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Abstract 

The explosive nature of cholera epidemic over the years in different parts of the world has been a subject of 

interest to scientists in proffering interventions towards controlling its spread. Over the years many models has 

been created by the following people Capaso and Pavari – Fontana (1973), Codeco (2001), Hartley, Tien 

(2009), Mukandivare (2009) etc. In the present study, we modify the Cholera model proposed by Mukandivare 

incorporating three (3) containment options such as vaccination, Therapeutic treatment and water treatment and 

solved the system analytically using Homotopy Perturbation Method. The results shows that with improved use 

of vaccination, therapy and proper sanitation we have a more healthy population. This research is therefore 

recommended to modelers who desire to know how homotopy perturbation methods works. The computations 

were done and further analyzed mathematically using a computer symbolic package MAPLE 13. 

 

Index Terms: Homotopy Perturbation Method, SIR model, Equilibrium, Stability Analysis, Reproduction 

number. 
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1. Introduction 

Cholera is a severe intestinal infection caused by the ingesting contaminated food substances and water with 

v. cholerae bacterium. From the 200 Vibrio Choleraesero groups, only vibrio cholera 01 and 0139 that as the 

primary cause of the cholera disease and having survived the gastric acid barrier of the stomach, it penetrates 

the mucus lining of the intestinal epithelial. It then colonise the small intestine to produce enterotoxin which 

results to watery diarrhoea and if left untreated, results to death in few hours. Recently, the infection dose was 

estimated to be 102 - 103 cells. Cholera is seen in its severe form, by the onset of serious watery diarrhoea 

which leading to severe dehydration and possible death. This etiological agent can remain in faeces without 

losing its infectious ability up to 7-14 days before shedding back to the environment. 

Several mathematical models of cholera transmission dynamics have been formulated, studied and reported 

including Akinwande, N. I., Abubakar, S. (2013)  Akinwande, N.I. (2006), Jiya, M. (2010), Ochoche Jeffrey M. 

A (2013), Benyah, F (2007). P.T. Tian, S. Liao, J. Wang (2010), WHO Weekly Epidemiological Reports from 

2000 – 2013, Yibeltal Negussie Bayleyegn (2009), R.T. Ashleigh, J. Tien, M. Eisenberg, J.D. David, M.Junling, 

N.F. David (2011) ,Jin Wang and Chairat Modnak (2011). Notably among these is Capaso and Pavari – 

Fontana (1973) who pains takingly observed the spread of cholera epidemics in the Mediterranean using a 

deterministic model. In 2001, Codeço proposed a cholera model which explicitly accounts for the 

environmental factor i.e. the v.cholerae concentration in the water supply denoted by B, into a regular SIR 

system. 

Hartley, Morris et al, in extension of Codeco’s work proposed general model which took into consideration 

the different infective states of v.cholerae, consisting of five (5) equations describing the relationships between 

the susceptible, infectious and removed classes, the dynamics of the hyper infective state and lower infective 

states of the population of vibrio cholera assuming the total population N, is constant. In 2009, Joh, Wang et al, 

proposed a modification to the existing cholera model considering the density of the pathogen for the infected 

class in the population taking his bearing from the relationship between the humans, environment and the 

population of the vibrios in water reservoir. Mukandavire (2009), in furtherance of the Codeço Cholera model 

proposed a model to study the cholera outbreak which occurred in Zimbabwe in 2008/2009 incorporating the 

human – to human into the model, by which the basic reproduction number (Ro) was derived, and this work was 

insightful enough to providing containment options measures on controlling cholera outbreak globally. 

The aim of this paper is to solve Cholera epidemiological model using Homotopy Perturbation Method that 

will help us to project forward in our quest to salvage the lives of people within the population under 

consideration. The objective of this study is: To study the mathematical equation for the spread of disease in a 

single host species, To solve the model equation analytically using Homotopy perturbation method, To apply 

the .ghmodel equation to solving the equilibrium and the stability point, To examine the proportion of the 

susceptible, Infected, Recovered and the over a period of time with and without the use of the three (3) 

containment options, To determine the Reproduction Number which will help us estimate the rate of spread 

with time. 

