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Abstract 

Dagum distribution is a statistical distribution used closely for fitting income and wealth distributions. This 

distribution has wide application in fields like reliability theory survival analysis, actuarial sciences, and 

meteorological data. In this article, we obtained Bayes estimators for the shape parameter of Dagum 

distribution using approximation techniques like normal and T-K approximations. Moreover different 

informative priors have been considered and a simulation study and three real data sets have been considered to 

study the efficiency of obtained results. 

 

Index Terms: Dagum distribution, Prior Distribution, Bayesian Statistics Normal approximation, T-K 

approximation. 
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1. Introduction 

Camilo Dagum [6, 7] gave three-parameter type I and four-parameter type II and Type III distributions for 

fitting income and wealth distributions. However, the Dagum type I distribution has received more attention 

because the distribution has monotonically decreasing, upside-down bathtub, bathtub and then upside-down 

bathtub hazard rate for different values of parameters which led several authors to study the distribution in 

different fields Domma et al. [9, 11], Benjamin et al.[4].  Monroy et al.[16] used it for modeling tropospheric 

Ozone levels and Alwan et al. [2] worked with the Dagum distribution for assessing the reliability of an 

electrical system and for describing diameter in teak stands subjected to thinning at different ages. Different 

properties, characteristics and parameter estimation of Dagum distribution were studied by Kleiber and Kotz 

[15], Kleiber [14], Domma et al. [8, 10], Khan [13]. Broderick et al. [5] derived a new class of generalized 

Dagum distribution and studied its applications to income and life time data to illustrate the usefulness of the 

model. Aala Ahmed [1] proposed the estimates and asymptotic distribution of Dagum distribution. Tahir et al.  
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[23] defined a new life time model Weibull-Dagum distribution studied its structural properties and illustrated 

its potentiality by means of simulation study and real life applications.  

The probability density function of Dagum distribution 
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where  and are shape parameters and  is the scale parameter. 

The likelihood function of (1.1) is given as 
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The aim of our present study is to obtain the Bayes estimates of the shape parameter of Type-I Dagum 

distribution using normal approximation and T-K approximation techniques under different informative priors. 

2. Bayesian Approximation Techniques of Posterior Modes 

Bayesian inference provides a rational method for updating beliefs in light of new information. Bayesian 

analysis is based on the premise that all uncertainty should be modeled using probabilities and that statistical 

inference should be logical conclusions based on the laws of probability. It may be noted that posterior 

distribution takes a ratio that involves integration in the denominator and cannot be reduced to closed form. 

Hence the evaluation of the posterior expectation for obtaining the Bayes estimators will be tedious. Thus, we 

propose the use of Bayesian approximation techniques for obtaining Bayes estimates. 

If the posterior distribution  x| is unimodal and roughly symmetric, it is convenient to approximate it by 

a normal distribution centered at the mode, yielding the approximation 
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If the mode,
 
̂  is in the interior parameter space, then  I  is positive; if ̂  is a vector parameter, then  

 I
 
is a matrix. 

Tierney and Kadane [24] gave Laplace method to evaluate )|)(( xhE  as 
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Recently Sultan et al. [19, 20, 21, 22] obtained the Bayes estimates for Topp-Leone Distribution, 

Kumaraswamy distribution, generalized power function distribution, and generalized gamma distribution using 

Bayesian approximation techniques. Naqash et al. [17] proposed a Bayesian analysis of Dagum distribution for 

the complete sample under different loss function and priors. 
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3. Bayesian Normal Approximation for Shape Parameter of Type-I Dagum Distribution 

In this section, the estimates of shape parameter under different priors are obtained using normal 

approximation technique. 

