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Abstract 

This study describes the Bayesian approach as an alternative approach for estimating time axes parameters and 

the periodogram (power spectrum) associated with sinusoidal model when the white noise (sigma) is known or 

unknown. The conventional method of estimating the time axes parameters and the periodogram has been via 

the Schuster method that relies solely on Maximum Likelihood Estimation (MLE). The Bayesian alternative 

approach proposed in this work, on the other hand, adopted the Maximum a Posteriori (MAP) via the Markov 

Chain Monte Carlo (MCMC) in order to checkmate the problem of re-parameterization and over- 

parameterization associated with MLE in the conventional practice. The rates of heartbeat variability at exactly 

an hour and two hours after birth of one thousand eight hundred (1800) newly born babies in a state hospital 

were recorded and subjected to both the Bayesian approach and Schuster approach for inferences. The 

periodogram estimates, exactly an hour and two hours of after birth, were estimated to be 0.7395 and 0.7549, 

respectively - and it was deduced that rates of heartbeat (frequency) variability moderated and stabilized the 

pulse among the babies after two hours of birth. In addition, MAP mean estimates of the parameters 

approximately equals to the true mean of estimates when round up to curb the problem of re-parameterization 

and over- parameterization that do affect Schuster method via MLE. 

 

Index Terms: Bayesian, Maximum A Posteriori (MAP), Markov Chain Monte Carlo (MCMC), Maximum 

Likelihood Estimation (MLE), and Periodograms. 
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1. Introduction 

Time series modeling and data analysis are conventionally related to Bayesian data analysis with its general 
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approach to modeling methods and its principles. It is a known, and already established fact that stochastic time 

series models evolve round deterministic (which is attributed to frequency change or Fourier decomposition in 

voice signals, vibrations, Electrocardiogram (ECG) etc.) time series for parameters embedded in sinusoidal 

model to be proper studied and interpreted. The typical and well-known frequency is the periodogram; 

according to [1], periodogram which is otherwise known as classical Fourier Power Spectrum is closely related 

to the Posterior Probability Density Function (PDF) function of a Bayesian setting over the frequency 

parameter of a Sinusoidal model. This implies that a Posterior PDF function ( / , )P U M is needed for a 

given model “M” with it values of parameters " " that best describes the data “U”. 

Nomenclature 

                       Periodogram 

                        Parameter vector or space 

A  & B             Time axes 

y                        Single time series variable 

U                       Set of events with variable of constant time varying variation 

M                     Model 

( )it                   White noise process 

                       Noise (sigma) 

( )f t                    Sinusoidal model 

( )p                    Jeffrey’s prior 

 , / ,P U M   Bayesian periodogram 

 

 

2. Related Work 

Contributions by [2] and [3] cannot be mentioned when it comes to the Singular Spectrum Analysis (SSA) 

approach of time axes via oscillating component of the unknown periodogram and the use of non-parametric 

prior approach on spectral density to established pseudo-posterior distribution for a short-memory Gaussian 

time series under some conditions on the prior for frequency time series model respectively. A well-provided 

method for calculating signaling time of the community model via late signaling cost for the data fusion using 

the Dynamic Transformation Model (DTM) by [4] has been the link between two processes in signaling and 

time axes indexes; the signaling time was estimated based on the data transmission time and processing delay 

based on the two immediate filter levels via designed algorithm. 

[5] gave a clear picture of how spectral time series of multispectral and periodogram recognition schemes in 

the contexts of image acquisition, iris segmentation, texture analysis, and matching and performance evaluation 

while [6] thoroughly dealt with Fourier analysis on graphs with both positive and negative edges; [6] 

investigated the impacts of introducing negative edges and examine patterns in the spectral space of the graphs’ 

adjacency matrix. Their theoretical results [5] and [6] showed that communities in a k-balanced signed graph 

are distinguishable in the spectral space of its signed adjacency matrix even if connections between 

communities are dense with an illustration empirical evaluation on both synthetic data and real life data. [7] 

Also maintained that the Wigner quasi-distribution plays an alternative role in both time-frequency analysis and 

quantum mechanics the white noise instead of the conventional Gaussian distribution been use in both the 
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classical and suggested Bayesian approach. They all maintained the ground of estimating the periodogram and 

time axes parameters via the classical approach. This research gives an insight of estimating the parameters via 

Bayesian approach with or without the prior knowledge of the noise (sigma).   