The work employes the use of Homotopy perturbation Method to solve Mukandivare’s Cholera Model 

incorporating three containment options viz: Vaccination, Therapeutic Treatment and Water Sanitation.The 

Homotopy Perturbation Method is an analytical method for solving linear /nonlinear differential equations. 

This series expansion method uses power series which transforms every non-linearities to series of linear 

equations. It uses the idea of the homotopy from topology to create a convergent series solution using a 

homotopy-Maclaurin series transform the nonlinearities in the system of differential equation. When two (2) 

continuous functions moves from one topological space to another and one deforms into another  it is said to be 

homotopic. 
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2. Model Variables and Parameters 

Table 1. Showing the Model Variable 

The variables and parameters of the Mukandivare’s model are defined below:  

 

S(t) = Number of susceptible individuals at time t  

I(t)= Number of infected individuals at time t  

B(t) = Concentration of v.cholerae in water at time t  

R(t) = Recovered individual at time t 

H = Initial human population   

 

Table 2. Showing the Model Parameters 

= Human Birth rate/Recruitment rate 

= Human death rate  

= Rate at which people recover from cholera  

 = Natural death rate of V.Cholerae 

 = Concentration of Vibrio Cholerae in food and water that yield 50% chance of catching cholera 

disease. 

 = The rate of shedding of V.Cholerae by humans through untreated wastes 

 = Rate of injesting V.Cholerae from contaminated sources 

Rate of contacting V.cholerae human contact  

 Death rate due to the disease 

 

 = The incidence which determines the rate of new infection or the chance of catching cholera as 

a result of contact with contaminated food and water. 

The total population is given as H = S + I + R 

 

2.1. Model Formulation 

                                                                                                                    (1) 

                                                                                                            (2) 

                                                                                                                                                   (3) 

                                                                                                                                                   (4) 

2.2. Model Modification 
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We modify the Mukandivare’s Cholera Model by adding the following containment options: 

 

1. Vaccination of the susceptible individuals 

2. Therapeutic Treatment (use of Oral rehydration therapy, Antibodies, electrolyte e.t.c.) 

3. Water Sanitation/Purification 

 

From which we came up with the following assumptions which help further inclusions of these strategies 

into the Codeco Model. 

 

(a) Introducing vaccination to the susceptible at the rate of q so that q(t)S individual per time are removed 

from the susceptible class to the recovered class. 

(b) Applying therapeutic treatment to the infected at the rate of u, so that u(t)I individual per time are 

removed from the infected class and added to the recovered class. 

(c) Water sanitation leading to the death of vibrios  (V.Cholerae) at the rate of z. 

 

Assuming a closed population where H =1, and , for a given period of time. We have, 

The methodology employed in this work is using Homotopy perturbation Method to solve Mukandivare’s 

Cholera Model incorporating three containment options viz: Vaccination, Therapeutic Treatment and Water 

Sanitation. 

The Homotopy Perturbation Method is an analytical method for solving linear /nonlinear differential 

equations. This series expansion method uses power series which transforms every nonlinearities to series of 

linear equations. It uses the idea of the homotopy from topology to create a convergent series solution using a 

homotopy-Maclaurin series transform the nonlinearities in the system of differential equation. When two (2) 

continuous functions moves from one topological space to another and one deforms into another it is said to be 

homotopic. 

3. Model Variables and Parameters 

The variables and parameters of the Mukandivare’s model are defined below: 

 

S(t) = Number of susceptible individuals at time t  

I(t)= Number of infected individuals at time t  

B(t) = Concentration of v.cholerae in water at time t  

R(t) = Recovered individual at time t 

H = Initial human population   

= Human Birth rate/Recruitment rate 

= Human death rate  

= Rate at which people recover from cholera  

 = Natural death rate of V.Cholerae 

 = Concentration of Vibrio Cholerae in food and water that yield 50% chance of catching cholera disease.  

