
I.J. Modern Education and Computer Science, 2017, 9, 32-41

Published Online September 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.09.04

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 32-41

A Real-time DBMS System for the Immigration

Processing of Large Hajj Crowd

Amir A. Khwaja
King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia

Email: akhwaja@kfu.edu.sa

Received: 20 March 2016; Accepted: 22 August 2017; Published: 08 September 2017

Abstract—Hajj is an important Islamic ritual and one of

the five pillars of Islam. The Hajj event occurs in the

twelfth month of the Islamic lunar calendar and requires

anywhere from two to three millions of Muslims from all

over the world to make pilgrimage for 10-15 days to the

Holy city of Makkah in the Kingdom of Saudi Arabia.

Providing quality Hajj services to such large number of

pilgrims has been a significant challenge for the Saudi

Arabian authorities. Among other services, immigration

processing of a large Hajj pilgrim crowd arriving

simultaneously at various Saudi Arabian ports during the

specific Hajj days has resulted in significant delays at

these ports. Unique and technology based solutions must

be explored to alleviate the various Hajj related pilgrim

service problems and to improve overall quality of these

services. This paper reports experience with the design

and development of a prototype backend DBMS system

to automate the immigration processing of the large Hajj

crowd. A real-time DBMS is considered for meeting the

processing requirements of such a large Hajj pilgrim

crowd arriving simultaneously at various ports. The

purpose of this prototype was to understand the

challenges and the feasibility of implementation of the

backend system using a real-time DBMS.

Index Terms—Large crowd management, Hajj, Real-

time DBMS, Sensei Database.

I. INTRODUCTION

Hajj is one of the five pillars of Islam. It has a set of

acts of worship to be performed in and around the city of

Makkah in the Kingdom of Saudi Arabia at least once in

a lifetime by every Muslim who satisfies certain

conditions. The nature of today's Hajj requires substantial

planning and effort to support and to facilitate these

religious rites. It is one of the world's largest annual

events. More than two million pilgrims from

approximately 200 countries gathered for Hajj in 2015 [1].

The 2030 Vision of Saudi Arabia [2] confirms more than

three million pilgrims for Hajj by the year 2030.

An important challenge facing Saudi Arabian

authorities during this event is to facilitate the

information processing of the large number of pilgrims.

With such large number of pilgrims arriving

simultaneously at multiple airports and shipping ports in

Saudi Arabia for performing Hajj every year, these

embarkation ports need mechanisms for efficient traveler

management and to speed up pilgrims’ information

processing to avoid significant delays at the airports

which usually takes several hours for immigration and

other formalities [3]. These delays consist of several

components and while not all components may be

completely avoidable, an attempt can be made to

eliminate or significantly reduce some of these delay

components. One such delay component is manual

immigration processing of each Hajj traveler at the

airport. Since no specific data is available from the

Ministry of Hajj Web site [4] on the details of these

delays, interviewing some of the immigration personnel

at the Riyadh International Airport, Capital of Saudi

Arabia, revealed that such immigration processing per

person during Hajj season may take anywhere from 35-40

minutes.

Improving the quality of Hajj service is one of the

primary concerns of the local authorities and need special

kind of planning, analysis, design, and technology [5].

Studies have indicated that the quality of services

provided to travelers at King Abdulaziz International

Airport, Jeddah, Saudi Arabia, one of the largest and

most crowded airport during the Hajj season due to its

closeness to the city of Makkah, shows that 50% of

travelers were not satisfied about the services at the

airport and they found that there is a gap between

perceptions and expectation [5]. Different technologies

facilitating management of this kind of large crowd event

should be considered such as using smart cards and radio-

frequency identification (RFID) based identification cards,

high-end client and server machines, and special kind of

backend databases such as real-time or distributed

databases to reduce such delays and to improve quality of

service.

The use of smart card technology may be explored for

making the Hajj immigration process more efficient.

Smart card based Hajj identity cards may be issued to the

pilgrims with all the relevant information stored on the

smart card. Card readers at the airports and shipping

ports can read pilgrim data from the smart card and verify

by accessing and comparing with golden data stored in

the backend Database Management System (DBMS).

These transactions must be performed in a very short time,

perhaps in milliseconds, so as to allow efficient

 A Real-time DBMS System for the Immigration Processing of Large Hajj Crowd 33

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 32-41

processing between when a pilgrim swipes his/her card to

the notification of data confirmation from the backend

DBMS to the immigration authorities at the port. Use of

a smart card based Hajj automatic permit verification will

eliminate manual immigration processing and may

significantly reduce such processing delays.

This paper reports experience with the design and

implementation of a prototype backend DBMS system for

meeting the processing requirements of a large crowd of

Hajj pilgrims arriving simultaneously at various ports.