The normal approximations for Type-I Dagum distribution under Mukherjee- Islam Prior
)1( 1)(
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Posterior density of  under the Mukherjee- Islam Prior is 
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The posterior density of  under the gamma prior is 
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from which the posterior distribution can be approximated as 
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Similarly, under inverse levy prior the approximated posterior density of   is as 




























  2

1212 )]1ln(2/[

)2/1(
,

)]1ln(2/[

)2/1(
~)|(






i

n

ii

n

i
ya

n

ya

n
Ny

                                                              (7)



16 Bayesian Normal and T-K Approximations for Shape Parameter of Type-I Dagum Distribution  

4. T-K Approximation for shape parameter of Type-I Dagum Distribution 

This section deals with calculating the Bayesian estimates of Dagum distribution using Laplace 

approximation technique introduced by Tierney and Kadane in 1986s. 

Under Mukherjee- Islam Prior  

)1(ln)1(ln)1()|(ln)(
11







  i

n

i
ybnynh  

From which 

)1ln(

1)(ˆ

1

1




















 i

n

i
y

bnhn
 maximizes )(nh . Since 

2

1

2 2

( 1)( )
0

n bn h 

 

  
 



 

Similarly, )1(ln)1(ln)()|(ln)(ln)(
11








   i

n

i
ybnyhnh  

From which 

)1ln(

)(ˆ

1

1
























 i

n

i
y

bnhn
 maximizes )(nh . Since 0

)()(
2

1

2

2







 



 bnhn  

The maximum of )(hn and )(hn  are given by 

)1(
)1ln(

1
ln)1()ˆ( 1

1

1

1 






















bn

y

bn
bnhn

i

n

i




  

)(
)1ln(

ln)()ˆ( 1

1

1
1 bn

y

bn
bnhn

i

n

i































 respectively. The estimates of variance are given by 

)1(

)]1ln([)(

1

2

1

ˆ
2

2
2

















 
bn

yhn i

n

i










    

)]1ln([

)1(

1

1













 i

n

i
y

bn
 

and 

)(

)]1ln([)(

1

2

1

ˆ
2

2
2

bn

yhn i

n

i


















 










    

)]1ln([

)(

1

1
















 i

n

i
y

bn
 

We have  

)}ˆ()ˆ(exp{)|( 



 hnhnyE  


1

1

1

2/11

1

1

)1ln(

)1(

1





























e

y

bn

bn

bn

i

n

i

bn




                       (8) 

Similarly, we can approximate )|( 2 yE  ; Here 
2)(  h  
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Following the same procedure under gamma prior 
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and  
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Under inverse levy prior, we have  
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and



18 Bayesian Normal and T-K Approximations for Shape Parameter of Type-I Dagum Distribution  

2

12

2

)1ln(2/

)2/3(

2/1

2/3
)|( 






















e

ya

n

n

n
yE

i

n

i

n




  

2

1

12

2

12 )1ln(2/

)2/1(

2/1

2/1

)1ln(2/

)2/3(

2/1

2/3
varThus,















































 









 
e

ya

n

n

n
e

ya

n

n

n

i

n

i

n

i

n

i

n




           (13) 

5. Simulation Study 

For simulation study, three samples of sizes 25, 50 and 100 have been generated from Type I Dagum 

distribution to represent small, medium and large sizes using the R software to see the influence of various 

informative priors on the estimates of the shape parameter β of type I Dagum distribution. In order to estimate 

the variability of the unknown shape parameter two approximation techniques namely Normal approximation 

and T-K approximation have been considered. The values of the hyper parameters have been randomly chosen 

as 0.5, 1.0 and 2.0. Similarly, the values of the known parameters have been also been considered as 0.5, 1.0 

and 2.0. The unknown shape parameter β to be estimated has been fixed at 2.0. In order to observe the 

performance of shape parameter β of Type I Dagum distribution, the experiment has been iterated 5000 times. 

The simulated results obtained have been presented in the tables 1 and 2 as given below with posterior 

variances enclosed in brackets. 

Table 1. Posterior Estimates of Shape Parameter β of Type I Dagum Distribution Using Normal Approximation Technique for Simulated 

Data Sets 

n   
 

Mukherjee Islam prior Gamma Prior Inverse Levy Prior 

b1=0.5 b1=1.0 b1=2.0 
c1=d1=0.