 = The rate of shedding of V.Cholerae by humans through untreated wastes 

 = Rate of injesting V.Cholerae from contaminated sources 

Rate of contacting V.cholerae human contact  

 Death rate due to the disease 

 = The incidence which determines the rate of new infection or the chance of catching cholera as a 

result of contact with contaminated food and water. 
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The total population is given as H = S + I + R 

3.1. Model Formulation 

                        (5) 

                                     (6) 

                                        (7) 

                                        (8) 

3.2. Model Modification 

We modify the Mukandivare’s Cholera Model by adding the following containment options: 

 

1. Vaccination of the susceptible individuals 

2. Therapeutic Treatment (use of Oral rehydration therapy, Antibodies, electrolyte e.t.c.) 

3. Water Sanitation/Purification 

 

From which we came up with the following assumptions which help further inclusions of these strategies 

into the Codeco Model. 

 

(a) Introducing vaccination to the susceptible at the rate of q so that q(t)S individual per time are removed 

from the susceptible class to the recovered class. 

(b) Applying therapeutic treatment to the infected at the rate of u, so that u(t)I individual per time are 

removed from the infected class and added to the recovered class. 

(c) Water sanitation leading to the death of vibrios (V.Cholerae) at the rate of z. 

 

Assuming a closed population where H =1, and , for a given period of time. We have, 

                         (9) 

                      (10) 

                        (11) 

 

With the initial conditions S(0)=0, I(0) = 0, B(0) = 0 and R(0) = 0. Let  
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S = x0 +px1+ p2x2 +… ………                       (12) 

I =y0 +py1+ p2y2 +… ………..                        (13) 

R = z0 +pz1+ p2z2 +… ………..                        (14) 

B = q0 +pq1+ p2q2 +… ………..                        (15) 

Applying Homotopy perturbation to (a) we have  

S = x0 +px1+ p2x2 + p3x3+…………..                       (16) 

So that, 

= x0  +px1 + p2x2  + p3x3 +….. ………..                     (17) 

Applying Homotopy perturbation to (a) and multiplying each contributory rate with p 

………..                     (18) 

(1 ̶  p)  + p[ ] ………..                                 (19) 

Substituting S and   below 

(1 ̶  p)(x0  +px1 + p2x2  +…) + p[(x0  +px1 + p2x2  +…) (x0 +px1+ p2x2 +…)( y0 +py1+ p2y2 +…) 

+ (x0 +px1+ p2x2 +…)  ̶ ] = 0………..        (20) 

x0  +px1 + p2x2  ̶  px0  ̶  p2x1  ̶  p3x2 + px0  + p2x1 + p3x2 +p  (x0 y0 +p x0 y1 + p2 x0 y2 + 

px1 y0 +p2 x1 y1 + p3 x1 y2 + p2 x2 y0 + p3 x2 y1 + p4 x2 y2 +….) ( p x0 + p2 x1 + p3 x2 +…)  = 0 

=  x0  +px1 + p2x2 + βp x0 y0 +βp2 x0 y1 + βp3 x0 y2 + βp2x1 y0 +βp3 x1 y1 + βp4 x1 y2 + βp3 x2 y0 + βp4 x2 y1 

+ βp5 x2 y2  (p x0 + p2 x1 + p3 x2)  = 0………..       (21) 

Collecting the coefficient powers of p we have 

P0: = 0 = x(0) = S0 ………..                       (22) 

P1: x1 + β x0 y0  x0 = 0                     (23) 

 x1 =  (  βx0 y0  x0) 

Integrating both sides we have with respect to t 
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x1= (  βS0 I0  S0)t + C1 ………..                                   (24) 

x1(0) = 0, therefore C1=0 

x1 = (  βS0 I0  S0) ………..                                   (25) 

p2: x2  βx0 y1+ βx1 y0   x1 = 0                      (26) 

x2 =  [β(x0 y1+x1 y0 )  x1]tdt                                  (27) 

Substituting x1 and y1 in the above we have, 

x2 [βx0( x0 + β x0 I0 I0)+ β y0(  βx0 y0 x0 )+ 

(  βx0 y0  x0] tdt       (28) 

x2 [βS0( S0 + β S0 I0 I0)+ β I0(  βI0 y0  S0)+ 

  (  βS0 I0  S0] + C3 ………..                    (29) 

