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Abstract 

Subgame Perfect Equilibrium (SGPE) is a refined version of Nash equilibrium used in games of sequential 

nature. Computational complexity of classical approaches to compute SGPE grows exponentially with the 

increase in height of the game tree. In this paper, we present a quantum algorithm based on discrete-time 

quantum walk to compute Subgame Perfect Equilibrium (SGPE) in a finite two-player sequential game. A full-

width game tree of average branching factor b and height h has ( )hn O b  nodes in it. The proposed algorithm 

uses ( / )O n b  oracle queries to backtrack to the solution. The resultant speed-up is ( )O b  times better than the 

best known classical approach, Zermelo's algorithm. 

 

Index Terms: Quantum Game Theory, Sequential Games, Subgame Perfect Equilibrium, Quantum Random 
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1. Introduction 

Game theory is the branch of mathematics that deals with strategic decision making in conflict situations. 

The two frequently used representations to describe a game are the normal form and the extensive form. 

Normal form represents the game with the help of a matrix. Extensive form is the dynamic description of a 

game where the sequential actions of players are modeled in detail with a directed tree. Nash equilibrium is a 

solution concept used to predict the outcome of the strategic interaction. To avoid misleading predictions and to 

protect its credibility in certain circumstances, Nash equilibrium has undergone multiple refinements. In 

extensive form games, Nash equilibrium fails to consider the sequential structure, therefore a related solution 

concept called Subgame Perfect Equilibrium for dynamic games was proposed by Reinhard Selten [1]. 

Zermelo's backward induction is the predominant classical solution concept, used to find equilibrium points 

in extensive form games [2]. Even though Zermelo's algorithm is known to solve game tree of size n with O(n) 
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queries, the number of queries is enormous for large game trees. In this paper, we present a quantum algorithm 

that needs O(n/b) queries to find the solution (b is the average branching factor), which considerably reduces 

the execution time. Our algorithm employs quantum walk, an advanced search tool for building quantum 

algorithms. Quantum walks are the quantum analogue of classical random walks. Harnessing the exponential 

speed-up in their hitting time has resulted in the development of many quantum algorithms that outperform 

their classical counterparts [3]. 

The two types of quantum walks, based on their behavior, are discrete-time and continuous-time quantum 

random walks. The proposed algorithm is a combination of backward induction and perturbed discrete-time 

quantum walk. Given game tree is broken down into smallest possible sub-trees starting from the lowest level. 

Resultant sub-trees are then transformed into hypercube search spaces one by one. Application of perturbed 

discrete quantum walk to each sub-tree identifies equilibrium node in that sub-tree. Finally, backward dynamic 

programming approach is applied to compute the subgame perfectness. For simplicity, the algorithm is 

assumed to be applied on a full-width game tree with a uniform branching factor and an even numbered height. 

If the oracular coin is capable of identifying equilibrium points of k players, then our algorithm can solve this 

problem with O(n/b
(k-1)

) queries. 

The paper is organized as follows. We begin section 2 with relevant definitions of game tree, Nash 

equilibrium and subgame perfect equilibrium. Reviewing the classical available techniques to solve the 

problem is done in section 3. Quantum algorithm that identifies subgame perfect equilibrium is described in 

section 4. In section 5, results of applying the algorithm to a two-player game and its generalization is 

discussed in detail. We conclude this paper in section 6 with the limitations of our algorithm and open 

problems in quantum game theory. 

2. Problem Definition 

A detailed dynamic description of a game where the sequential actions of players are modeled in detail with 

a directed tree, is the extensive form representation. Subgame perfect equilibrium (SGPE) is the equilibrium 

refinement of Nash equilibrium in sequential games. The given problem of computing SGPE in a finite two-

player sequential game is formally defined in this section.  

 

Definition 1. A two-player finite sequential game tree is given by a tuple T = ({Xi}i  h , q) where 

 

 h is the height of the game tree. 

 Xi is the set of moves at level i, where odd and even levels are played by player-1 and player-2 

respectively. 

 q: X1  …  Xh  2R  is the outcome function. 

 

A play in the game is a tuple 1( ,... )hx x x . For each play x , the 2-tuple q( x ) describes the payoffs 

obtained by each of the two players in that run of the game. 

 

Definition 2. A strategy for the player playing i
th

 turn is a mapping 

si : X1  …  Xi-1  Xi 

describing what move the player should choose based on what has been  played up to the point i - 1. 

 

Definition 3. A strategy profile is a tuple of strategies (si)i  h. 

A strategy profile determines a play x  as 
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 1 1 ,  ,  i i ix s x x    

and its corresponding outcome u = q( x ). We write qj: X1  …  Xh R  for the payoff of the j
th

 player in q. 

