
I.J. Mathematical Sciences and Computing, 2018, 1, 56-70 
Published Online January 2018 in MECS (http://www.mecs-press.net) 

DOI: 10.5815/ijmsc.2018.01.04 

Available online at http://www.mecs-press.net/ijmsc 

 

A Secure Communication Scheme using Generalized Modified 

Projective Synchronization of Coupled Colpitts Oscillators 

Kammogne Soup Tewa Alain
a*

, Fotsin Hilaire Bertrand
a
 

a Laboratory of Condensed Matter-Electronics and Signal Processing (LAMACET), Department of Physics, 

Faculty of Sciences, University of Dschang, Cameroon. Tel: (+237) 675 52 25 59 

Received: 14 August 2017; Accepted: 16 October 2017; Published: 08 January 2018 

Abstract 

A new scheme for secure information transmission is proposed using the generalized modified projective 

synchronization (GMPS) method. The linear transformation of the modified Colpitts oscillator, first introduced 

in Cristinel and Radu (Low-Power Realizations of Secure Chaotic Communication Schemes. IEEE Asia Pacific 

Conference on Circuits and Systems, 2000) is investigated prior to the more detailed study by Kammogne et al. 

(Journal of chaos. (2014). doi: 10.1155/2014/659647). This circuit is employed to encrypt the information 

signal. In the receiver end, by designing the controllers and the parameter update rule, GMPS between the 

transmitter and receiver systems is achieved and the unknown parameters are estimated simultaneously. Based 

on the Lyapunov stability theory, the controllers and corresponding parameters update rule are constructed to 

achieve generalized modified projective synchronization between the transmitter and receiver system with 

uncertain parameters. The original information signal can be recovered successfully through some simple 

operations by the estimated parameter. The message signal can be finally recovered by the identified parameter 

and the corresponding demodulation method. Numerical simulations are performed to show the validity and 

feasibility of the presented secure communication scheme. 

 

Index Terms: Chaotic system, Linear transformation, Generalized Modified Projective Synchronization 

(GMPS), Secure communication, Parameters estimation. 
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1. Introduction 

The combination of synchronization and unpredictability leads to an interesting application: A secret 

message which is to be sent from a transmitter to a receiver (two identical MCO) is encoded in the chaotic 
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signal which is exchanged between these two partners. Since Pecora and Carroll [1] presented the conception 

of chaotic synchronization for two identical chaotic systems with different initial conditions, many 

synchronization methods have been proposed, such as complete synchronization (CS) [1], generalized 

synchronization [2], phase synchronization [3], impulse synchronization [4], lag synchronization [5], projective 

synchronization and fuzzy approach [6, 7, 8], etc. Amongst all kinds of chaos synchronization, projective 

synchronization, first reported by Mainieri and Rehacek [6], has been especially extensively studied because it 

can obtain faster communication with its proportional feature [9, 10, 11, 12]. 

Since the signal is chaotic, it is normally difficult even impossible to extract any message from it. This signal, 

however, synchronizes the transmitter system with the receiver which can immediately decode the message. 

Master-slave synchronization has many applications in technology such as in secured telecommunication [13-

14]. It is well known that some researches today are most oriented to neural network synchronization [15-16] 

but the master-slave synchronization remains the benchmark of all methods encountered in the literature. So, 

it’s not obvious to implement this scheme, but in fact communication by synchronized chaotic electronic 

circuits was demonstrated in 1993 by Cuomo and Oppenheim [17] and by Parlitz et al. [18]. These pioneering 

papers stimulated intensive research on communication with synchronized chaos which is still ongoing. The 

information signal is recovered through decoding in the synchronized receiver. The variables and the 

parameters of the response system can be the ciphered. We should note that a cryptosystem cannot exist 

without a key. The general hypothesis in telecommunication suppose that the cryptanalyst knows exactly the 

design and functioning of the cryptosystem under study, i.e., he knows every detail about the ciphering 

algorithm, but he does not possess any information about the secret key. This is an evident requirement in 

today’s secure communications systems, usually referred to as Kerckhoffs’ principle [19]. A typical assumption 

made by most chaotic cryptosystems’ designers is that the system’s parameters play the role of the key which is 