Since x2(0) = 0, therefore C = 0                       (30) 

x2 [βS0( S0 + β S0 I0 I0)+ β I0(  βI0 y0  S0)+ 

  (  βS0 I0  S0] + C3                            (31) 

Therefore, the approximate solution for S(t) 

S(t)= S0 + (  βS0 I0 S0)t [βS0( S0 + β S0 I0 I0)+ β I0(  βI0 y0 

 S0)+  (  βS0 I0  S0] + C………..                  (32) 

ForI(t) 

 ………..        (33) 

I = y0 +py1+ p2y2 +… ………..                        (34) 

= y0  +py1 + p2y2 +… ………..                        (35) 

Applying Homotopy perturbation to (b) and multiplying each contributory rate with p 
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                                                                         (36) 

After collecting like terms we have, 

(1 ̶  p)  + p[ ]  ………..                    (37) 

Multiplying each contributory rate with p and substituting I and   below 

(1 ̶  p)(y0  +py1 + p2y2  +…) + p [(y0  +py1 + p2y2  +…)  (x0 +px1+ p2x2 +…) - (x0 +px1+ p2x2 

+…)( y0 +py1+ p2y2 +…) + (y0 +py1+ p2y2 +…)] = 0  ………..                               (38) 

Expanding further we have,  

y0  +py1 + p2y2  ̶  py0  ̶  p2y1  ̶  p3y2 + py0  + p2y1 + p3y2 -  (px0 +p2x1+ p3x2 +…)- (px0 y0 +p2 

x0 y1 + p3 x0 y2 + p2x1 y0 +p3 x1 y1 + p4 x1 y2 + p3 x2 y0 + p4 x2 y1 + p5 x2 y2 +….)+ (py0 

+p2y1+ p3y2 +…) = 0 ………..           (39) 

Expanding further we have, 

y0  +py1 + p2y2  ̶  py0  ̶  p2y1  ̶  p3y2 + py0  + p2y1 + p3y2 -  (px0 +p2x1+ p3x2 +…)- (px0 y0 +p2 

x0 y1 + p3 x0 y2 + p2x1 y0 +p3 x1 y1 + p4 x1 y2 + p3 x2 y0 + p4 x2 y1 + p5 x2 y2 +….)+ (py0 

+p2y1+ p3y2 +…) = 0 ………..          (40) 

Applying cancellation to the positive and negative power of p we have, 

z0  +pz1 + p2z2 ̶  (py0 +p2y1+ p3y2 +…)+ (pz0 +p2z1+ p3z2 +…) = 0 ………                 (41) 

Collecting the powers of p 

P0:  = 0 = z(0) = B0 ………..                                    (42) 

P1: ̶  y0 z0 = 0 ………..                                    (43) 

  = y0 ̶  z0] dt                                    (44) 

= y0 ̶  z0]t + C1                               (45) 

Since z1(0) = 0, therefore C1 = 0                       (46) 

= I0 ̶  B0]t ………..                                    (47) 

P2: ̶  y1 z1 = 0 ………..                                    (48) 
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 = y1 ̶  z1]tdt                                   (49) 

Substituting x1 and z1 in the above we have, 

= x0 + x0 ̶  y0) ̶  y0  ̶  z0]tdt                               (50) 

= S0 + S0I0 ̶  I0) ̶  I0  ̶  B0] + C2                  (51) 

= 0, so C2 = 0                        (52) 

= S0 + S0I0 ̶  I0) ̶  I0  ̶  B0] ………..     (53) 

For the approximate solution of B(t) we have 

B(t) = B0 + I0  ̶  B0]t +  S0 + S0I0 ̶  I0) ̶  I0  ̶  B0]        (54) 

For R(t),  

 ………..                      (55) 

R = q0 +pq1+ p2q2 +… ………..                                     (56) 

= q0  +pq1 + p2q2 +… ………..                                     (57) 

………..                     (58) 

After collecting like terms we have, 

(1 ̶  p)  + p[ ]  ………..                     (59) 