5 
c1=d1=1.0 c1=d1=2.0 a2=0.5 a2=1.0 a2=2.0 

25 

0.5 0.5 
1.8298 

(0.1366) 

1.8672 

(0.1394) 

1.9419 

(0.1450) 

1.7640 

(0.1270) 

1.7374 

(0.1207) 

1.6895 

(0.1097) 

1.7963 

(0.1317) 

1.7640 

(0.1270) 

1.7027 

(0.1183) 

1 1 
1.7743 

(0.1285) 

1.8105 

(0.1311) 

1.8829 

(0.1363) 

1.7123 

(0.1196) 

1.6883 

(0.1140) 

1.6447 

(0.1040) 

1.7428 

(0.1239) 

1.7123 

(0.1196) 

1.6545 

(0.1117) 

2 2 
2.7159 

(0.3010) 

2.7713 

(0.3072) 

2.8822 

(0.3195) 

2.5733 

(0.2702) 

2.4948 

(0.2489) 

2.3591 

(0.2140) 

2.6427 

(0.2850) 

2.5733 

(0.2702) 

2.4449 

(0.2439) 

50 

0.5 0.5 
1.0570 

(0.0225) 

1.0677 

(0.0228) 

1.0891 

(0.0232) 

1.0459 

(0.0220) 

1.0454 

(0.0218) 

1.0444 

(0.0213) 

1.0514 

(0.0223) 

1.0459 

(0.0220) 

1.0349 

(0.0216) 

1 1 
2.2351 

(0.1009) 

2.2577 

(0.1019) 

2.3028 

(0.1039) 

2.1857 

(0.0965) 

2.1601 

(0.0933) 

2.1121 

(0.0874) 

2.2101 

(0.0986) 

2.1857 

(0.0965) 

2.1385 

(0.0923) 

2 2 
3.8345 

(0.2970) 

3.8733 

(0.3000) 

3.9507 

(0.3060) 

3.6915 

(0.2753) 

3.5948 

(0.2584) 

3.4207 

(0.2294) 

3.7617 

(0.2858) 

3.6915 

(0.2753) 

3.5588 

(0.2558) 

100 

0.5 0.5 
2.3898 

(0.0574) 

2.4019 

(0.0576) 

2.4259 

(0.0582) 

2.3615 

(0.0560) 

2.3455 

(0.0550) 

2.3147 

(0.0530) 

2.3756 

(0.0567) 

2.3615 

(0.0560) 

2.3338 

(0.0547) 

1 1 
1.8706 

(0.0351) 

1.8800 

(0.0353) 

1.8988 

(0.0356) 

1.8532 

(0.0345) 

1.8453 

(0.0340) 

1.8300 

(0.0331) 

1.8618 

(0.0348) 

1.8532 

(0.0345) 

1.8361 

(0.0338) 

2 2 
3.8988 

(0.1527) 

3.9184 

(0.1535) 

3.9575 

(0.1550) 

3.8239 

(0.1469 

3.7706 

(0.1421 

3.6699 

(0.1333) 

3.8609 

(0.1498) 

3.8239 

(0.1469) 

3.7518 

(0.1414) 
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Table 2. Posterior Estimates of Shape Parameter β of Type I Dagum Distribution Using T-K approximation Technique for Simulated Data 

Sets 

n     

Mukherjee Islam prior Gamma Prior Inverse Levy Prior 

b1=0.5 b1=1.0 b1=2.0 c1=d1=0.5 c1=d1=1.0 c1=d1=2.0 a2=0.5 a2=1.0 a2=2.0 

25 

0.5 0.5 
2.2035 

(0.1903) 

2.2467 

(0.1940) 

2.3331 

(0.2015) 

2.1122 

(0.1749) 

2.0680 

(0.1644) 

1.9893 

(0.1465) 

2.1569 

(0.1823) 

2.1122 

(0.1749) 

2.0282 

(0.1612) 

1 1 
2.2257 

(0.1942) 

2.2693 

(0.1980) 

2.3566 

(0.2056) 

2.1326 

(0.1783) 

2.0872 

(0.1675) 

2.0064 

(0.1490) 

2.1782 

(0.1860) 

