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Abstract 

In today’s world, using quantitative methods are very important for financial markets forecast, improvement of 

decisions and investments. In recent years, various time series forecasting methods have been proposed for 

financial markets forecasting. In each case, the accuracy of time series methods fundamental to make decision 

and hence the research for improving the effectiveness of forecasting models have been curried on. In the 

literature, Many different time series methods have been frequency compared together in order to choose the 

most efficient once. In this paper, the performances of four different interval ARIMA-base time series methods 

are evaluated in financial markets forecasting. These methods are including Auto-Regressive Integrated 

Moving Average (ARIMA), Fuzzy Auto-Regressive Integrated Moving Average (FARIMA), Fuzzy Artificial 

Neural Network (FANN) and Hybrid Fuzzy Auto-Regressive Integrated Moving Average (FARIMAH). 

Empirical results of exchange rate forecasting indicate that the fuzzy artificial neural network model is more 

satisfactory than other models. 

 

Index Terms: Artificial Neural Networks (ANNs), Time series forecasting, Auto-Regressive Integrated 

Moving Average (ARIMA), Combined forecast, Exchange Rate. 
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1. Introduction 

In today's world, using quantitative methods is transformed to undeniable exigency for forecasting the 

financial markets, improvement of decisions and investments. Time series forecasting is an important area of 

forecasting in which past observations of the same variable are collected and analyzed to develop a model 

describing the underlying relationship [1]. The model is then used to extrapolate the time series into the future. 

This modelling approach is particularly useful when little knowledge is available on the underlying data 
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generating process or when there is no satisfactory explanatory model that relates the prediction variable to 

other explanatory variables. 

Exchange rate is one of the most effective variables in financial environments and forecasting of it is very 

important for economic decision makers and financial managers. In exchange rate field, numerous forecasting 

investigations have been accomplished [2-5] that number of these investigations represent the mentioned issue 

importance. Nowadays, despite of obtainable numerous financial forecasting models, accurate forecasts of 

exchange rate are not easy task. It is the main reason that researches for obtaining more accurate results have 

not been stopped [6-11]. 

Time series forecasting is an important area of forecasting in which past observations of the same variable 

are collected and analyzed to develop a model describing the underlying relationship. The model is then used to 

extrapolate the time series into the future. This modelling approach is particularly useful when little knowledge 

is available on the underlying data generating process or when there is no satisfactory explanatory model that 

relates the prediction variable to other explanatory variables [12].  

Several models have been suggested for time series forecasting, that are generally divided to linear and 

nonlinear models. One of the most important and widely used linear time series models is the Auto-Regressive 

Integrated Moving Average (ARIMA) model that has enjoyed fruitful applications in forecasting social, 

economic, engineering, foreign exchange, and stock problems. Second class of time series forecasting is 

nonlinear time series models. Artificial neural networks are one of these models that are able to approximate 

various nonlinearities in the data and are flexible computing frameworks for modelling a broad range of 

nonlinear problems [13]. 

One significant advantage of the ANN models over other classes of nonlinear model is that ANNs are 

universal approximators, which can approximate a large class of functions with a high degree of accuracy. No 

prior assumption of the model form is required in the model building process. Instead, the network model is 

largely determined by the characteristics of the data. Commonly used network models include multi-layer 

perceptron (MLP), Radial Basis Function (RBF), Probabilistic Neural Networks (PNNs) and General 

Regression Neural Networks (GRNNs) [14]. Single hidden layer feed-forward network is the most widely used 

model form for time series modelling and forecasting [15]. 

Forecasting accuracy is one of the most important factors to choose the forecasting method, and regardless 

numerous time series forecasting models, the accuracy of time series forecasting is fundamental to many 

decision processes and hence the research for improving and diagnosing the effectiveness of forecasting models 

has been never stopped. Ture has compared the performance of four different time series models to forecast the 

hepatitis A virus infection [16]. Taylor et al have compared the univariate methods for forecasting electricity 

demand [17]. Kima [18] has forecasted the international tourist flows to Australia for comparison between the 

direct and indirect methods. Cho also has compared the three different approaches to tourist arrival forecasting 

[19]. Some other research in this field, consist of Weatherforda [20] to hotel revenue management forecasting, 

Smith [21] to traffic flow forecasting and Sfetsos [22] to mean hourly wind speed time series forecasting.  