Substituting R and  below, we have 

(1 ̶  p)(q0  +pq1 + p2q2 +…) + p[(q0  +pq1 + p2q2 +…) (y0 +py1+ p2y2 +…) +  (q0 +pq1+ 

p2q2 +…) q(x0 +px1+ p2x2 +…)] = 0 ………..                                  (60) 

Expanding this further, 

q0  +pq1 + p2q2 pq0  ̶ p2q1 ̶  p3q2  + pq0 + p2q1 + p3q2  ̶  (py0 +p2y1+ p3y2 +…) + (pq0 

+p2q1+ p3q2 +…)  q(px0 +p2x1+ p3x2 +…) = 0                     (61) 

Applying cancellation we have, 
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q0  +pq1 + p2q2 ̶  (py0 +p2y1+ p3y2 +…) + (pq0 +p2q1+ p3q2 +…)  q(px0 +p2x1+ p3x2 +…) = 

0 ………..                          (62) 

Collecting the coefficient powers of p, we have 

P0:  = 0 = q(0) = R0 ………..                                    (63) 

P1: ̶  y0+ q0  qx0 = 0 ………..                      (64) 

  = y0 q0 +qx0]dt                      (65) 

= y0 q0 + qx0]t + C1                                   (66) 

Where q1(t)= 0 therefore C1= 0 

= I0 R0 + qS0]t ………..                                    (67) 

P2: ̶  y1+ q1  qx1= 0                      (68) 

  = y1 q1 +qx1]dt                      (69) 

  = y1 q1 +qx1]dt                      (70) 

Substituting x1 and y1as previously derived 

 = ( x0 + x0 y0 ̶  y0)   ̶ y0 q0 + qx0]+ q( βS0 I0 

 x0)]tdt                                                   (71) 

=  [ ( S0 + S0I0 ̶ I0)   ̶ I0 R0 + qS0]+ q(  βS0 I0   

S0)] + C3            (72) 

At t=0, q2(0) = C3 = 0, 

=  [ ( S0 + S0I0 ̶ I0)  ̶ I0 R0 + qS0]+ q(  βS0 I0   

S0)] ………..                                                                                (73) 

The approximate system of R(t) is given as follows: 

R(t) = R0 + I0 R0 + qS0]t +  [ ( S0 + S0 I0 ̶  I0)  ̶ I0 R0 + 

qS0]+q(  βS0 I0   S0)] ………..                                   (74) 
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4. Equilibria 

Referring to the previous equations (3.1-3.4) that was solved using homotopy perturbation we say: 

 ………                      (75) 

 ………                      (76) 

 ………                        (77) 

………         (78) 

At the equilibrium state 

                         (79) 

all vanish, equating the rhs of the above equation (3.18) to zero. Then the steady state of the system above 

therefore satisfy the following algebraic system of equation. Assuming a closed population where H = 1. 

We reduce this further by 

 =             (80) 

 = 0 …….                       (81) 

……        (82) 

 = 0………         (83) 

…….                        (84) 

From (82) 

I =  ……..                        (85) 

From (84) 

R = ……..                        (86) 

From (81) 

S =  ……….                      (87) 

From (83) 
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B = ………            (88) 

For 

= ,             (89) 

Substituting it in 

I =  ……..                        (90) 

Hence  

S =   ………                      (91) 

At Disease Free State B =I = 0 where no outbreak occurs, which means the state where the susceptible and 

the infected are assumed to be zero. 

S = ………            (92) 

Analogously, 

R =  ………                        (93) 

On substituting S in R we have 

R = ………                        (94) 

Therefore the Disease Free Equilibrium is given thus as: 

(S0,I0,R0,B0) = ( ) ………                       (95) 

5. The Stability Analysis 

If we introduce a small fraction of infected people into this population will there be a Disease Free State? 