not efficient in many secure schemes. One way to handle this drawback is to design the controllers containing 

the key and the corresponding parameters update rule to achieve GMPS between the transmitter and receiver 

systems and estimate the unknown parameters simultaneously. Obviously, it is worthwhile to mention that 

some of these systems (master/receiver) have complex structure and require the knowledge of these parameters 

which may plays an important role in telecommunication. Therefore, parameters estimations remains a 

characteristic for an efficient secure scheme. Besides, it is obvious that practical controllers should have simple 

structures which is not the case of the controllers involving the projective method.  In fact, the projective 

synchronization (PS) has been used in the research on secure communication because of the unpredictability of 

the scaling factor which may be a useful element (the key for example). In addition to our knowledge, in most 

of secure communication schemes [21], the message size is required to be sufficiently small, otherwise it may 

induce a chaotic system to be asymptotically stable or emanative, which may render the failure of recovering 

the emitted signal. So it’s important to investigate how to transmit high amplitude message signals. 

Recently, it has been shown that the modified Colpitts Oscillator (further called MCO) can exhibit 

complicated dynamics with reference to the classical Colpitts oscillator linked to its nonlinearity topology 

which is a great advantage in telecommunication. In general, the security of chaos-based communication 

systems is dependent on the complexity degree of master’s dynamics, carrying signal as well as the encryption 

scheme used [22]. There are only a few studies in the synchronization of the MCO systems [23], though these 

systems are widely encountered in practice, in particular in communication. The experimental results presented 

by Ababai and Marculescu [24] performs much better compared to other implementations in terms of power 

dissipation, but at the present stage, it was be very difficult to estimated or to control the parameters of the 

Transmitter/Receiver. Specifically, motivated by the vulnerability to attacks of certain architectures and the role 

of the MCO in practice, the use of chaotic systems for data scrambling is thoroughly investigated using the 

GMPS. 

In this paper, we will apply the adaptive control to design a secure communication scheme based on 

generalized modified projective synchronization. The message signal is added in the transmitted side. The 

scaling coefficient is taken as the parameter of the system to guarantee communication security. 
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The organization of this paper is as follows. In Section 2 we present the dynamical analysis linked to the 

transformation theory of the MCO. The section 3 is consecrated to the dynamical analysis of the system 

dynamic proposed. Problem formulation is relaxed. In section 4, a secure communication scheme via GMPS of 

the MCO system is proposed. The controllers and the parameter update rule are devised for obtaining the 

desired synchronization and identify the unknown parameter simultaneously. Numerical simulations are given 

to illustrate and validate the proposed communication scheme in section 5. Our conclusions are finally drawn in 

section 6. 

2. Description of the MCO 

The Colpitts circuit is easily modelled, easily realized and scalable in frequency. In 1994, the occurrence of 

chaos was first demonstrated in the Colpitts oscillator by [25]. Actually the chaotic dynamics produced by this 

oscillator is relatively well understood (see an interesting text in Ref. [22]).  

An autonomous MCO chaotic system in Ref. [23] which is described by the following nonlinear differential 

equations: 
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where ,x y  and z  are state variables; and 2 0 11, , , ,a b a b c are systems parameters. 

When
11

0 11 22.251362, 192.3, 0.1064814815, 0.934, 8.518518.10a b b c a      , system (1) exhibits a chaotic 

behaviour. Its attractor is similar to Chen’s attractor, as depicted in Fig. 1. 
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Fig.1. Trajectories and Chaotic Attractors of MCO. 

3. Dynamical Approach of MCO 

3.1. Transformation analysis of MCO 

In order to quantify the parameters inside the exponential term argument, let introduce the coordinates 

change in state and output-space: 
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   32

1 2 3 1, , , ,
axbx

z z z x e e


                                                                                                                                (2) 

Derivatives in the considered space are given by 
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In these new coordinates, the system (1) takes the form 
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with 1 1

1 2 1 3 0 4 0 5 11 0 6 7 6

1
, , , , ,  , ,a bb b c a ba

a
                 . The system (3) present five 

parameters as system (1) which confirms the linearity of transformation. 