The purpose of this prototype was to understand the

challenges and the feasibility of implementation of the

backend DBMS using a technology that can satisfy the

project requirements.

The rest of the paper is organized as follows: Section

II presents and evaluates some related research work.

Section III provides high level Hajj backend DBMS

requirements. Section IV evaluates various DBMS

technologies to best meet the Hajj large crowd

management requirements. Section V goes over the

prototype implementation details. Section VI highlights

some issues and challenges during the prototype

implementation and how these issues were addressed.

Section VII concludes the paper.

II. RELATED WORK

This section provides a summary of similar or related

research work in the area of Hajj crowd management.

Mitchell et al. suggest crowd management using an

RFID and mobile device/network based solution [6]. The

main focus of their work is pilgrim detection in a crowd

for the purposes of understanding and controlling

overcrowding, identifying the pilgrims’ location in the

case of emergencies, tracking lost family and friends, and

authorities sending emergency and other alerts to the

pilgrims. Mitchell el al.’s solution requires strategic

placement of RFID readers at key Hajj locations with

defined zones. When a pilgrim comes into that zone, the

reader detects and transmits the location to the central

controller. However, the authors reported several issues

and challenges in using RFID in a large crowd settings

such as limited range of RFID readers, pilgrim self-

blocking RFID signal, incorrect angle of RFID device for

the reader, and the most challenging to determine the

optimal placement of readers in a terrain type of

landscape with mountains and other obstacles. Most of

the work reported by this research is conceptual with

limited prototyping and testing. No apparent solutions to

the issues and challenges reported were presented and

discussed with any technical details. The backend

storage solution suggested is an Oracle database.

However, no details are provided and the reported work

also did not address issues of efficient storage and

accessing of pilgrim data, especially in the case of time

sensitive emergency events, from a relational database

that may present challenges for a database consisting of

millions of records.

Mohandes et al. propose an RFID based wristband

solution for pilgrims [7]. Their primary use cases consist

of crowd control in specific Hajj locations by placing

readers that can monitor flow of crowd and help the

security personnel in controlling the entry of pilgrims in

high risk areas. Some of the other use cases consist of

identification of pilgrims by storing basic personal and

official documentation information especially in case of

deaths and people getting lost, medical conditions stored

on the tag for emergency situations, and detection of

official Hajj permission stored on the tag from a distance

to determine if a group of pilgrims have all permission to

perform Hajj. However, as discussed by Mitchell et al.,

the wristband based RFID is not quite effective due to

pilgrim potentially self-blocking the signals [6]. In

addition, placement of card readers at optimal locations

for crowd control is a significant challenge as well as the

challenge of limitation in signal detection ranges [6] that

may not allow a possible practical solution. A limited

prototype Visual Basic based system is implemented to

demonstrate pilgrim identification use case where the

reader is connected to the PC running the VB based user

interface application via a serial port. The prototype

implementation has only unique identification (UID)

stored on the tag and the pilgrim details are stored in a

local database. Mohandes et al. suggest that the actual

implementation will have all pilgrim information stored

on the tag and not retrieved from a database. However,

there are challenges in determining type and format of

information to be stored on the tag due the limitations in

RFID storage as well as security concerns for various

stored critical information about the pilgrim. The paper

does not address and discuss any of these challenges.

Alsaggaf et al. [8] build their work on earlier proposals

on Hajj management using RFID technology with

security features [7] and extended it by introducing the

fingerprint biometric approach that is unobtrusive and

difficult to steal and forge. Their main focus is

improving and increasing the pilgrim identification

authentication process. They suggest integrating the

fingerprint biometric with the public key infrastructure

(PKI) algorithms to provide a robust identity

authentication. Their solution suggests RFID based

wristbands for pilgrims. However, as was pointed out by

Mitchell et al. [6] that the experimentations demonstrated

that wristband based RFID are not effective as the wearer

of the wristband may block the signals to be detected by

the RFID reader. Alsaggaf et al.’s solution depends on

the use of an enrolled biometric template, which is held

on a locally or centrally formed database with the

authentication of person usually undertaken through one-

to-one comparisons of his/her identity to the stored

templates. There is no indication from the paper about

any real or a prototype system implementation and it

appears from the paper that this is a conceptual model.

The Pilgrim Smart Identification (PSI) system is also

developed using the RFID technology [9]. Similar to the

other systems, the intent of this system is to store

personal pilgrim information and medical records in case

of emergencies, coma, and other critical conditions.