Hence, given a play x , the payoff of player j is given by qj( x ). We also write  1,  ,  j hq s s  for the j
th

 player's 

outcome, determined by the strategy profile  i hi
s  . 

 

Definition 4 (Nash equilibrium). A strategy profile  i hi
s   is in Nash equilibrium if for each player j and 

alternative strategy si
*
 we have 

   *

1 1,  ,  ,  ,  ,  ,  ,  ,  j i h j i hq s s s q s s s    
 

Informally, a strategy profile is in equilibrium if no player has an incentive to unilaterally change his strategy. 

 

Definition 5 (Subgame). In any two-player sequential game ({Xi}i  h , q) a partial play x1, …, xi-1 determines a 

subgame  i k i k h
T = ( X ,q)

 
 with payoff function 

   1 -1,  ,    ,  ,  ,  ,  ,  j i h j i i hq x x q x x x x   
 

for the completion of the play  ,  ,  i hx x .  

 

Definition 6 (Subgame perfect equilibrium). A strategy profile  i hi
s   is in subgame perfect equilibrium if it 

is in Nash equilibrium on any subgame. 

Our problem is informally defined as the identification of such sequential strategy profile in a game tree, i.e., 

the Subgame perfect equilibrium. 

3. Related Work 

In this section, we review related work on Subgame perfectness in game trees. A brute force computation 

requires examining every state in the normal or the matrix form representation of the game. It takes exponential 

time to compute the subgame perfect equilibrium because pruning the search space is possible only in extensive 

form. Since it suffers from combinatorial explosion, generalization of zermelo's algorithm is preferred over 

brute force [4]. It reduces the computational complexity of the problem. 

Zermelo's algorithm is the predominant classical approach used to compute equilibrium in extensive form 

games of complete information [5]. It uses backward dynamic procedure to solve the problem. Selection of 

action xi  Xi at each level i of the game is based on the highest utility value of possible action, which is chosen 

from the lowest level to the highest. Mechanically, it is computed as follows. Consider any non-terminal node 

that comes just before terminal nodes, i.e., after each action branching from this node, the game terminates. 

Common sense of the player who moves at this node will make him choose the best move, the move that gives 

him the highest utility for himself. The sub-tree stemming from this node is deleted after assigning the payoff 

vector associated with current selection to the non-terminal node at hand, so that we have a shorter game, 

where the current non-terminal node is now a terminal node. This procedure is repeated until the root is reached 

[6]. Number of queries required by this algorithm is proportional to the size of the game tree (O(n) = O(b
h
), 

where n is the number of nodes in the game tree, b is its average branching factor and h is its height). 
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Even though backward induction provides an algorithm very much better than the brute force approach, it 

isn't good enough for some games that require sequential decisions. For example, game tree of a reasonable 

chess game comes with b  35 and h  100, backward induction needs 35
100

  10
130

 queries to identify the 

solution, which seems exponential in time [7]. Game tree complexity of well-known strategy games like chess, 

stratego and havannah [8] exceeds the total number of atoms in the universe ( 10
80

). Recent work that 

addressed a similar problem in zero-sum games uses randomized techniques to bring the computational 

complexity down [9]. Game tree search space is reduced by guessing or sampling other player's moves and then 

the conventional approach is applied to obtain the solution. Even though application of random sampling, 

results in a computational complexity that is independent of the size of the game, probability of finding the 

solution depends mainly on the (random) selection of sub-matrices. 

Pioneering works on quantum games prove that quantum strategies are always at least as good as classical 

strategies [10-12]. Using quantum entanglement as a useful tool, backward induction is shown to generate 

equilibrium out of the quantum form of Stackelberg duopoly [13]. Quantum walk, which evidently outperforms 

its existing classical algorithms, is used to design various algorithms for different search spaces [14-17]. Since 

its origin, quantum walk is an effective tool for searching graphs. Hence, we use it for the construction of our 

quantum algorithm in this paper. 

4. Quantum Walk Algorithm 

A linear time quantum algorithm based on discrete quantum walk is given in this section. We begin by 

describing discrete quantum walk model in section 4.1 and quantum walk search in section 4.2. Finally, we 

explain how the quantum walk search can be combined with backward induction to compute the subgame 

perfect equilibrium in section 4.3. 

4.1. Discrete Quantum Walk Model 

Our model, similar to that of the one used by Aaronson and Ambainis [18], is the quantum counterpart of 

classical random walk. The two basic components of this model are a Quantum walker and a Quantum coin. 

The walker moves in a Hilbert space (vertex space - ℋv) of infinite, but countable dimensions D. The outcomes 

of the coin flips, span the Hilbert space (coin space - ℋc) of arbitrary fixed dimension d. More specifically, a 

quantum walk is performed on a Hilbert space ℋ = ℋc  ℋv and state of the system is represented as | = 

|coin, position, where |coin  ℋc and |position  ℋv. 