Recently, it was discovered that, only 10% cases of cholera shows up with vomiting and diarrhea symptoms but 

most often the rate at which the infected sheds Vibrio Cholerae to the environment increases the rate of spread 

bringing about a pandemic situation. Akor (2007).We obtain the determinant of the Jacobian as follows:  

The Jacobian matrix is therefore given by 



 A Mathematical Model for Capturing Cholera Spread and Containment Options 27 

 

2

2

s
-( +q) S 0

( )

B s
( ) 0J S, I,B,R  

( ) ( )

0 ( ) 0

( ) 0

SI
B

I u S
B B

z

q u

 
   



  
    

 

 

 

 
   

 
 

        
 

  
 

  
                                                             (96)

 

The equation above when we apply the values of S, I, B and R derived at the Disease Free State gives the 

following. 

s
-( +q) S 0

sq
0 ( ) 0J( ,0,0, ) 

q q

0 ( ) 0

( ) 0

u S

z

q u


  




   

 
 

 

 
  

 
     
  
 

 
 
                                                                   (97)

 

We define our the above thus: 

1d q)+(  
                                   (98) 

2d )( u 
                     (99) 

3d )( z
                                    (100) 

4d )( u
                      (101) 

6. Reproduction Number (R0) 

Reproduction Number as defined by Fraser et al (2011), is the number of secondary infections generated by a 

primary infection in susceptible class of the population. This parameter is used in determining the likeliness of 

an infectious disease spreading through a given population or becoming extinct after some time in a population 

also known as R0 Number. From this, we have some basic assumptions about R0 number:  If R0<1 the infection 

will die out in the long run. If R0>1 the infection will spread in the population.From the above Jacobian Matrix 

we have that  

s
- S 0

1

s
0 0

2

0 0
3

0
4

J

d

S d

d

q d























 
 
 
 
 
 
 
                                                                                                                            (102) 

To evaluate this further, using the Van Den Driessche and Watmough Method the associated next generation 
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matrices. Therefore we adopt the later as follows. The Reproduction Number (R0) is the spectral radius of the 

next generation matrix derived from the infected classes i.e. R0 = (K).   = spectral radius and K is the next 

generation matrix given as K = FV−1 

F =                                                   (103) 

V = =                                                 (104) 

We see that F is derived from the Infected Classes (I and B) and V from the transition term i.e. the remaining 

term after the evaluating F from the infected classes.Therefore we find V-1 (transposing V and multiplying by 

the adjoint matrix) 

V-1 = = =                                 (105) 

FV−1 = =                                  (106) 

Therefore, we determine the spectral radius we consider the determinant of [K ̶  λI] = 0 and the largest Eigen 

value is the spectral radius. 

 = 0                                   (107) 

 = 0                                    (108) 

                                    (109) 

                       (110) 

                                    (111) 

Thus since the largest of the Eigen value after is the Spectral radius, 

                       (112) 

Since the largest of the eigen value is   then the Effective Reproduction Number (R0) is . We further 

justify stability at the Disease Free State by saying the Reproduction Number, R0<1. 

Therefore considering the Jacobian previously derived we have 
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Therefore, we use Row operations to transform all the values below the diagonal matrix to zero. 
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New R4,2 = Old R4,2                             (123) 

=  =                      (124) 

New R4,3 = Old R4,3                             (125) 

                = =                        (126) 

Updating the results of the new entries in a Jacobian Matrix 
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Updating the latest entries we have 
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New R4,3 = Old R4,3  

=                (136) 

After cancellation it reduces to: 
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=  

Updating the new entries and taking the characteristic matrix IA  =0 
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Where R0< 1                       (145) 

Hence since the Reproduction Number R0< 1 Disease Free Equilibrium is locally stable. 

7. Results 

 

Fig.1. Phase Portrait of the System (3.3) with Respect to Time without Applying Containment Parameters. S=60, I=25, B=20, R=15 
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Table 3. Showing the Population Dynamics When No Containment Parameter is used: For S=60, I=25 and B=20 

Time S(t) I(t) B(t) 

0 60.00000000 25.00000000 20.0000000 

1 57.98644418 23.72491183 20.1404500 

2 56.12377670 22.05447300 20.6418000 

3 54.41997580 21.55906425 20.6940500 

4 52.85110680 20.38189200 20.6940500 

5 51.85110980 18.94279563 20.2612500 

6 50.01819903 17.82682570 19.7762000 

7 49.07376458 16.74267900 19.1120500 

8 48.11642720 15.69035680 18.2688000 

9 47.30997818 14.66985783 17.2464500 

10 46.65444175 13.68132500 16.0450000 

Table 4. The Population Dynamics using Different Values of Vaccination Parameter Q, on the Susceptible. 