Geabel et al.’s main intent is to overcome language

barriers for pilgrims and Hajj workers by storing the

34 A Real-time DBMS System for the Immigration Processing of Large Hajj Crowd

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 32-41

necessary information in an RFID used in a bracelet worn

by the pilgrims. The system uses two applications one on

a personal computer for the administrators and workers

and the other for the card reader to write tag ID and to

read necessary pilgrim information from the tag. The

system also uses two corresponding DBMS, one for each

corresponding application, based on the SQL (Structured

Query Language) Server 2005 and SQL Compact version.

No security features are used to protect critical pilgrim

information and no communication mechanisms are

included other than the card readers. No discussion is

provided for the performance of the relational backend

DBMS in the case of large Hajj crowd processing.

Based on the related work review above, the bulk of

the Hajj research is related to large crowd management

which consists of using RFID based technology for

monitoring, controlling, and reporting large crowds.

However, as can be seen from the above related work

review, this task is quite challenging as there are several

factors related to the logistics, physical limitations, and

the current RFID technology limitations that may

severely impede the practical application and deployment

of these solutions. As such, most of the above research is

conceptual solutions with none to minimal actual

implementation. Moreover, none of the above work has

addressed the backend DBMS processing challenges for

such large crowds. The reported research work in this

paper, in contrast, is suggesting smart card based

automated point solutions for various pilgrim related use

cases. These point solutions are practical from both

physical and technology perspective as each of these

solution requires the smart card to be in close vicinity of

the card reader such as at airport immigration. The

reported work in this paper addresses a critical area of

backend data processing for such large crowds.

III. HAJJ BACKEND SYSTEM REQUIREMENTS

The pilgrims arrive to various airports terminals and

shipping ports and they have to complete immigration

process at each specific terminal. The pilgrims are

expected to either pass through a scanning portal or are

expected to wave their smart travelers’ card in front of a

contactless card reader. The card reader scans the

relevant data for immigration processing, forms specific

data packets, and provides the data to an application

running on a host machine. The scanned traveler

information from the smart card is then expected to be

verified with the golden information stored in the

immigration backend database. In order to process large

number of pilgrims, the enquiry must happen within a

predetermined time limit. The host application forms a

DBMS query, sets timing constraint, and submits the

query to the backend DBMS that contains the golden data

for all pilgrims. If the pilgrim data is found, a beep is

sounded at the terminal and a success notification is

displayed on the host machine for the immigration officer.

If the pilgrim data is not found, does not match, or the

timing violation occurs, an exception handler is triggered.

The exception handler will send a notification to the

immigration officer to either have the pilgrim rescan the

card or to perform the immigration process manually.

Fig. 1 shows the Hajj system flow.

Some of the key requirements identified for the Hajj

Traveler Information System are summarized as follows:

 Definition of specific data format after scanning

pilgrim data from smart card and feeding it to the

Traveler Information System application which

then processes this data, forms a search query, and

sends the query to the backend DBMS for

verification of pilgrim data;

 Retrieval of pilgrim information from the DBMS

for verification within a specified time limit (in

milliseconds) under large data conditions which is

expected to be anywhere from two to three millions;

 Definition and handling of all exceptional

conditions:

o Pilgrim is not found

o Some or all pilgrim data does not match

o Data is not retrieved in specified time limit

 Normal and exceptional conditions notification

modes for immigration officials

o Use some hardware mechanism such as

different beeps for both passing and failing

cases (will be simulated in the proposed project

by printing messages on the screen).

 A Real-time DBMS System for the Immigration Processing of Large Hajj Crowd 35

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 32-41

Fig. 1. Hajj Immigration Process Flow.

IV. DBMS TECHNOLOGIES FOR HAJJ SYSTEM

Multiple database technologies may be considered to

process pilgrims’ immigration information in a timely

manner and to avoid any processing delays. Relational

database may not be the ideal choice for such applications

[10]. Relational DBMS are typically designed for storing

transactional data and are optimized for analyzing

complex relationships between data [10]. Relational

databases can focus on these relationships because the

data itself is updated relatively infrequently and does not

require guarantying timeliness for each transaction.

Real-time Database Management System (RTDBMS)

is a database system in which transactions have explicit

timing constraints. RTDBMS does not depend only on

logical result of computation but also the occurrence time

of logical result. RTDBMS allows users to explicitly add

desired timing constraints with various actions that may

be met through system processing [11]. Some of the

characteristics of RTDBMS are:

 Frequent changing of data stored in an RTDBMS

within given timing constraint with correctness of

such data;

 Handling of temporal data;

 Controlling concurrency access of data; and

 Defining and imposing timing constraints on data

accesses.