Evolution of a quantum system in ℋ is described by the unitary operator U = S. C. It is a two-step process: 

application of coin operator C followed by the application of shift operator S. The shift operator is a unitary 

transformation defined on ℋc  ℋv such that S |a, v  |a, w where w is the a
th

 neighbor of v. Coin operator C 

is a unitary transformation on ℋc. This walk is executed t times on an undirected graph G(V,E). 

t

final initial
ψ ψ U                                                                                                                                           (1) 

where |initial = |coin, positioninitial and t is the number of applications of U. Our aim is to identify the marked 

vertex |v target  ℋv. Success of the algorithm depends on the probability of measuring position state, 

|position  ℋv , to observe the vertex |v target . 

4.2. Quantum Walk Search 

The following are some definitions given for the better understanding of the proposed algorithm.  
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Definition 7. Hypercube is a regular graph of degree d with D = 2
d
 vertices. Each vertex is labeled by a d-bit 

binary string. Two nodes x, y in a hypercube are adjacent if and only if they differ by a single bit flip, i.e., their 

hamming distance is one. 

Our algorithm transforms a subtree into a hypercube search space to gain speed-up in the search process. For 

simplicity, the average branching factor b is assumed to be a power of two. So, the Hilbert space associated 

with our quantum walk is ℋ = ℋd
 ⨂ ℋD

, where ℋd
 is the d dimensional Hilbert space associated with the coin 

operator C and ℋD
 is the vertex space. Most frequently used coin operator for discrete quantum walk search is 

the Grover's operator C0. 

 

Definition 8. Grover's operator is defined as C0 = 2 |S
c
S

c
| - I on the d-dimensional Hilbert space ℋd

 with |i 

as its canonical basis, where  

1

0

1 d
c

id
is





                                                                                                                                             (2) 

and I is the unit matrix of order d. 

The Shift operator S moves the walker from its state |a v  to |a| v ⊕e a, where e a is a d-bit binary string 

with zeroes at all positions except a
th

 bit and ⨁ is the bit-wise XOR operator. 

  aa v a v es


 :
                                                                                                                          (3) 

Another representation of Shift operator is 

2 1

1 0

  ,

dd

a v

a a va v es


 

=
                                                                                                                   (4) 

Since, the coin is symmetric in all d directions equally, a perturbation is introduced in the coin operator for 

marked vertices. 

 

Definition 9. Perturbed walk U' = S.C' is a unitary transformation with oracular coin C1 = -Id for the marked 

vertex and Grover's coin C0 for the unmarked vertices, where 

C' = C0  (Id - |v target  v target |) + C1 |v target  v target |                                                                                (5) 

Inhomogeneity in the perturbed walk makes it capable of identifying |v target  at the end of algorithm. 

4.3. Quantum Walk Search 

The quantum walk search algorithm to compute subgame perfect equilibrium in a two-player sequential 

game follows. 
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Algorithm Compute SGPE(T) 

1: begin 

2: label all leaf nodes with alphabets l1, l2, … ln and leave internal nodes unlabeled 

3: for each farthest subtree Ti of tree T do 

4: begin 

5:         index leaf nodes of Ti with d-bit binary strings // let 2
d
 be the smallest power of 2 greater than b

2
 

6:         generate uniform superposition state: 

1 1

0 0

1
0 0

d D

c s c s
i jdD

i j
 

 

    

7: 
        perform tf = (/2)( 2d

) steps of the quantum walk U' = S. C' with the propagator 

,

= , ,s d

d x

d x e d x  

        and the perturbed coin C' = C0  I + (C1 – C0)  |x target  x target | 

8:         measure the final state in |d, x   basis 

9:         replace sub-tree Ti by the root of Ti updated with the label and pay-off of the measured solution 

10: end for 

11: end procedure 

Fig.1. Psuedo-code for Compute SGPE 

Algorithm shown in Fig.1 takes a game tree T of average branching factor b and height h as input and gives a 

leaf node as output which is the subgame perfect equilibrium of T. 

5. Results and Discussion 

We consider a finite two player game in its extensive form for the application of the quantum walk algorithm. 

It is assumed that the branches are uniformly distributed and all the leaf nodes are present at same level. The 

main result of applying the proposed algorithm is given below: 

 

Theorem 1. There exists an algorithm to compute subgame perfect equilibrium in a two-player game tree of 

average branching factor b and height h with O(n/b) queries. 