In the financial field also is accomplished various research similar above. Alon has compared the 

performance of artificial neural networks and traditional methods to aggregate retail sales forecasting [23]. 

Meade [24] has compared the accuracy of short-term foreign exchange forecasting methods. Leunga et al [25] 

have compared the classification and level estimation models to forecasting the stock indices. Lisi also has 

compared the neural networks and chaotic models for exchange rate prediction [26]. Tsui [27] has compared 

the exchange rate and pricing behaviour between Taiwan and Japan for manufacturing industries. Ghosh [28] 

has compared the effects of exchange rate regime choice in emerging markets with advanced and low-income 

nations for 1999–2011. Wang et al [29] have compared the characterizing information flows among spot, 

deliverable forward and non-deliverable forward exchange rate markets: A cross-country comparison. Razavi et 

al [30] have compared the circuit patency and exchange rates between two different continuous renal 

replacement therapy machines.  

In this paper, is compared the performance of four different interval time series methods for financial 

markets forecasting. The rest of the paper is organized as follows. In the next section, concepts of four time-
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series methods: Auto-Regressive Integrated Moving Average (ARIMA), Fuzzy Auto-Regressive Integrated 

Moving Average (FARIMA), Fuzzy Artificial neural Network (FANN) and Hybrid Fuzzy Auto-Regressive 

Integrated Moving Average (FARIMAH) are reviewed. Empirical result from forecasting the exchange rate (US 

Dollar/Rial) is reported in Section 3. The performance of each model is compared in section 4, and finally the 

conclusions are discussed.  

2. Time Series Forecasting Models 

There are several different approaches to time series modeling. Interval models are special class of 

quantitative forecasting models. These models calculate an interval as optimum forecast of independent 

variable. In this section are reviewed four different interval time series models.  

2.1. The Auto-Regressive Integrated Moving Average (ARIMA) model 

In an autoregressive integrated moving average model, the future value of a variable is assumed to be a linear 

function of several past observations and random errors. That is, the underlying process that generate the time 

series has the form 

0 1 1 1 1... ...t t p t p t t q t qy y y                                                                                           (1) 

where ty  and t  are the actual value and random error at time period t, respectively; ),...,2,1( pii   and 

),...,2,1( qjj  are model parameters. p and q are integers and often referred to as orders of the model. 

Random errors, t , are assumed to be independently and identically distributed with a mean of zero and a 

constant variance of 2 . 

The Box–Jenkins [31] methodology includes three iterative steps of model identification, parameter 

estimation and diagnostic checking. The basic idea of model identification is that if a time series is generated 

from an ARIMA process, it should have some theoretical autocorrelation properties. By matching the empirical 

autocorrelation patterns with the theoretical ones, it is often possible to identify one or several potential models 

for the given time series. Box and Jenkins [31] proposed to use the autocorrelation function (ACF) and the 

partial autocorrelation function (PACF) of the sample data as the basic tools to identify the order of the ARIMA 

model. 

Once a tentative model is specified, estimation of the model parameters is straightforward. The parameters 

are estimated such that an overall measure of errors is minimized. This can be done with a nonlinear 

optimization procedure. The last step of model building is the diagnostic checking of model adequacy. This is 

basically to check if the model assumptions about the errors, t , are satisfied.  

Several diagnostic statistics and plots of the residuals can be used to examine the goodness of fit of the 

tentatively entertained model to the historical data. If the model is not adequate, a new tentative model should 

be identified, which is again followed by the steps of parameter estimation and model verification. Diagnostic 

information may help suggest alternative model(s). This three-step model building process is typically repeated 

several times until a satisfactory model is finally selected. The final selected model can then be used for 

prediction purposes [32]. 

2.2. The Fuzzy Auto-Regressive Integrated Moving Average (FARIMA) model 

The parameter of ARIMA(p, d, q), p ,....,, 21  and q ,....,, 21 are crisp. Instead of using crisp, fuzzy 

parameters, p ~,....,~,~
21 and q

~
,....,

~
,

~
21 , in the form of triangular fuzzy numbers are used in Fuzzy Auto-
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Regressive Integrated Moving Average models [33]. A fuzzy ARIMA(p, d, q) model is described by a fuzzy 

function with a fuzzy parameter: 

    tqtp aBWB 
~~

                                                                                                                                           (2) 

    t
d

t ZBW 1                                                                                                                                          (3) 
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where  tZ are observations,  p ~,....,~,~
21  and q