Data management in real-time systems has specific

timing requirements in the accessing and processing of

data. Such time sensitive data management cannot be

handled with traditional DBMS. Traditional databases

often miss their transactions deadlines and suffer from

overload management problem. Real-time databases

have the ability to handle large number of queries with

specific timing constraints. Another core feature of an

RTDBMS is in-memory database. The traditional

database is a disk-based database. Its processing time is

nondeterministic because it involves the disk access i.e.

data transfer between internal and external memory,

buffer management, waiting list, and lock management.

This property makes traditional database system unable to

achieve the requirements of real-time transactions that

must meet high efficiency and deterministic time [12].

A distributed database is a collection of multiple,

logically interrelated databases distributed over a

computer network [13]. Distributed databases could

improve reliability and availability through distributed

transactions and improve overall database performance.

However, such database systems do not provide

capability to define or to guarantee timing requirements

as in the case of a real-time database system [13]. A real-

time database system has the ability to handle large

number of queries with specific timing constraints. On

the other hand, distributed databases attempt to achieve

integration without centralization, which is able to handle

large amount of data but without timing constraints [13].

Traveler

Smart Card

Visa

Process Scanner

Data

Immigration

Officer

Scanned

Data

Parsed Data
Internal Data

Storage

Process Traveler

Queries

Search Data

Backend

Immigration

Data Storage

Traveler Information System

Search

Query

Process Traveler

Authenticity

Process Timing

Exception

Search

Result

Query

Timing

Violation

Hardware

Beeper

Traveler

Verification

Result
Traveler

Verification

Result

Immigration

Officer

Query

Timeout

Failure

36 A Real-time DBMS System for the Immigration Processing of Large Hajj Crowd

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 32-41

“Not Only SQL” or NoSQL databases have recently

emerged with the increased number of internet

applications and the development of cloud computing

generating mass unstructured data that the traditional

relational databases have started to struggle with [14].

Some of the advantages of NoSQL databases are that data

can be quickly read and written, support of mass data,

extensibility, and low cost [14]. A NoSQL database

system offers an approach to data management and

database design for large sets of distributed data and real-

time web applications [14]. Studies have shown that

NoSQL databases generally compare well in runtime

performance with SQL based relational databases

especially for inserts, updates, and simple queries but not

when querying non-key attributes and aggregate queries

[15]. Hence, NoSQL databases would be better for large

data with constantly changing schema or with less

complex queries. Such databases may also work

comparably for certain operations on structured data as

well. However, NoSQL DBMS may not work well on

structured data with complex queries [15].

The main advantage of real-time database over

distributed or NoSQL database is the ability of defining

and enforcing timing constraints to each process that

others do not support. Table 1 shows comparison of these

database technologies for various DBMS features.

Column two in Table 1 also highlights which of these

features are considered a requirement for the Hajj pilgrim

immigration processing application domain.

Since the smart card based automatic immigration

processing of large number of pilgrims require response

time from the backend DBMS in a very short time as well

as mechanisms for handling exceptions in the case of

timing violation, this project selected real-time DBMS

technology to meet its primary requirement.

Table 1. Database Technology Comparison

Comparison
Feature Priority for the

Proposed Project

Distributed

Database

Real-time

Database

NoSQL

Database

Scheduling Required Yes Yes Yes

Timing Constraint Required No Yes No

Transactions Priority Required Yes Yes Yes

Dynamic Data Not Required No Yes Yes

Fig. 2. SenseiDB Architecture [12].

Sensei Database: Sensei DBMS is a freeware

distributed real-time database system that was built to

support many product initiatives at LinkedIn.com and is

the foundation to the LinkedIn's search and data

infrastructure [16]. SensieDB was selected for the

prototype implementation of the Hajj smart card based

immigration processing project. SenseiDB has several

characteristics: atomicity and isolation, durability,

consistency, elasticity, and low query latency.

The relevance support functionality in SenseiDB is

implemented to help users create and tune relevance

models in an easy way. The basic pipeline is that users

Data Gateway

Data Stream for Indexing

Shard 1 Shard 2 Shard 2 Shard 3 Shard 1 Shard 3

Sensei

Node 1
Sensei

Node 2
Sensei

Node 3

Scatter/Gather with Load Balancer

ZooKeeper Broker 1 Broker 2

Search

Notification on Cluster Topology Changes

 A Real-time DBMS System for the Immigration Processing of Large Hajj Crowd 37

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 32-41

send a JavaScript Object Notation (JSON)/Browsing

Query Language (BQL) request containing a simple

relevance model expression to the server. The server will

compile the code and generate the corresponding

relevance model. Relevance models may have a name so

that next time the user only needs to refer to the model

with its name. Also, models are cached inside each node

and hence there is no extra performance cost [16].