2.1326 

(0.1783) 

2.0471 

(0.1642) 

2 2 
5.9100 

(1.3693) 

6.0259 

(1.3962) 

6.2576 

(1.4499) 

5.2963 

(1.0997) 

4.8922 

(0.9202) 

4.2758 

(0.6769) 

5.5864 

(1.2235) 

5.2963 

(1.0997) 

4.7981 

(0.9025) 

50 

0.5 0.5 
2.4878 

(0.1225) 

2.5125 

(0.1237) 

2.5617 

(0.1261) 

2.4280 

(0.1167) 

2.3945 

(0.1124) 

2.3320 

(0.1045) 

2.4576 

(0.1195) 

2.4280 

(0.1167) 

2.3710 

(0.1113) 

1 1 
2.2955 

(0.1043) 

2.3182 

(0.1053) 

2.3636 

(0.1074) 

2.2445 

(0.0997) 

2.2174 

(0.0964) 

2.1667 

(0.0902) 

2.2697 

(0.1020) 

2.2445 

(0.0997) 

2.1957 

(0.0954) 

2 2 
3.2921 

(0.2145) 

3.3246 

(0.2167) 

3.3898 

(0.2209) 

3.1881 

(0.2012) 

3.1212 

(0.1910) 

2.9989 

(0.1729) 

3.2393 

(0.2077) 

3.1881 

(0.2012) 

3.0906 

(0.1891) 

100 

0.5 0.5 
3.1882 

(0.1011) 

3.2041 

(0.1016) 

3.2358 

(0.1026) 

3.1385 

(0.0980) 

3.1056 

(0.0954) 

3.0428 

(0.0907) 

3.1632 

(0.0995) 

3.1385 

(0.0980) 

3.0902 

(0.0950) 

1 1 
1.8967 

(0.0357) 

1.9062 

(0.0359) 

1.9250 

(0.0363) 

1.8790 

(0.0351) 

1.8709 

(0.0346) 

1.8550 

(0.0337) 

1.8878 

(0.0354) 

1.8790 

(0.0351) 

1.8616 

(0.0344) 

2 2 
3.5023 

(0.1220) 

3.5197 

(0.1226) 

3.5545 

(0.1238) 

3.4423 

(0.1179) 

3.4012 

(0.1145) 

3.3229 

(0.1082) 

3.4720 

(0.1199) 

3.4423 

(0.1179) 

3.3843 

(0.1139) 

6. Applications 

For justifying the results obtained in simulation study, three real data sets have been taken into consideration. 

 

Data Set I: The first data set consists of the number of successive failures for the air conditioning system of 

each member in a fleet of 13 Boeing 720 jet airplanes Proschan [18]. The data is given as 

194,413,90,74,55,23,97,50,359,50,130,487,57,102,15,14,10,57,320,261,51,44,9,254,493,33,18,209,41,58,60,48

,56,87,11,102,12,5,14,14,29,37,186,29,104,7,4,72,270,283,7,61,100,61,502,220,120,141,22,603,35,98,54,100,1

1,181,65,49,12,239,14,18,39,3,12,5,32,9,438,43,134,184,20,386,182,71,80,188,230,152,5,36,79,59,33,246,1,79

,3,27,201,84,27,156,21,16,88,130,14,118,44,15,42,106,46,230,26,59,153,104,20,206,5,66,34,29,26,35,5,82,31,

118,326,12,54,36,34,18,25,120,31,22,18,216,139,67,310,3,46,210,57,76,14,111,97,62,39,30,7,44,11,63,23,22,2

3,14,18,13,34,16,18,130,90,163,208,1,24,70,16,101,52,208,95,62,11,191,14,71. 