~
,....,

~
,

~
21 , are fuzzy numbers. Eq. (4) is modified as 
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Fuzzy parameters in the form of triangular fuzzy numbers are used: 
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where  i

~  is the membership function of the fuzzy set that represents parameter ii  ,  is the center of the 

fuzzy number, and ic  is the width or spread around the center of the fuzzy number. Using fuzzy parameters i  

in the form of triangular fuzzy numbers and applying the extension principle, it becomes clear [34] that the 

membership of W in Eq. (5) is given as 
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Simultaneously, tZ  represents the tth observation, and h-level is the threshold value representing the degree 

to which the model should be satisfied by all the data points kyyy ,....,, 21 to a certain h-level. A choice of the h-

level value influences the widths c of the fuzzy parameters: 

  ktforhyty ,...,2,1                                                                                                                  (8) 

The index t refers to the number of nonfuzzy data used for constructing the model. On the other hand, the 

fuzziness S included in the model is defined by 
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where pi  is the autocorrelation coefficient of time lag i-p,  ii  is the partial autocorrelation coefficient of 

time lag i. The weight of ic depends on the relation of time lag i and the present observation, where the p of AR 

(p) is derived by PACF and the q of MA (q) is derived by ACF. Next, the problem of finding the fuzzy ARIMA 

parameters was formulated as a linear programming problem: 

 

 

qpiforc

ktWacWchaaW

ktWacWchaaW

tosubject

acWcSMinimize

i

p

i

qp

pi

t

p

i

qp

pi

iptiitiiptititi

p

i

qp

pi

t

p

i

qp

pi

iptiitiiptititi

p

i

k

t

qp

pi

k

t

iptpiiitiii





































   

   

 





 











 







 



 



,...,2,10

,..,2,11

,..,2,11

.

1 1 1 1

1 1 1 1

1 1 1 1







       (10) 

At last, according to the Ishibuchi and Tanaka [35] opinion, the data around the model's upper bound and 

lower bound is deleted when the fuzzy ARIMA model has outliers with wide spread, and then reformulating 

the fuzzy regression model. 

2.3. The Fuzzy Auto-Regressive Integrated Moving Average (FARIMA) model 

The Forecasted interval of Fuzzy Auto-Regressive Integrated Moving Average models is extended in some 

specific data conditions [36]. According to the Ishibuchi and Tanaka opinion, forecasting interval can be too 

wide, when training data set includes the significant difference or outlying case [35]. In improved model, the 

diagnosis ability of Probabilistic Neural Networks (PNNs) [37] is used in order to recognize the more probably 

spaces in forecasted interval of FARIMA model. Technically, PNN is a classifier and is able to deduce the 

class/group of a given input vector after the training process is completed. PNN is conceptually built on the 

Bayesian method of classification which, given enough data, is capable of classifying a sample with the 

maximum probability of success [38]. The procedure of improved model is as follows: 

Phase I: Fitting the FARIMA model using the available information of observations. The result of phase I is 

as follows:  

,ac,....ac,aWc,...Wc,W
~

qtqpqp1t1p1ptptpp1t11t   
                                    (11) 

where     t
d

t ZBW 1 , i  is the center of the fuzzy number, and ic  is the width or spread around the 

center of the fuzzy number. Obtained interval of FARIMA model is divided to n equal sections to use in 

probabilistic neural network. The subinterval which includes the real value or  n-1 other subintervals is 

considered as target data to neural network. Other information, include result of FARIMA and time series data 

is considered as train data. 
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Phase II: Designing and training one network to recognize the more probably spaces in forecasted interval 

of FARIMA model. The result of this phase is one interval with 1/n width and   confidence coefficient (  is 

the diagnosis ability of PNN in test data). In improved model, it is assumed that desired case only is one of the 

n divided subintervals, but generality, the each k consecutive or nonconsecutive subinterval of n divided 

subinterval can be selected as desired case. 