SenseiDB also supports shards that help in organizing

data into horizontal partitions. In designing large data

systems by separating the data into smaller shards, query-

time computation cost can be split into smaller shards and

work can be done in parallel [16]. For example, the issue

of querying data with 100 million documents can be

reduced into ten parallel queries with ten shards, each

holding 10 million documents with the final result is

compiled by joining the individual results. Fig. 2 shows

the architectural diagram of SenseiDB [16]. The

Zookeeper component in Figure 2 manages Sensei’s

network topology or cluster.

V. HAJJ PROTOTYPE SYSTEM IMPLEMENTATION

In this project, multiple modules have been installed,

setup, or implemented in order to get the real-time

database system environment up and running. This

section provides the details of the various modules and

components necessary for the prototype Hajj backend

system.

Sensei Schema: Sensei schema consists of one flat

Extensible Markup Language (XML) table instead of

separate tables for each entity to avoid using JOIN

command that will cause unknown delays. In addition,

there are no foreign keys in the sensei schema. Fig. 3

shows a sample partial schema for the Hajj pilgrim

information.

Fig. 3. Sample XML Schema.

Development Environment: SenseiDB is built using

Java and Python languages. Hence, Java Development

Kit (JDK) environment was used to develop the

application software for this project. This application

software is expected to receive and parse the scanned data

from pilgrim smart cards and then compose and perform

the SenseiDB queries. The JDK virtual machine allows

the Sensei classes to understand and to perform several

tasks related to the database and the BQL operations that

are written using the Java programming language.

Python pyparser is a module that is an alternative

approach to creating and executing python code.

SenseiDB provides the client with the capability to

develop applications using either Java or Python. Some

modules of the Sensei database are built using the Python

language.

Sensei Database Engine and Zookeeper Apache

Server: SenseiDB consists of several files that comprise

of the database engine and the Zookeeper Apache server.

Zookeeper should be running before starting Sensei

engine in order to get the database running. The reason

behind using Zookeeper server is that it is capable to

handle real-time aspects and has the ability to create

several cluster nodes based on the data as each table

represents one cluster.

Generation and Insertion of Hajj Data: Sensei

database uses JSON objects as data format. In case of the

Hajj prototype system, thousands of dummy records had

to be produced in order to simulate the performance of

the actual Hajj scenario. In order to generate dummy data,

an online JSON website generator

www.yandataellan.com [17] has been used as shown in

Fig. 4.

After generating the JSON code as dummy data, it has

been inserted into the Sensei JSON data file in order to

allow the user to find searchable data. As mentioned

above, this step is used to simulate the actual

performance of Sensei database installed on server with

millions of records during the Hajj season.

{"Hajj":[

 {"TravelerfirstName":"Abdulaziz",

 "TravelerlastName":"AlQasem"},

]}

Fig.4. JSON Data Generator.

SenseiDB uses XML format to identify tables and

facets that will use JSON file as source of data as shown

above.

Identification of Sensei Database Configuration:

SenseiDB comes with multiple configurations that need

to be setup as Sensei properties before the database could

be used. These properties help define some key

-<table uid=“id”>

 <column name=“TFName” type=“string”/>

 <column name=“TMName” type=“string”/>

 <column name=“TLName” type=“string”/>

 <column name=“TAge” type=“int”/>

 <column name=“TPassportNo” type=“string”/>

 <column name=“TContactNo” type=“int”/>

 <column name=“TCountry” type=“string”/>

 <column name=“TCity” type=“string”/>

 <column name=“TDistrict” type=“string”/>

 <column name=“TBuildingNo” type=“string”/>

 <column name=“ArrivalDate” type=“date”/>

 <column name=“AirportName” type=“string”/>

 <column name=“TVisaNo” type=“string”/>

 <column name=“TVisa_SDate” type=“date”/>

 <column name=“TVisa_EDate” type=“date”/>

38 A Real-time DBMS System for the Immigration Processing of Large Hajj Crowd

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 32-41

parameters for the database such as timing constraints for

the queries, schema, and data location. Fig. 5 shows a

sample of Sensei properties.

Fig.5. Sensei Configuration.

Installation and Configuration of Zookeeper Server:

Zookeeper is a centralized Apache server that provides

services for maintaining configuration information,

naming, providing distributed synchronization, and

providing group services. Zookeeper Apache server

comes with configurations such as setting port, cluster,

and localhost, that are needed to run server clusters.

These configurations are related with the port number and

time needed for ticking “ping”. Fig. 6 shows setting of

Zookeeper configuration for this project.

Fig. 6. Zookeeper Configuration.

Execution of BQL Queries: Browsing Query

Language (BQL) is an SQL-like language that provides

Sensei users easy access to the database if they have

experience using traditional relational databases. A BQL

example query is as follows:

SELECT tags, price from cars

WHERE tags CONTAINS ALL ("cool",”hybrid")

EXCEPT("favorite") LIMIT 5;

These BQL queries may directly be run in the Sensei

shell or can be composed and submitted using the Java

application connected with the Sensei DBMS.