3.2. Existence and uniqueness of the solution 

Let’s defined a class of continuous  ( )t  such that 

 0,C T by 
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0,
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System (4) can be written in the following form: 
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Theorem 1. The sufficient condition for existence and uniqueness of the solution of system (6) with initial 

conditions 0(0)z z   in the region J  is 

  2

max 1 2 3 4 6 0 5 7, , 2K T A              
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Proof. The existence and uniqueness of the solution is studied in the region J where  0,J T  and 

  1 2 3 1 2 3( , , ) : max , and z z z z z z A    where A is a positive constant. 

The solution of (6) and (7) is given by 
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From the equivalence of the integral equation (11) and the system (6)-(7), denoting the right hand side of (8) 

by G(z), then 
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After some calculations, it’s obvious that 
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The following consideration can be made if 1K  , then then mapping (6) is a contraction mapping. The 

proof of theorem 1 is complete. 

3.3. Dissipation and existence of attractors 

Preliminary insights concerning the existence of attractive sets that might coexist in the system could be 

gained by evaluating the volume contraction/expansion rate  1V dV d  of the oscillator modelled by (1) at 

any given point 
1 2 3( , , )Tz z z of the space. The following expression can be derived: 
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where 3 4 5 0ln         and 1 2 3( , , )z z z z . 



 A Secure Communication Scheme using Generalized Modified Projective Synchronization of 61 

Coupled Colpitts Oscillators 

Consider the fact that the system (4) is dissipative which is expressed as follows: 
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This condition implies that the solutions of the new system are bounded as  . We may rewrite the 

condition (10) as follows: 
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In fact, an infinitesimal deviation of the initial conditions will eventually result in the divergence of nearby 

starting orbits. After a while, the system initially unstable becomes dissipative and stays unchanged with 

respect to its dynamical variables which strongly justify the synchronization process of MCO in the space 

considered. Fig. 2 and 3 depicts the divergence of the flow (4) and the phase portrait in the new space. 
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Fig.2. Divergence of the Flow of MCO in the New Space 
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Fig.3. Phase Portrait of MCO in the New Space in the Presence of Artificial Pertubation. 
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4. A New Secure Communication Scheme via GMPS of the MCO 

Consider the following driving system 
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m( ) is the plaintext that is modulated into the chaotic driving system. Select the output z1(τ) of the driving 

system (12) as the transmitted signal, then constructs the receiver as follows: 
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where   is the positive constant parameter.  

The overall transmission scheme is presented below on Fig. 4. 

 

 

Fig.4 Block Diagram Illustrating the Proposed Secure Communications Scheme using GMPS 
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Then the derivative of the error system can be described as 
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The controllers and adaptive laws are designed by  
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One advantage of this type of controller is that it can be easily constructed through time varying resistors, 
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appropriate converters. Consequently, 
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The GMPS between master and slave systems will occur by the control law (16) and the following update 

rules for five unknown parameters
1 2 3 4, , ,       and 6  : 

1 1 3 1 1

2 1 2 3 2 2

3 2 2 3 3
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6 2 2 3 6 6
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    

   

    

                                                                                                                     

(18) 

Theorem 2. For given nonzero scaling functions ( )i t  (i=1,2), GFPS between the transmitter (12) and the 

receiver system (13) can be achieved, and all the uncertain parameters of the transmitter can be  estimated under 

the conditions (16) et (18).  

 

Proof. Let define a Lyapunov candidate  

3 5 2
2 2 2

1 1 1

1 1 1
( )  + ( )     

2 2 2
j k k n n

j k n

V e k L 
  

     
                                                                                             

(19)
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where 1 2 and L L are sufficiently large positive constants compared to  . It is clear that the Lyapunov function 

V(e) is a positive definite function. Now, taking the time derivative of equation (19), we then get 

3 5 2

1 1 1

( ) + ( )       j j k k k n n n

j k n

dV
e e k L k

d
  
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                                                                                              (20) 

Using solutions (17) and (18) one obtains: 
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                      (21) 

Since the eigen frequency of the message signal m is much less than the oscillating frequency of the chaotic 

system, in practice we consider 0
dm

dt
 . Then  
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2 2 2
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L e L e

d


 




 
       

  
                                                                                          (22) 

Let 
2

1

(1 )
max 1

2
L

  
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. One then has  
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L e L e
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 



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                                                                                                                   (23) 

Since the Lyapunov function V is a positive definite and its time derivative dV d is negative definite in 

the neighborhood of the zero solution for the system (17), the dynamical system error can converge 

asymptotically to the origin. This complete the proof. 