2.4. The Fuzzy Artificial Neural Network (FANN) model 

A hybrid model is described by a fuzzy function with a fuzzy parameter: 
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where ty  are observations, jjij bbww ,0,0,

~~
,~,~  are fuzzy numbers. Eq. (12) is modified as 
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where )~~
(

~
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where  jiw w ,~  is the membership function of the fuzzy set that represents parameter jiw , . Applying the 

extension principle [39], it becomes clear that the membership of )~(
~

0

,, 




p

i

itjijt ywgX  in Eq. (13) is given 

as follows: 
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With consider triangular fuzzy numbers jtX ,

~
 with membership function as Eq. (15) and triangular fuzzy 

parameters jw  as follow 
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Where 
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Now with consider threshold level h for all membership function value of observations according to Eq. (8) 

the nonlinear programming is given as follow [40]: 
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3. Application of Hybrid Model to Exchange Rate Forecasting 

In order to demonstrate the more appropriateness and more effectiveness model of the four reviewed models, 

consider the following application of forecasting the exchange rate (US Dollar/Iran Rial). The information of 

this investigation consists of 42 daily observations from 5 Nov to 16 Des 2005 (Ref: Centre Bank of Iran 

(CBI)), Fig. 1. 
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Exchange Rate
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Fig. 1. Exchange Rate data from 5 Nov to 16 Des 2005. Ref: Centre Bank of Iran (CBI).
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3.1. The forecasts  

In all models, is used the first 35 observations to formulate the model and the next 7 observations to evaluate 

the performance of the model. 

3.1.1. The Auto-Regressive Integrated Moving Average (ARIMA) model 

Using the Eviews package software, the best-fitted model is ARIMA (2, 1, 0) as follows. The actual value 

and 95% of the confidence interval of ARIMA model are given in Table. 1.  

t t 1 t 2 tZ 9060.5 0.607Z 0.421Z a .                                                                                                       (19) 

Table 1. Actual value and 95% of the confidence interval of ARIMA model. 

Upper bound Lower bound Actual value Date Upper bound Lower bound Actual value Date 

9089 

9090 

9090 

9073 

9074 

9074 

9081 

9082 

9082 

14- Des 

15- Des 

16- Des 

9090 

9091 

9091 

9090 

9074 

9075 

9075 

9074 

9082 

9083 

9083 

9082 

10- Des 

11- Des 

12- Des 

13- Des 

3.1.2. The Fuzzy Auto-Regressive Integrated Moving Average (FARIMA) model 

Using Setting    0 1 2, , 9060.05,0.607,0.421    , the fuzzy parameters obtained using Eq. (10) (with 

h=0) are shown in Eq. (20).  

t t 1 t 2 tZ 9060.5 0.607,0.00028 Z 0.421,0.0 Z a .    
                                                                     (20) 

It is known from the above results that the observation of 15 Nov is located at the upper bound (outlier), so 

the LP constrained equation that is produced by this observation is deleted and renews phase II, let h=0 then we 

get the model that is in Eq. (21). The results are plotted in Fig. 4 and shown in Table 2. 

t t 1 t 2 tZ 9060.5 0.607,0.00023 Z 0.421,0.0 Z a .    
                                                                     (21) 

Table 2. Actual value and forecasted interval of FARIMA model. 

Upper bound Lower bound Actual value Date Upper bound Lower bound Actual value Date 

9084 

9083 

9084 

9080 

9079 

9080 

9081 

9082 

9082 

14- Des 

15- Des 

16- Des 

9085 

9084 

9085 

9085 

9081 

9080 

9081 

9081 

9082 

9083 

9083 

9082 

10- Des 

11- Des 

12- Des 

13- Des 

 

Using the obtained best-fitted model is ARIMA (2, 1, 0) as follow. The actual value and 95% of the 

confidence interval of ARIMA model are given in Table. 2. 

3.1.3. The Improved FARIMA with Probabilistic Neural Networks (FARIMAH) Model
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In improved model after FARIMA model is used Probabilistic Neural Networks. The optimum network is a 

network with five input neuron and one output neuron. The structure of designed network is given in Fig. 2.   
 

 

Fig. 2. The structure of designed network. 

Where 

 

Var1::Forecasted lower bond of time series in time t ( tL ) 

Var2: Forecasted upper bond of time series in time t ( tU ) 

Var3: Forecasted value of time series in time t ( tẐ ) 

Var4: Difference between forecasted value of time series in time t& t-1 ( 1
ˆˆ
 tt ZZ ) 

Var5: Difference between forecasted upper bond (lower bond) of time series in time t& t-1 ( 1 tt UU ) 
 

 

Obtained result of upper and lower bound forecasting with improved model with 100% confidence 

coefficient is given in Table 3.  