Data Set II: The second data were first analyzed by Feigl and Zelen[12]. The data represent the survival times, 

in weeks, of 33 patients suffering from Acute Myelogenous Leukemia. The data are: 65,156, 100,134, 16, 108, 

121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43 

Data Set III: The third real data set is a subset of the data reported by Bekker et al. [3], which corresponds to 

the survival times (in years) of a group of patients given chemotherapy treatment alone. The data consisting of 

survival times (in years) for 46 patients are: 0.047,0.115, 0.121, 0.132, 0.164, 0.197,0.203, 0.260, 0.282, 0.296, 

0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641,0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 

1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178,2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 

3.978, 4.003, 4.033. 
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Table 3. Posterior Estimates of Shape Parameter β of Type I Dagum Distribution using Normal Approximation Technique for three Real 

Data Sets 

 

 

     

Mukherjee Islam prior Gamma Prior Inverse Levy Prior 

b1=0.5 b1=1.0 b1=2.0 c1=d1=0.5 c1=d1=1.0 c1=d1=2.0 a2=0.5 a2=1.0 a2=2.0 

Data 

Set I 
0.5 0.5 

12.0145 

(0.7698) 

12.0465 

(0.7719) 

12.1106 

(0.7760) 

11.6415 

(0.7228) 

11.3211 

(0.6817) 

10.7348 

(0.6097) 

11.8250 

(0.7457) 

11.6415 

(0.7228) 

11.2910 

(0.6799) 

1 1 
22.3486 

(2.6637) 

22.4081 

(2.6708) 

22.5273 

(2.6850) 

21.0916 

(2.3725) 

20.0217 

(2.1322) 

18.1909 

(1.7508) 

21.7019 

(2.5118) 

21.0916 

(2.3725) 

19.9685 

(2.1266) 

2 2 
47.9877 

(12.2817) 

48.1157 

(12.3144) 

48.3716 

(12.3799) 

42.5435 

(9.6530) 

38.3107 

(7.8069) 

31.9946 

(5.4161) 

45.1019  

(10.8490) 

42.5435 

(9.6530) 

38.2088 

(7.7862) 

Data 

Set 

II 

0.5 0.5 
6.8257 

(1.4335) 

6.9307 

(1.4556) 

7.1407 

(1.4997) 

6.1770 

(1.1740) 

5.7277 

(0.9941) 

5.0285 

(0.9941) 

6.4852 

(1.2941) 

6.1770 

(1.1740) 

5.6410 

(0.9791) 

1 1 
7.2277 

(1.6073) 

7.3389 

(1.6321) 

7.5613 

(1.6815) 

6.5044 

(1.3017) 

6.0037 

(1.0922) 

5.2335 

(0.8055) 

6.8470 

(1.4425) 

6.5044 

(1.3017) 

5.9127 

(1.0757) 

2 2 
8.4080 

(2.1752) 

8.5374 

(2.2087) 

8.7961 

(2.2756) 

7.4450 

(1.7054) 

6.7826 

(1.3940) 

5.7967 

(0.9883) 

7.8972 

(1.9189) 

7.4450 

(1.7054) 

6.6798 

(1.3729) 

 

Data 

Set 

III 

0.5 0.5 
2.0588 

(0.0952) 

2.0819 

(0.0963) 

2.1282 

(0.0984) 

2.0122 

(0.0909) 

1.9898 

(0.0879) 

1.9479 

(0.0824) 

2.0352 

(0.0930) 

2.0122 

(0.0909) 

1.9677 

(0.0870) 

1 1 
1.0394 

(0.0242) 

1.0511 

(0.0245) 

1.0744 

(0.0250) 

1.0274 

(0.0237) 

1.0271 

(0.0234) 

1.0265 

(0.0229) 

1.0334 

(0.0239) 

1.0274 

(0.0237) 

1.0157 

(0.0231) 

2 2 
0.5482 

(0.0067) 

0.5544 

(0.0068) 

0.5667 

(0.0069) 

0.5449 

(0.0066) 

0.5476 

(0.0066) 

0.5531 

(0.0066) 

0.5465 

(0.0067) 

0.5449 

(0.0066) 

0.5415 

(0.0065) 

Table 4. Posterior Estimates of Shape Parameter β of Type I Dagum Distribution using T-K approximation Technique for three Real Data 

Sets 

 

    

