08) (0.58, 0.07, 0.16) 

A5 (0.59, 0.3, 0.09) (0.41, 0.57, 0.01) (0.59, 0.19, 0.1) 

A6 (0.73, 0.1, 0.15) (0.54, 0.37, 0.06) (0.46, 0.24, 0.06) 

 

The dissimilarity measure between alternatives 𝐴𝑖 and the possible ideal alternative 𝐴𝑏 is defined as follows: 

𝐷𝑀(𝐴𝑖 , 𝐴𝑏) = ∑ 𝑤𝑗𝐷𝑀(3
𝑗=1 𝑟𝑖𝑗 , 𝐴𝑏(𝑗))                                                                                                           (10) 

where 𝐷𝑀(𝑟𝑖𝑗 , 𝐴𝑏(𝑗)) is the dissimilarity measure of 𝑟𝑖𝑗 and 𝐴𝑏(𝑗), 𝑗 = 1,2,3;  𝑖 = 1,2, … ,6. 

So that, the smaller of the dissimilarity measure is the better alternatives. 

We consider the calculated results according to the measurements in the section 4. 

 

+ Apply the Eq.(10), with the dissimilarity measure 𝐷𝑀𝐻(𝐴, 𝐵) in the Eq.(7) we have:  

𝐷𝑀𝐻(𝐴1, 𝐴𝑏) = 0.23417 

𝐷𝑀𝐻(𝐴2, 𝐴𝑏) = 0.275 

𝐷𝑀𝐻(𝐴3, 𝐴𝑏) = 0.21217 

𝐷𝑀𝐻(𝐴4, 𝐴𝑏) = 0.24217 

𝐷𝑀𝐻(𝐴5, 𝐴𝑏) = 0.29083 

𝐷𝑀𝐻(𝐴6, 𝐴𝑏) = 0.2255 

Here, we have ranking: 

𝐴3 ≻ 𝐴6 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴5, 

where the symbol " ≻ " mean that order relation “superior”. Hence, the most faculty (alternative) is 𝐴3. 

 

+ Apply the Eq.(10), with the dissimilarity measure 𝐷𝑀𝑂(𝐴, 𝐵) in the Eq.(9) we have:  

𝐷𝑀𝑂(𝐴1, 𝐴𝑏) = 0.1627 

𝐷𝑀𝑂(𝐴2, 𝐴𝑏) = 0.19027 

𝐷𝑀𝑂(𝐴3, 𝐴𝑏) = 0.14949
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𝐷𝑀𝑂(𝐴4, 𝐴𝑏) = 0.16072 

𝐷𝑀𝑂(𝐴5, 𝐴𝑏) = 0.19381 

𝐷𝑀𝑂(𝐴6, 𝐴𝑏) = 0.14857 

Here, we have ranking 

𝐴6 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5, 

Hence, the most faculty (alternative) is 𝐴6. 

 

+ Apply the Eq.(10), with the dissimilarity measure 𝐷𝑀𝐿(𝐴, 𝐵) in the Eq.(8) we have: 

𝐷𝑀𝐿(𝐴1, 𝐴𝑏) = 0.21033 

𝐷𝑀𝐿(𝐴2, 𝐴𝑏) = 0.22635 

𝐷𝑀𝐿(𝐴3, 𝐴𝑏) = 0.18529 

𝐷𝑀𝐿(𝐴4, 𝐴𝑏) = 0.19651 

𝐷𝑀𝐿(𝐴5, 𝐴𝑏) = 0.23562 

𝐷𝑀𝐿(𝐴6, 𝐴𝑏) = 0.18512 

Here, we have ranking: 

𝐴6 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5, 

where the symbol " ≻ " mean that order relation “superior”. Hence, the most faculty (alternative) is 𝐴6. 

 

+ Apply the Eq.(10), with the dissimilarity measure 𝐷𝑀𝐶(𝐴, 𝐵) in the Eq.(6) we have:  

𝐷𝑀𝐶(𝐴1, 𝐴𝑏) = 0.22877 

𝐷𝑀𝐶(𝐴2, 𝐴𝑏) = 0.22411 

𝐷𝑀𝐶(𝐴3, 𝐴𝑏) = 0.19316 

𝐷𝑀𝐶(𝐴4, 𝐴𝑏) = 0.20167 

𝐷𝑀𝐶(𝐴5, 𝐴𝑏) = 0.23985 

𝐷𝑀𝐶(𝐴6, 𝐴𝑏) = 0.19934 

Here, we have ranking: 
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𝐴3 ≻ 𝐴6 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴5, 

hence the most faculty (alternative) is 𝐴3. 

 

Example 9. Now, we use the distance measure to rank the alternative base on attribute  in  example 8. 