Java Application: A Java desktop application has been

developed to read and parse pilgrim data from a smart

card, to form and to execute a Sensei query, to handle

exceptions, and to define additional finer granularity

timing constraints on top of the existing timing

constraints provided by Sensei. Sensei provides timing

constraints at the “minutes” granularity level. In order to

meet the project requirements, finer timing constraints at

the milliseconds level were needed which were defined

and enforced at the Java application level.

The Java desktop application consists of several classes.

Table 2 lists the Hajj Java application classes and their

purpose. Some of these classes are used to store specific

pilgrim information such as personal information, country

information, passport and visa information, flight

information, and Mualeem information. These classes

provide the user the ability to manipulate data separately

and retrieve them again, e.g. specifying age range to be

retrieved from traveler class to retrieve just the accepted

range of age. Mualeem is a local Hajj group responsible

for logistics of the pilgrims such as accommodation, local

transport, food, etc. Each pilgrim coming for Hajj has to

register with some local Mualeem group as part of the

Hajj application process.

Voice Alert class is to provide beep from reading .wav

file containing several messages. These messages are for

various notifications from the backend DBMS such as

pilgrim information positive verification, pilgrim

information missing or mismatch notification, and timing

constraint violations while accessing the backend DBMS.

In the timing module, synchronized method has been

used to delegate the Web Service invocation to another

thread, and joining on it using a specified timeout. The

timing module creates tunnel that carries out request with

timing constraint. Sensei query is loaded within this

request using synchronized method to be performed

within the specified timing constraints. The application

module allows the ability to enhance and to increase the

timing constraints granularity from minutes as supported

by Sensei to milliseconds as required by the project.

Exception Handling: In the Hajj Java application, the

main class contains Sensei query class that has the

responsibility to query the database based on data

gathered from JSON file. There are following

possibilities of running a query:

 If the query finds and retrieves the needed data

within specified timing constraints, the application

will display message indicating that the pilgrim

information exists and it will result in a specific

beep at the terminal.

 If the Sensei query could not find matched

information or if there are mismatches in some

fields within specified timing constraints, it will

display message indicating that there is no record

for this traveler with a specific beep at the terminal.

In this case, the system will prompt the

immigration officer for a manual verification.

 If the Sensei query exceeded the query search

timing constraints, the application will make two

more attempts. The application will then send a

request to Sensei and Zookeeper server to kill the

query after the third attempt also fails. Message

will be displayed indicating that the timing

constraints exceeded and a unique beep will be

produced at the terminal. The application will then

prompt the immigration officer for manual

verification of the pilgrim.

tickTime=2000

dataDir=/var/lib/zookeeper

clientPort=2181

sensei node parameters

sensei.node.id=1

sensei.node.partitions=0,1

sensei network server parameters

sensei.server.port=1234

sensei.server.requestThreadCorePoolSize=20

sensei.server.requestThreadMaxPoolSize=70

sensei.server.requestThreadKeepAliveTimeSecs=

300

sensei cluster parameters

sensei.cluster.name=sensei

sensei.cluster.url=localhost:2181

sensei.cluster.timeout=30000

sensei indexing parameters

Sensei.index.director=index/hajjdata

 A Real-time DBMS System for the Immigration Processing of Large Hajj Crowd 39

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 32-41

Table 2. Hajj Java Application Classes

Class Description

Traveler info class Contains traveler information and related

methods such as: first name, middle name,

last name, contact number and age.

Country info class Contains country information and related

methods such as: country name, city, district,

and building number.

Passport info class Contain passport information and related

methods such as: passport number, passport

issue date, and passport expire date.

Visa info class Contain visa information and related methods

such as: visa number, visa issue date, and visa

expire date.

Mualeem info

class

Contains Mualeem information and related

methods such as: Mualeem id, first name, last

name, contact number, email, and office

location.

Arrival info class Contains information about arrival

information and related methods such as:

flight information, airport name, arrival date

and time, leaving date and time.

Main class Contains four sub-classes: timing class, query

class, JSON parser class, and voice alert

class. In addition, it serves as the glue class

for the various information classes listed

above.

Query Performance and Optimization: SenseiDB

improves query search performance by automatically

indexing data loaded in the random access memory

(RAM) for the first run to enhance the performance of

query. It also offers manual indexing for machines with

not enough RAM to allow Sensei to load manually

indexed data as partial dataset into RAM. Both indexing

helps Sensei to easily find the needed data previously

queried. In this project, the prototype is developed on a

client machine with limited RAM. Hence, manual

indexing has been used for a small subset of data as test.