5. Numerical Simulations 

The plaintext message can bounded or unbounded with an oscillatory frequency less than the frequency of 
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the chaotic system. For our case we choose a square message for two reasons: (1) the square waves when we 

the medium is exclusive, such as our own cables. For example, the USB cable uses near-square waves that are 

more easily (and less costly) associated with the binary 1 and 0. (2) The each frequency propagates differently 

near objects and the ground. Also the antenna designs are frequency dependent. Note that the non-sinusoidal 

waves with base frequency have f multiple harmonics which are additional sine-waves at 2f, 3f, 4f...  

Numerical simulations are given to show the feasibility and effectiveness of the controllers (16), choose the 

scaling factor 1 3 20.001, 0.2     , 1 2(0) 0.012, (0) 0.0024k k  . The fourth-order Runge-Kutta method 

is used to solve the systems with time step size 0.001. Let’s consider the following audio 

message  ( ) 0.0013 sin(1.2 )m sign  . The initial conditions of the drive system and response system 

are 5 7 1
1 2 3(0) 2 10 , (0) 5 10 , (0) 4 10z z z        , 2 2 3

1 2 3(0) 2 10 , (0) 1 10 , (0) 3 10s s s        respectivel

y. The Fig. 5 depicts a chaotic attractor at the output of the transmitted showing that the information signal is 

well hidden and cannot be retrieved by unauthorized agent. Synchronization of the system (12) and (13) is 

presented in Fig. 7. We remark that after a transient period ( 4  ), the errors defined as 
2 2 2
1 2 3( )e e e e     

0  as    implying that all the state variables tend to be synchronized in a proportional. This fact is also 

reported in Fig. 6 which shown the evolution of the adaptive control gains. It’s important to note here the 

amplitude of the gains which are low (kmax=0.65). It point out that the scheme provide a good test in term of 

energy consumption.  We select the following parameters 4 3(0) 10 , 1.34 10p     , using the simple 

mathematical formulas (See parameters expressions of Eqs. 4), we derived the unknown parameters of the 

overall system (1). 
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Fig.5. Attractor to the output of the transmitter. 
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Fig.6. Adaptive gains. (a) k1, (b) k2 
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Fig.7. Synchronization Errors 

 

Fig.8. Estimated Values for Unknown Parameters (a,b,c,d,e,f) 
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Fig.9 shows the secret message communication of an audio message (in blue): the private signal information 

to be hidden and the recovered audio message ˆ ( )m  at the receiver end (in red) which is obtained after a short 

transient behavior. Fig. 10 displays the evolution of the parameter p(τ). From (9) we can derive 

3 1( ) ( ) ( ) 0e p m      as    that is 1 ( )p  can recover the message signal ( )m  . 
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Fig.9. Original message (Red); Received message (Blue) for h1=0.001.  

 

Fig.10. Time Evolution of the Parameter p(τ) for h1=0.001. 

6. Conclusions and Remarks 

In this paper, we have studied the generalized modified projective synchronization of the modified Colpitts 

oscillator. A reliable mathematical transformation is proposed in order to handle all the parameters of the 
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receiver. We remark that the proposed scheme is applicable to various other dynamical systems to efficiently 

estimate unknown parameters which could be arguments of some other nonlinear functions. The knowledge of 

all system parameters by estimation theory presented above is meaningful in practice. By the numerical 

simulation on the MCO in the new space, choosing suitable scale factor and controllers, we can achieve GMPS 

precision in a very short time. This could meet the challenge of many existing chaotic systems. Finally, based 

on this method, a novel secure communication project is designed. Under this structure, the message signal can 

successfully and secretly be transmitted through four main functions, i.e., modulation, chaotic transmitter, 

chaotic receiver and demodulation. Therefore, our secure communication has certain significance in practical 

applications. As a result, our study is of significances both in theory and in application. 
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