2.1. Bayesian Analytical Approach in Estimating the Periodogram via the Sinusoidal Model 

Considering a single variable time series with variation (wave) of a single quantity, " "y  with time " "t  in a 

set of events  ,i iU y t , such that the values of the model posterior probabilities ( / )P M U  that ideally 

explains the data needed. 

Ref. [8] propounded a general model for data, ( )if t  to be 

( ) ( )i i iy f t t                                                                                                                                              (1) 

such that the white noise 
2( ) (0, ) , 1, ,it Gaussian i n    L  

Also, [9] specified out a Sinusoidal model to be 

( ) cos( ) sin( )f t A wt B wt                                                                                                                        (2) 

For parameters  , ,A B  ," & "A B  are the time axes while " "  is the periodogram; for a typical 

noise model with zero mean Gaussian referred to Joint Conditional Distribution. 
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For the model to be stationary, then " "i will be replaced by a singular scalar of " "  
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Factoring out the constant that is proportional to the kernel density 

   
2 22

1

/ , , ( )

R n
n

i i
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P U M e where R y f t 
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                                                                      (4) 

So expanding R, 

 2 2 2 2( ) 2 ( ) ( ) 2 ( ) ( )i i i i i i

i i i i i

R y f t y f t y f t Ak B p                                     (5) 
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So, 
2 2 2 2( ) cos ( ) s ( ) 2 cos( )s ( )i i i i i

i i i i

f t A t B in t AB t in t                                           (6) 

But from trigonometry approximation which also coincide with [10] 

When 1i , 
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such that eqn (6) equals 
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The exponentiated term 
22

R

e 

 
 
 

 in eqn (4) equals 

2
2 2( ) ( )

2 2 2 2 222 4 42
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So, to get the Marginalized Posterior Probability Density Function over the frequency  " "  
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For simplicity, Uniform Prior (Improper prior) will be adopted because of its stretches from to   in 

order to be able to integrate the function as it drops to zero as the magnitude of the amplitude increases. 

So,  
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But recall from standard integral 
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Absorbing 
2" "  in the first term in the exponent term into the proportionality constant, gives the posterior 

over " "  to be the BAYESIAN PERIODOGRAM,  
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i.e  , / ,P U M   is the BAYESIAN PERIODOGRAM FOR KNOWN NOISE. 

If  is unknown, then a one of the non-informative priors will be used to multiply eqn (8). So, Jeffrey’s 

prior of 
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Absorbing terms not involving " ( )"W   into proportionality constant 
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Eqn (IX) is the BAYESIAN PERIODOGRAM FOR UNKNOWN NOISE  

3. Experimental Work 

The data used in this research was the readings rate of heartbeats of newly born babies in state owned 

hospital in Lagos state, Nigeria. These rates of heartbeat variability were recorded in two different timeframe 

(hours); rates of heartbeat an hour after birth and rates of heartbeat two hours after birth. The readings recorded 

were for one thousand eight hundred (1800) babies in the second half of 2016.  

Fig.1 (a) and (b) shows the rates of heartbeat variability (the data) in black fitted into the sinusoidal model in 

blues. It was deduced that the impulse rates (signals) among the babies after an hour were widely unclosed 

compared to pulse rates that are more closely after two hours. In other words, the rates are considered to have 

been reduced when taking readings after two hours, which give rise to a more clustered rate in the second 

diagram. 
Fig.2 (a) and (b) shows the Schuster periodogram (Fourier power spectral spectrum) and the Bayesian 

periodograms for both when the white noise (Sigma) is known and unknown after an hour of birth Fig.2 (a) and 

after two hours of birth Fig.2 (b). The periodograms for the unknown standard deviation for both the heartbeat 

frequencies variability exactly an hour and exactly after two hours seem to be more taper peak as other narrow 

bell-shape which suggested an approximate and alternative frequency to other no frills periodograms. 
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(a)                                                             (b) 

Fig.1. (a) The Heartbeat Signals After an Hour; (b) The Heartbeat Signals after an Two Hours 

       
(a)                                                                    (b) 

Fig.2. (a) The Periodogram of an Hour Rate; (b) The Periodogram of Two Hours Rate
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(a)                                                                                     (b) 

Fig.3. (a) Posterior Probability Density Function Sampling after an Hour’ Rate; (b) Posterior Probability Density Function Sampling after 

Two Hours’ Rate 

The rectangular sections of the above fig.3 (a) and (b) are of two sides; the left and the right panels’ columns 

for the captivity for the three parameters (the time axes and the periodograms) , ,i i iA B  for 1,2i  such 

that the left panels showed the iteration of the parameters from the sinusoidal model through Markov Chain 