Sample Runs Using a Large Dataset: Dataset has

been populated for this prototype implementation with

around million records to simulate the performance of

real case of Hajj. As Sensei database was designed to run

in a server environment, 3.8 GB of RAM was not enough

to load the entire dataset on the client machine, so this

prototype loaded partial datasets to get the sample runs.

In all of the selected datasets, the query was performed

within the specified timing constraints. In order to ensure

the two exceptional cases can be correctly handled by

Sensei and the Java application, forced error conditions

were correctly simulated by the prototype system. The

three test scenarios were as follows:

 The first case contains correct data stored in JSON

file and runs within given timing constraint.

 Second case contains incorrect data stored in JSON

file and runs within given timing constraint.

 Third case contains correct data performed with

smaller duration of timing constraint to demonstrate

timing violation.

VI. IMPLEMENTATION ISSUES

There were some challenges encountered during the

prototype Hajj system implementation and there were

some key learnings as well.

1. Issue: Linux operating system is a highly

customized, open source operating system and it

requires high-end machine to perform well. It was

challenging to develop real-time project in a Linux

environment.

Learning Outcome: Fedora version is the most

suitable version for a client personal computer. On

the other hand, Red Hat is the best-customized

version for the server environment.

2. Issue: Zookeeper Hadoop Apache server is

appropriate to deal with real-time databases

because it is a high-performance coordination

service for distributed applications with different

clusters. Configurations of Zookeeper server were

challenging due to rarity of resources available on

the Web.

Learning Outcome: Using general configuration is

enough; Sensei database comes with its

configuration that is needed to manipulate real

time aspects.

3. Issue: BQL language is the query language for

Sensei with unique syntax. This language is like

SQL but the difference is that BQL has the ability

to deal with facets that allow users to configure

the way they want to retrieve the data.

Learning Outcome: BQL has two syntaxes. The

first syntax works with Linux shell as an SQL like

query language. The second has a special syntax

used by Java application based on Sensei library.

4. Issue: Sensei database uses Zookeeper instance as

the default setting. It was a difficult issue to deal

with the included version instead of using a new

separate version available on the Web.

Learning Outcome: Included version is fully

compatible with the Sensei database but had to be

properly configured. After some debug, it was

determined that the port number and tick time had

to be properly specified as they vary from system

to system.

5. Issue: Zookeeper server allows the user to define

up to eight clusters, which will increase

performance by replicating the data. Due to lack

of any documentation, it was quite challenging to

enable and implement multiple clusters.

Learning Outcome: Zookeeper Apache server is

designed to represent one cluster for each table of

the database. As this project deals with only one

entity “traveler”, one table was enough to

represent the needed information that was held in

one cluster for this prototype implementation. An

extension of the project is going on currently

enhancing the performance by enabling multiple

clusters.

40 A Real-time DBMS System for the Immigration Processing of Large Hajj Crowd

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 32-41

6. Issue: Database model used in the SenseiDB is a

flat XML file combined with JSON files. This fact

had to be discovered during the preliminary

setting and implementation because Sensei Web

site does not provide details about the database

model.

Learning Outcome: XML file used along with

JSON file to represent the facet which is being

used to indicate how Sensei will query the data.

Facets can be specified as a range to inform the

query that there are data only between the

specified range. Facets is one factor that helps

Sensei to speed up query performance.

VII. CONCLUSION

A prototype system for improving immigration

processing efficiency of Islamic Hajj event large crowd

management was developed using Sensei real-time

DBMS. The prototype system was developed as a

feasibility study for the concept and was successfully

used to demonstrate that Hajj large crowd management

can be handled with the proposed approach. At present,

several efforts are currently going on to extend this work

at the College of Computer Sciences and Information

Technology, King Faisal University, Kingdom of Saudi

Arabia. An extension of the prototype backend DBMS

system is under development to move the system from

client environment to a server environment that will

allow running on datasets of from three to five millions to

simulate actual Hajj load and overload. In addition,

sharding or horizontal partitioning is being enabled to

evaluate and to further improve performance of pilgrim

information verification. Finally, performance analysis

of Sensei versus Mongo NoSQL database is also being

worked on to understand if there are any performance

advantages of one versus the other and to accurately

capture and define timing constraints under various

application scenarios.

REFERENCES

[1] Hajj. https://en.wikipedia.org/wiki/Hajj [20 Mar 2017].

[2] Vision 2030. http://vision2030.gov.sa/en [20 Mar 2017].

[3] M. Yamin, “A Framework for Improved Hajj

Management and Research,” ENTIC Bulletin, 2008.