Table 3. Actual value and forecasted interval of PNN/FARIMA model. 

Upper bound Lower bound Actual value Date Upper bound Lower bound Actual value Date 

9083 

9082 

9084 

9080 

9079 

9081 

9081 

9082 

9082 

14- Des 

15- Des 

16- Des 

9083 

9084 

9083 

9083 

9080 

9081 

9080 

9080 

9082 

9083 

9083 

9082 

10- Des 

11- Des 

12- Des 

13- Des 

3.1.4. The Fuzzy Artificial Neural Network (FANN) model  

With consider concepts artificial neural networks designing [41] and using MATLAB7 package software, 

the best fitted network is N
(3-3-1)

. The mentioned network is shown in Fig. 3. The weights and biases of 

mentioned network also are given in Table 4. 
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Fig. 3. Structure of the best fitted network, N(3-3-1). 

Table 4. Weights and biases of final network.  

Biases Hidden  Input Weights 
b2 b1

j
 

Weights W1
i,3 W1

i,2 W1
i,1 

-4.0598 
 
 

-2.7097 
2.3013 

28.9588 

3.3696 
6.2053 
-1.1491 

11.9393 
-28.5843 
-27.0192 

1.9112 
-0.31743 
-3.6088 

-3.3947 
-2.3734 
6.8024 

 

Setting    * * *

0 1 2, , 9060.05,0.607,0.421     and    * * * *

3 4 5 6, , , 3.37,6.205, 1.149, 4.060       , the 

fuzzy parameters are obtained using Eq. (18) (with h=0) are shown in Eq. (22). Worthy of mention that in this 

case the triangular fuzzy numbers is considered symmetric, output neuron transfer function is considered linear 

and connection weight between hidden and input layer is considered crisp.  

t t 1 t 2 t ,0

t ,1 t ,2 t ,3

Z 9060.5 0.607,0.00008 Z 0.421,0.0 Z 4.06,0.008 X

3.37,0.0 X 6.205,0.0 X 1.149,0.0 X .

    

  
                                            (22) 

Using the revised hybrid model, the future value of the gold price of the next 5 transaction days is forecasted, 

whose results are shown in Table 5. 

Table 5. Actual value and forecasted interval of Hybrid model. 

Upper 

bound 

Lower 

bound 
Actual value Date 

Upper 

bound 

Lower 

bound 
Actual value Date 

9084 

9084 

9084 

9081 

9081 

9081 

9081 

9082 

9082 

14- Des 

15- Des 

16- Des 

9084 

9084 

9084 

9084 

9081 

9082 

9082 

9081 

9082 

9083 

9083 

9082 

10- Des 

11- Des 

12- Des 

13- Des 

4. Comparison the Performance of Models 

In this section, based on the empirical results of this example, the predictive capabilities of the models are 

compared together. The information of forecasted interval width and related performance of each model is 

given in Table 6. 
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Table 6. He information of forecasted interval width and related performance of each model. 

Model 
Forecasted interval 

width 

Related Performance 

ARIMA FARIMA PNN/FARIMA Fuzzy & ANNs 

ARIMA 16.2 0 - - - 

FARIMA 4.2 74.1% 0 - - 

PNN/FARI

MA 
3.1 80.9% 26.2% 0 - 

Fuzzy & 

ANNs 
2.5 84.6% 40.5% 19.4% 0 

 

According to the above result between mentioned models in exchange rate forecasting, the Auto-Regressive 

Integrated Moving Average model has lowest performance and the hybrid artificial neural networks and fuzzy 

logic model has better performance than other models. 

5. Conclusions  

In today's world, using quantitative methods for forecasting the financial markets, improvement of decisions 

and investments is transformed to undeniable exigency. Nowadays, regardless numerous time series forecasting 

models, the accuracy of time series forecasting is fundamental to many decision processes and hence the 

research for improving and diagnosing the effectiveness of forecasting models has been never stopped. In this 

paper are compared the performance of four different interval time series methods (Auto-Regressive Integrated 

Moving Average (ARIMA), Fuzzy Auto-Regressive Integrated Moving Average (FARIMA), Hybrid ANNs 

and Fuzzy, Improved FARIMA) to exchange rate forecasting. Empirical results of exchange rate forecasting 

indicate that the hybrid ANNs and Fuzzy model is more satisfactory than other models. 
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