Mukherjee Islam prior Gamma Prior Inverse Levy Prior 

b1=0.5 b1=1.0 b1=2.0 c1=d1=0.5 c1=d1=1.0 c1=d1=2.0 a2=0.5 a2=1.0 a2=2.0 

 

Data 

Set I 

 

 

0.5 0.5 
12.0786  

(0.7739)  

12.1106 

(0.7760) 

12.1747 

(0.7801) 

11.7036 

(0.7266) 

11.3813 

(0.6853) 

10.7917 

(0.6129) 

11.8881 

(0.7497) 

11.7036 

(0.7266) 

11.3512 

(0.6835) 

1 1 
22.4678 

(2.6779)  

22.5274 

(2.6850) 

22.6466 

(2.6993) 

21.2041 

(2.3852) 

20.1283 

(2.1436) 

18.2872 

(1.7601) 

21.8177 

(2.5252) 

21.2041 

(2.3852) 

20.0750 

(2.1379) 

2 2 
48.2438 

(12.3472) 

48.3717 

(12.3799) 

48.6277 

(12.4454) 

42.7705 

(9.7045) 

38.5145 

(7.8484) 

32.1639 

(5.4448) 

45.3426 

(10.9068) 

42.7705 

(9.7045) 

38.4126 

(7.8277) 

 

Data 

Set 

II 

0.5 0.5 
7.0363 

(1.4776) 

7.1413 

(1.4997) 

7.3513 

(1.5438) 

6.3676 

(1.2101) 

5.9018 

(1.0242) 

5.1768 

(0.7655) 

6.6853 

(1.3339) 

6.3676 

(1.2101) 

5.8150 

(1.0092) 

1 1 
7.4507 

(1.6568) 

7.5619 

(1.6815) 

7.7842 

(1.7310) 

6.7051 

(1.3418) 

6.1861 

(1.1253) 

5.3878 

(0.8292) 

7.0582 

(1.4869) 

6.7051 

(1.3418) 

6.0951 

(1.1088) 

2 2 
8.6674 

(2.2421) 

8.7967 

(2.2756) 

9.0554 

(2.3425) 

7.6746 

(1.7579) 

6.9887 

(1.4363) 

5.9676 

(1.0173) 

8.1408 

 (1.9780) 

7.6746 

(1.7579) 

6.8859 

(1.4152) 

 

Data 

Set 

III 

0.5 0.5 
2.1051 

(0.0973) 

2.1283 

(0.0984) 

2.1745 

(0.1006) 

2.0575 

(0.0930) 

2.0341 

(0.0899) 

1.9903 

(0.0842) 

2.0811 

(0.0951) 

2.0575 

(0.0930) 

2.0120 

(0.0889) 

1 1 
1.0628 

(0.0248) 

1.0745 

(0.0250) 

1.0978 

(0.0256) 

1.0505 

(0.0242) 

1.0499 

(0.0239) 

1.0488 

(0.0234) 

1.0566 

(0.0245) 

1.0505 

(0.0242) 

1.0385 

(0.0237) 

2 2 
0.5606 

(0.0069) 

0.5667 

(0.0069) 

0.5790 

(0.0071) 

0.5571 

(0.0068) 

0.5598 

(0.0068) 

0.5651 

(0.0067) 

0.5588 

(0.0068) 

0.5571 

(0.0068) 

0.5537 

(0.0066) 
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7. Conclusion 

While comparing the estimates of the posterior variances of the shape parameter β of Type I Dagum 

distribution using the three informative priors under the two approximation techniques, it is clearly evident that 

gamma prior is the best prior for the estimation of shape parameter especially when the value of the hyper 

parameters is taken as 2. This is because it has the minimum value of posterior variance in the simulation study 

which is apparent in the tables 1 and 2. Further, this prior has least value in the three real life data sets as well 

which confirms the efficiency of the Gamma prior as observed in the tables 3 and 4. It can also be noticed that 

the normal approximation technique can be preferred over the T-K approximation technique because of lesser 

posterior variance. Furthermore, the variability of the estimates in the tables 1 and 2 goes on decreasing as the 

sample size increases. 
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