Time q(0) q(0.01) q(0.02) q(0.04) 

0 60.00000000 60.000000000 60.000000000 60.000000000 

1 57.98644418 57.41093418 56.84042418 55.71840418 

2 56.1237767 55.01973670 53.93969670 51.85160700 

3 54.4199758 52.82790000 50.09781758 48.39961575 

4 52.8511068 50.83494680 48.91478680 45.36242800 

5 51.8511098 49.04085438 46.9147868 42.74010438 

6 50.01819903 47.4456303 44.92527300 40.53246300 

7 49.07376458 46.04927458 43.31878458 39.00104561 

8 48.1164272 44.8517872 41.9711472 38.73968575 

9 47.30997818 43.85316818 40.88235818 36.39854175 

10 46.65444175 43.0534175 40.0524175 35.8504175 

 

 

Fig.2. Graph of the Susceptible S(t) Against to Time for Different Values of Vaccination Parameter q. 
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Table 5. The Population Dynamics using Different Values of Therapeutic Treatment Parameter U on the Infected. 

Time u(0.01) u(0.02) u(0.04) 

0 25.00000000 25.00000000 25.00000000 

1 23.48050183 23.5708273 22.78811683 

2 22.0040073 21.5708273 20.73446730 

3 20.57051643 19.97086143 18.83905143 

4 19.18002920 18.4473092 17.10186920 

5 17.83254563 17.0017063 15.52292063 

6 16.52806570 16.0614457 14.10220570 

7 15.26658943 14.33513443 12.83972443 

8 14.0481168 13.1172368 11.73547680 

9 12.872264783 11.97575283 10.78946283 

10 11.7401825 10.9106825 10.0016825 

 

 

Fig.3. Graph of the Infected, I (t) Against Time for Different Values of Therapeutic Treatment Parameter u.  

Table 6 The Population Dynamics using Different Values of Water Sanitation Parameter Z. 

Time Z z(0.01) z(0.02) z(0.04) 

0 20.00000 20.00000 20.000000 20. 00000000 

1 20.14045 20.38105 20.029450 19.65645000 

2 20.6418 20.17055 19.917800 19.2258000 

3 20.69405 19.90320 19.665050 18.7080500 

4 20.69405 19.90320 18.736230 18.103200 

5 20.26125 19.47375 18.736250 17.411250 

6 19.77620 18.88220 18.060200 16.632200 

7 19.11205 18.12825 17.243050 15.766050 

8 18.26880 17.21280 16.284800 14.812800 

9 17.24645 16.13495 15.185450 13.772450 

10 16.04500 14.89500 13.945000 12.645000 
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Fig.4. Plot of B (t) Against to Time Showing Death Rate of the Vibrios in Water for Different Values Water Treatment. 

Table 7. The Population of the Recovered using Different Values of Vaccination parameter q.  

Time q(0.01) q(0.02) q(0.04) 

0 15.000000 15.000000 15.000000 

1 17.857255 18.23481 19.57192 

2 20.529020 21.63924 23.78768 

3 23.015295 24.61329 27.64728 

4 25.316080 27.35696 31.15072 

5 27.431375 28.87025 34.29800 

6 29.361180 32.15316 37.08912 

7 31.105495 34.20569 39.52408 

8 32.664320 36.02784 41.60288 

9 34.037655 37.61961 43.32552 

10 35.225500 38.98100 44.69200 

 

 

Fig.5. Plot Showing Varied Recovery Rates using Vaccines From 1% to 4% showing that an Improved use of Vaccines on the Susceptible 

Increase the Level of Immunity of the People. 



36 A Mathematical Model for Capturing Cholera Spread and Containment Options  

Table 8. The Population of the Recovered using Different Values of Therapeutic Parameter u. 