Table 2. Picture Fuzzy Decision Matrix R 

 G1 𝐺2 𝐺3 

A1 (0.61, 0.08, 0.11) (0.59, 0.04, 0.26) (0.41, 0.36, 0.08) 

A2 (0.54, 0.45, 0.01) (0.5, 0.15, 0.25) (0.66, 0.12, 0.01) 

A3 (0.72, 0.23, 0.03) (0.53, 0.05, 0.35) (0.5, 0.03, 0.08) 

A4 (0.63, 0.3, 0.06) (0.59, 0.29, 0.08) (0.58, 0.07, 0.16) 

A5 (0.59, 0.3, 0.09) (0.41, 0.57, 0.01) (0.59, 0.19, 0.1) 

A6 (0.73, 0.1, 0.15) (0.54, 0.37, 0.06) (0.46, 0.24, 0.06) 

 

The distance measure between alternatives 𝐴𝑖 and the possible ideal alternative 𝐴𝑏 is defined as follows:  

𝐷(𝐴𝑖 , 𝐴𝑏) = ∑ 𝑤𝑗𝐷(3
𝑗=1 𝑟𝑖𝑗 , 𝐴𝑏(𝑗))                                                                                                                  (11) 

where 𝐷(𝑟𝑖𝑗 , 𝐴𝑏(𝑗)) is the distance measure of 𝑟𝑖𝑗 and 𝐴𝑏(𝑗), 𝑗 = 1,2,3;  𝑖 = 1,2, … ,6. 

So that, the smaller of the distance measure is the better alternatives.  

We consider the calculated results according to the measurements in the section 3. 

 

+ Apply the Eq.(11), with the distance measure 𝐷𝐻(𝐴, 𝐵) in the Eq.(2) we have:  

𝐷𝐻(𝐴1, 𝐴𝑏) = 0.23417 

𝐷𝐻(𝐴2, 𝐴𝑏) = 0.275 

𝐷𝐻(𝐴3, 𝐴𝑏) = 0.21217 

𝐷𝐻(𝐴4, 𝐴𝑏) = 0.24217 

𝐷𝐻(𝐴5, 𝐴𝑏) = 0.29083 

𝐷𝐻(𝐴6, 𝐴𝑏) = 0.2255 

Here, we have ranking: 

𝐴3 ≻ 𝐴6 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴5, 

where the symbol " ≻ " mean that order relation “superior”, hence the most faculty (alternative) is 𝐴3. 

 

+ Apply the Eq.(11),  with the dissimilarity measure 𝐷𝐸(𝐴, 𝐵) in the Eq.(3) we have:  
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𝐷𝐸(𝐴1, 𝐴𝑏) = 0.48811 

𝐷𝐸(𝐴2, 𝐴𝑏) = 0.57081 

𝐷𝐸(𝐴3, 𝐴𝑏) = 0.44846 

𝐷𝐸(𝐴4, 𝐴𝑏) = 0.48216 

𝐷𝐸(𝐴5, 𝐴𝑏) = 0.58144 

𝐷𝐸(𝐴6, 𝐴𝑏) = 0.4457 

Here, we have ranking: 

𝐴6 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5, 

Hence, the most faculty (alternative) is 𝐴6. 

 

+ Apply the Eq.(11), with the distance measure 𝐷𝐻
𝑚(𝐴, 𝐵) in the Eq.(4) we have:  

𝐷𝐻
𝑚(𝐴1, 𝐴𝑏) = 0.435 

𝐷𝐻
𝑚(𝐴2, 𝐴𝑏) = 0.446 

𝐷𝐻
𝑚(𝐴3, 𝐴𝑏) = 0.3715 

𝐷𝐻
𝑚(𝐴4, 𝐴𝑏) = 0.39 

𝐷𝐻
𝑚(𝐴5, 𝐴𝑏) = 0.455 

𝐷𝐻
𝑚(𝐴6, 𝐴𝑏) = 0.3715 

Here, we have ranking: 

𝐴3 = 𝐴6 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5, 

Hence, the most faculty (alternative) is 𝐴3, 𝐴6.  

This case to see that the distance measure 𝐷𝐻
𝑚(𝐴, 𝐵) is not well as dissimilarity measures, which we use 

before, be cause It does not know which alternative is better between 𝐴3, 𝐴6.  

7. Conclusion 

In this paper, we introduce the concepts of the difference between PFS-sets, distance measure and 

dissimilarity between picture fuzzy sets. We give some distant measure and dissimilarity measure of picture 

fuzzy sets. Beside, we Illustrate with numerical examples the above measures in decision making. In the future, 

we will study the properties of these measure and applications of them in practical problems. 
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Finally, we applied the similarity measures in multiple attribute decision making. Since, we see that 

dissimilarity is a useful way to deal with realistic problems and can be extended in other application fields. 
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