Monte Carlo (MCMC) log-likelihoods density estimation while the vertical blue and red lines in the right side 

panels for fig.3 (a) and (b) indicated the posterior parameters for the sinusoidal models for the rates after an 

hour and two hours’ heartbeat. That is,    1 1 1, , 0.0000000, 0.7853982, 0.7395200A B  

   2 2 2, , 0.0000000, 0.7853982, 0.7548969A B  
 

Table 1. Posteriors’ Parameter, Priors’ Parameters and Log-likelihoods for the Hours 

An Hour Rates of Heartbeat  

 
True 

Parameter(Posterior) 
Prior Log(Prior) 

1A  0.00000 0.3989 -0.3990 

1B  0.7854 0.2930 -0.5330 

1  0.7395 0.4631 -0.3342 

   -1.2663 

Log-likelihood of the sinusoidal model 

=-3534.019; PosMAP= 22234 

Two Hours Rates of Heartbeat 

 True Parameter(Posterior) Prior Log(Prior) 

2A  0.0000 0.3989 -0.3991 

2B  0.7854 0.2931 -0.5330 

2  0.7549 0.4608 -0.3365 

   -1.268576 

Log-likelihood of the sinusoidal model 

 =-3632.588; PosMAP= 20680 

 

From Table .1 above, it can be deduced that the periodogram 2  (0.7549) exactly after two hours of 

heartbeat rate was greater than of periodogram 1  (0.7395) exactly after two hours of heartbeat rate of the 



 Bayesian Approach: An Alternative to Periodogram and Time Axes Estimation for Known and  31 

Unknown White Noise 

sinusoidal model  alluded and insinuated that the rates of heartbeat (signals) moderates and stabilizes the pulse 

among the babies. Also, the performance of the periodogram extracted from the sinusoidal model can be 

emphasized via the log-likelihood and the Posterior Maximum A Posteriori (PosMAP). According to [11], 

Bayesian models with equal number of parameter(s) can be compared via their log-likelihood and Bayesian 

maximum likelihood e:g PosMAP. The log-likelihood, PosMAP and sum of priors of the sinusoidal model after 

an hour and two hours rate of heartbeats (-3534.019, 22234, -1.2663) and (=-3632.588, 20680, -1.268576) 

respectively confirmed the stability in the rate of heartbeats among babies after two hours of birth, since it has 

already been established by that the model(s) with the most negative or minimum likelihood value. 

Table 2. True means and Maximum a Posteriori Means of the Estimates 

An Hour Rates of Heartbeat 

 
True 

Means 

Maximum A 

Posteriori(MAP) 

mean estimates 

Standrad Error 

of estimates 

1A  0.7452885 0.6910084 2.083333e-06 

1B  0.7432324 0.7528725 2.083333e-06 

1  0.7383294 0.7383849 8.333333e-06 
 

Two Hours Rates of Heartbeat 

 True Means 

Maximum A 

Posteriori(MAP) 

mean estimates 

Standrad 

Error of 

estimates 

2A  0.3855557 0.54666803 2.083333e-06 

2B  0.2614342 0.0158482 2.083333e-06 

2  0.7618441 0.76273958 8.333333e-06 
 

 

Table II. Shows the True mean and MAP mean of estimates  , ,i i iA B  for 1,2i   estimated vie the 

Maximum Likelihood Estimation (MLE) and MCMC log-likelihood density estimation. In collaboration with 

fig.2, the MAP mean estimates are approximately equal to the True mean but not approximately equal to, in 

other not to be affected by over-parameterization and re-parameterization characterized by MLE [12] 

4. Conclusion 

One advantage of the choices of Bayesian inference has been safeguarding against over-fitting by integrating 

over model parameters (that is catered for problem of over-parameterization in one iteration) via MCMC exact 

uses of estimation with respect to sample size unlike the Schuster method that relied on asymptotic theory 

adopted by approximation of estimation, has seen in the values of the Maximum A Posteriori(MAP) mean 

estimates not exceeded the True Mean values because of over-parameterization and re-parameterization 

associated the MLE technique in estimation of parameters via Schuster method. In conclusion, the Bayesian 

approach seems to be clear-cut alternative in estimating the parameters especially the periodogram associated 

with the sinusoidal model when re-parameterization is not an option. 
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APPENDIX A 

A.1. THE PLOT OF RATES OF HEARTBEAT EXACTLY AFTER AN HOUR ONE  
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A.2. THE PLOT OF RATES OF HEARTBEAT EXACTLY AFTER TWO HOURS BIRTH  
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