[4] Ministry of Hajj.

http://haj.gov.sa/english/pages/default.aspx [20 Mar 2017].

[5] E. Riyad, “Towards a High-Quality Religious Tourism

Marketing: The Case of Hajj Service in Saudi Arabia,”

Tourism Analysis, Vol. 17, No. 4, pp. 509-522.

[6] R. O. Mitchell, H. Rashid, F. Dawood, and A. AlKhalidi,

“Hajj Crowd Management and Navigation System :

People Tracking and Location Based Services via

Integrated Mobile and RFID Systems,” Proceedings of the

2013 International Conference on Computer Applications

Technology (ICCAT), Jan 20-22, 2013, Sousse, Tunisia,

pp. 1-7.

[7] M. Mohandes, “An RFID-Based Pilgrim Identification

System (A Pilot Study),” Proceedings of the 11th

International Conference on Optimization of Electrical

and Electronic Equipment (OPTIM 2008), May 22-24,

2008, Brasov, Romania, pp. 107-112.

[8] E. Alsaggaf, O. Batarfi, N. Aljojo, and C. Adams, “Secure

Hajj Permission Based on Identifiable Pilgrim’s

Information,” International Journal of Information

Technology and Computer Science (IJITCS), Vol. 7, No. 5,

April 2015, pp. 67-76.

[9] A. Geabel, K. Jastaniah, R. Abu Hassan, R. Aljehani, M.

Babadr, and M. Abulkhair, “Pilgrim Smart Identification

Using RFID Technology (PSI),” in Design, User

Experience, and Usability: User Experience Design for

Everyday Life Applications and Services, Lecture Notes in

Computer Science, Springer, 2014, pp. 273-280.

[10] B. Kao and H. Garcia-Molina, “An Overview of Real-

Time Database Systems,” in Real Time Computing, W. A.

Halang and A. D. Stoyenko (editors), NATO ASI Series F:

Computer and Systems Sciences, Vol. 127, Springer:

Berlin, Heidelberg, 1994, pp. 261-282.

[11] Y. Lu, Y. Liu, Q. Han, G. Hu, and Z. Li, “The

Architecture and Execution Model of an Active Real-time

Database Management System,” Proceedings of the 1997

International Conference on Information,

Communications and Signal Processing (ICICS), Sep. 9-

12, 1997, Singapore, pp. 815-819.

[12] J. Wu, Y. Cheng, and N. N. Schulz, “Overview of Real-

Time Database Management System Design for Power

System SCADA System,” Proceedings of the IEEE

SoutheastCon 2006, Mar. 31 – Apr. 2, 2006, Memphis,

Tennessee, USA, pp. 62-66.

[13] M. T. Ozsu and P. Valduriez, Principles of Distributed

Database Systems, 3rd ed., Springer, 2011.

[14] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL

database,” Proceedings of the 6th International

Conference on Pervasive Computing and Applications

(ICPCA), Oct. 26-28, 2011, Port Elizabeth, South Africa,

pp. 363–366.

[15] Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing NoSQL

MongoDB to an SQL DB,” Proceedings on the 51st ACM

Southeast Conference (ACMSE ’13), Apr. 4-6, 2013,

Savannah, Georgia, USA, pp. 5:1 – 5:6.

[16] SenseiDB. http://senseidb.github.io/sensei/overview.html

[30 Jan 2017].

[17] Data Generator. www.yandataellan.com [1 Mar 2017]

Authors’ Profiles

Amir A. Khwaja received his MS and PhD

degrees in Computer Science from Arizona

State University, Arizona, USA. He received

his Bachelor’s degree in Computer

Engineering from N.E.D. University of

Engineering and Technology, Karachi,

Pakistan.

He is an assistant professor at the College

of Computer Sciences and Information Technology, King Faisal

University, Al-Ahsa, Kingdom of Saudi Arabia since 2014.

Prior to that he had 21 years of semiconductor industry

experience. He worked for 20 years in Intel Corporation, USA,

in various capacities: CAD software developer, XScale and

Atom mobile system-on-a-chip (SoC) validation architect,

Validation Program Manager, and Sr. Engineering Manager.

He worked for one year in Qualcomm, San Diego, California,

USA, as a Principal Engineer and Sr. Manager, leading the

successful completion of the validation of Qualcomm’s

 A Real-time DBMS System for the Immigration Processing of Large Hajj Crowd 41

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 32-41

Femtocell SoC product. He has also worked as an adjunct faculty for Arizona State University and University of Phoenix.

How to cite this paper: Amir A. Khwaja," A Real-time DBMS System for the Immigration Processing of Large Hajj

Crowd", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.9, pp. 32-41,

2017.DOI: 10.5815/ijmecs.2017.09.04