Proof. We start our proof using the result of Shenvi et.al's work [14]. They proved that tf = (/2)( 2d
) 

steps of the quantum walk 

,

= , ,d

d x

d x e d xs


  U' = S. C' with the propagator and the perturbed coin C' 

= C0  (Id - |v target  v target |) + C1 |v target  v target | on a hypercube of dimension d results in the 

measurement of marked state with probability (1/2) - O(1/d). 
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Conversion of leaf nodes li of each subtree Ti into hypercube search space enables faster search in the subtree. 

By this conversion, each subtree needs (/2)( 2
b ) = (/2)(b) queries to get equilibrium, because a smallest 

subtree of a two-player game contains b
2
 leaf nodes in it. 

At any level, number of nodes present = b
level height

 

Our algorithm starts from the leaf level and the number of subtrees at the leaf level for a duopoly game is b
h-2

. 

Continuing this process at each level, the height gets reduced by two until it reaches the root node T (where h 

= 0). 

Therefore, the total number y of smallest possible sub-trees, is b
0
 + b

2
 + … + b

h-2
, which follows a geometric 

progression of common ratio b
2
. 

Therefore, y = (b
h
 – 1)/(b

2
 – 1) 

Hence, total number of queries applied = no. of subtrees  no. of queries per subtree 
2

–  1

–  1 2

hb
b

b

  
   

  

  

Here, (b
h
 - 1)  n and (b

2
 - 1)  b

2
 

Thus, total number of queries = O(n/b). 

Hence, it is proved that the proposed algorithm is capable of computing subgame perfect equilibrium in a 

two-player game tree with O(n/b) queries.  
In the case of k-player game tree, the total number of smallest possible sub-trees (y), becomes b

0
 + b

k
 + … + 

b
h-k

, if we assume all players take turns in a circular order. Here, y is a geometric progression with common 

rati b
k
. 

Therefore, y = (b
h
 – 1)/(b

k
 – 1). 

If there is an oracular coin which is capable of identifying equilibrium for a k-player subtree, then the 

procedure to calculate required number of queries is similar to the one followed in the proof of above theorem.  

Hence, total number of queries applied –  1

–  1 2

h

k

b
b

b

  
   

  

 

Thus, total number of queries = O(n/b
(k-1)

).  

The problem exhibits an exponential growth in the count of leaf nodes to be queried with the growth in the 

height of the tree. The query complexity is O(b
h
) for a tree with b as branching factor and h as height. The 

above result shows that the performance of our algorithm is O(b) times faster than the best existing algorithm 

for two-player games. It is convenient to proceed to the discussion after examining Table 1 that compares 

classical and quantum query complexities of some real games. 

Table 1. Comparison of Query Complexities in Two Player Sequential Games 

Name of 

the game 
Branching factor (b) Height (h) 

O(bh) = O(n) 

(power of 10) 

O(n/b) 

(power of 10) 

Connect6 46000 30 140 135 

Arimaa 17281 92 390 385 

Amazons (1010) 374 84 216 213 

Hex (1111) 280 40 98 95 

Go (1919) 250 150 360 357 

Chess 35 80 123 121 

 

As it turns out, the application of discrete-time quantum walk with backward induction is responsible for the 

speedup. The perturbed walk with Grover's coin C0 for the marked state accelerates the search in each subtree 

and backward induction procedure preserves correctness of the solution. Since the probability of getting the 

solution at each subtree  1/2, application of perturbed walk a constant number of times enhances the 

probability to nearly one [14]. Distribution of probability over the solution for a game tree with multiple 
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solutions is not examined here. Analyzing the effect of quantum walk in the presence of multiple solution is 

taken for future enhancement of the algorithm. 

6. Conclusions 

In this paper, perturbed discrete time quantum walk is applied on game trees to compute subgame perfect 

equilibrium. Since quantum random walk on hypercube can be applied to any regular graph, the leaf nodes of 

the game tree are transformed into a hypercube structure to compute subgame perfect equilibrium. Similar 

transformations can be made to any search space in order to apply this method successfully. We have shown 

that our algorithm computes the solution in a duopoly game with O(n/b) queries and a k-player game with 

O(n/b
(k-1)

) queries. Thus, the random walk based algorithm is ( )O b  times better than the best known classical 

algorithm. The random walk used here is based on a discrete time walk on a hypercube of dimension d. Leaf 

nodes branching out of same internal nodes are transformed into a hypercube search space where the discrete 

quantum walk identifies the equilibrium node. This process is iterated backwards until the root node is reached. 

Higher branching factors make classical algorithms computationally more complex due to the exponentially 

increasing number of nodes, resulting in combinatorial explosion. We provide a new perspective on designing 

quantum algorithms for such classical games. This work opens up a number of future directions of research. 

Some of the research challenges include identifying solutions if they exist in multiple numbers, improving 

probability of measuring the solution and achieving exponential speedup over the classical algorithms. 
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