Time u(0.01) u(0.02) u(0.04) 

0 15.0000000 15.0000000 15.0000000 

1 17.253495 17.7282900 18.17288 

2 19.313968 20.213160 20.99152 

3 21.181455 22.45261 23.45592 

4 22.85592 24.45261 25.56608 

5 24.337375 26.20725 27.32200 

6 25.625830 27.71844 28.72368 

7 26.721255 28.98210 29.77112 

8 27.623680 30.01056 30.46432 

9 28.334095 30.79149 30.80328 

10 28.849500 31.3290 31.7882 

 

 

Fig.6. Plot of Varied Recovery Rates using Therapy from 1% to 4% Showing an Improved use of Therapy on the Infected Leads to Higher 

Recovery. For S= 60, I=25, B=20, R=15 

Table 9. Showing a Healthy Population Dynamics When All the 3 Interventions Have Been Used 

Time S(t) I(t) B(t) R(t) 

0 60.00000000 25.000000000 20. 00000000 15. 00000000 

1 56.84042193 22.788116830 19.656450000 19.571920000 

2 53.93968770 20.734467300 19.225800000 23.787680000 

3 51.29779733 18.839051430 18.708050000 27.787680000 

4 48.91475080 17.101860514 18.103200000 31.150720000 

5 46.79054813 15.522920630 17.411250000 34.298000000 

6 44.92518930 14.102205700 16.632200000 37.089120000 

7 43.31867433 12.839722443 15.766050000 39.524080000 

8 41.97100320 11.735476800 14.812800000 41.602880000 

9 40.88217593 10.789462830 13.772450000 43.325520000 

10 40.05219250 10.001682500 12.645000000 44.692000000 
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Fig.7. An Immune Human Population after Applying All the Containment Parameters.  

8. Discussion of Results 

Figure 4.1 shows the combined system of the Susceptible S(t), the Infected I(t), the Vibrio Cholerae in water 

and B(t), showing that the susceptible will decrease due as a result vulnerability to the cholera epidemics by 

contaminated water, interaction of the susceptible people without taking health precaution such as personal 

hygiene and water sanitation as they relate with the infected. The Infected decreased to a certain point because 

of the natural death rate of the of the infected and death due to the disease and increased because more people 

from the susceptible class for instance, those who had taken a certain level of the vibrios in their system (106 

cells of v.cholerae) from contaminated sources are getting infected and those who through relationship with the 

infected without taken adequate health precautions are getting infected.   

Figure 4.2 displays the susceptible population, with improved use of vaccination. 

Figure 4.3 displays the infected population dynamics with improved use of therapy  

Figure 4.4 displays the dynamics of the vibrios in water with improved water leading to more death of the 

vibrios. This means that availability of portable water increases the immunity of people to the prevalent 

epidemic.  

Figure 4.5 displays the recovery rates ranging vaccination from 1% – 4% showing that with increase use of 

vaccination on the susceptible class more people will become more immune to the disease. 

Figure 4.6 displays the recovery rates using varied level of therapeutic treatment on the infected from 1% to 

4% revealing showing that with improved therapy more people leave the infected class to the recovered class. 

Figure 4.7 shows a wholesome system with dynamics of the population over time showing decreased level of 

susceptibility, infectivity, decreased population of the vibrios due to water sanitation and increased number of 

immune people in the recovered class which connotes a more healthy population.  

9. Conclusion 

The use of Homotopy Perturbation helped us to derive the approximate solution of each of the four (4) 

compartments considered in this work, which resulted in a quadratic equation which was varied with respect to 

time on a computer symbolic package, Maple and the results were presented graphically and shown with tables. 

The approximate solution derived was used to present the model graphically to enhance better understanding of 
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the dynamics of the interaction between the four classes. It is obvious from our result that the use of 

containment options control to cholera epidemics works better in saving more lives.  

10. Recommendation 

Cholera is known to the third cause of death from infectious disease worldwide after HIV/AIDS and 

respiration infection. So we therefore recommend that this work can be improved upon by researchers in the 

field of mathematics in order to test and validate its effectiveness on other diseases. 
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