
I.J. Modern Education and Computer Science, 2017, 9, 24-31 

Published Online September 2017 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2017.09.03 

 

Copyright © 2017 MECS                                                    I.J. Modern Education and Computer Science, 2017, 9, 24-31 

Child based Level-Wise List Scheduling 

Algorithm 
 

Lokesh Kr. Arya 
University Institute of Engg. & Technology, Panjab University, Chandigarh, India 

Email: Lokesh2513aug@gmail.com 

 

Amandeep Verma 
University Institute of Engg. & Technology, Panjab University, Chandigarh, India 

Email: amandeepverma@pu.ac.in 

 

Received: 25 March 2016; Accepted: 22 August 2017; Published: 08 September 2017 

 

 

Abstract—Cloud is the Latest concept in IT. Users use 

the resources or services which are provided & managed 

by the service providers. Users need not to buy the 

hardware or software which now can be used on rental 

basis. Workflow represents the cloud application which 

has different tasks to be executed in an order. Scheduling 

algorithms are used to assign these tasks to processors 

and these algorithms decide the cost and time of 

execution. In this paper, a simple scheduling algorithm 

has been proposed named Child Based Level-Wise List 

Scheduling (CBLWLS) algorithm. According to the 

dependencies CBLWSL calculate priorities of tasks and 

finds the sequence of task execution and then maps the 

selected task to the available processors. We perform 

experiments on Epigenomics workflow structure graphs 

used in some real applications and their analysis shows 

that CBLWLS algorithm performed better than the HEFT 

(Heterogeneous Earliest Finish Time) algorithm, on the 

parameters of time of execution, execution cost and 

schedule length ratio. 

 

Index Terms—Workflows, Scheduling Algorithms, 

Cloud Scheduling, Cloud Computing, Task Scheduling, 

Schedule length, Makespan. 

 

I.  INTRODUCTION 

Cloud computing fulfill the demand of resources 

through internet with the help of virtualization. There are 

three main entities: cloud users, service providers and 

cloud services. Cloud service provider provides common 

resources and services on demand to cloud users. 

Services will be chargeable by the Service provider; 

customer pays for what a customer used. There are 

different types of services including operating systems, 

storage space, and environment for application 

development and processing capabilities[1]. According to 

the business requirements, customer can increase or 

decrease the resource usage. Cloud provide flexibility to 

the customer, they can access resources on different 

devices such as laptops, personal devices, smart phones 

& tablets. It has the minimum chances of infrastructure 

failure.  

Broadly cloud computing environments are of 3 types. 

Private clouds (internal cloud): Exists privately in an 

organization and facilitates special benefits.  

Public clouds – It is for public use. Some organizations 

managed and offered services to customers. Highly 

scalable and reliable but less secure.  

Hybrid clouds- it is the mixture of the both 

environments mentioned above[2]. 

Cloud services accessed through Application 

Programming Interfaces (APIs). The characteristics of 

cloud environment are Multi-sharing, Scalability, 

Availability and Reliability. 

Cloud environment provides services broadly 

categorized as follows: 

IaaS (Infrastructure as a Service) - User can access 

only the resources required without knowledge of any 

other details like Elastic Computing Cloud of Amazon 

and Amazon’s Storage Service facilitate flexible 

computing capacity (CPU cycles)[3] and rental base 

retrieving or managing large quantity of data anywhere 

anytime from internet respectively[4]. 

PaaS (Platform as a Service) - it gives different 

environments for development of specific application. 

Like Google App Engine which take care of the 

application's execution developed on engine[5]. 

SaaS (Software as a Service) – no development, no 

maintenance at user end. Application or software 

facilitate by the provider on internet like MS-Dynamics a 

CRM tool provided by Microsoft managed customer’s 

information online[6]. 

In the paper, a task scheduling algorithm which used 

the principle of list scheduling technique has been 

proposed named Child Based Level-Wise List Scheduling 

(CBLWLS) algorithm, which effectively schedules the 

tasks with the help of priority on to the processors. 

Other parts of the paper are: problem description 

explained in Section II. Section III explained our 

proposed workflow scheduling algorithm. Section IV 

shows a sample execution. Experimental details and 



 Child based Level-Wise List Scheduling Algorithm 25 

Copyright © 2017 MECS                                                    I.J. Modern Education and Computer Science, 2017, 9, 24-31 

simulation results are shown in Section V. Conclusion 

with future scope in Section VI. 

 

II.  PROBLEM DESCRIPTION 

Cloud applications are modeled into workflows. 

Workflow applications are executed in a particular order 

because they have group of different tasks which 

achieves a particular result called task scheduling. To 

achieve efficient task scheduling we use task scheduling 

algorithms. Main goal of these algorithms are to assign 

the tasks to the available processors and generate 

minimum completion time called makespan.  

Scheduling of workflow is most important factor to 

fulfill the requirement of cloud user as well as cloud 

provider. Efficient scheduling of workflow is necessary 

to reduce overall execution time and cost incurred to 

complete the workflow execution [7]. 

Generally, two types of task scheduling algorithms are 

there: Static has information like estimation time of job 

execution, structure, data dependencies, resource 

mapping and amount of data to be transferred before 

execution and takes decisions at compile time. Dynamic 

algorithm estimates the information before execution at 

the ready state of job and decisions made at run time. 

Good scheduling quality and performance are provided 

by algorithms based on the list scheduling. In these, a 

priority list is generated from given graph. Based on 

priority, tasks are picked up and allocated to that 

processors who gives minimum execution time. Like 

heterogeneous earliest finish time algorithm (HEFT) [8]. 

Directed acyclic graph (DAG) represents a workflow 

and denoted by G (v, e).  Where, v denotes quantity of 

nodes and data dependency between tasks denoted by e [9].  

Fig. 1, shows a sample workflow graph G with the 

dependencies among different tasks. 

 

 

Fig.1. Sample DAG [10] 

In Fig. 1, task tentry acts as entry task which has no 

parent and task texit act as an exit task with no child node. 

The child tasks t1, t2 and t3 are executed after parent task 

tentry. Parent task gives input to child tasks. After the 

completion of tasks t7, t8 and t9, task texit is executed. Each 

node is assigned estimated computation time and each 

edge represent estimated communication time. 

There is requirement of task scheduling algorithms that 

in a task graph, there should be exactly one exit and 

exactly one entry task. If there are multiple exit or entry 

tasks then always add dummy task at the end and in the 

beginning of the workflow, respectively. Assign zero 

execution time to the dummy tasks and connect to exit 

and entry tasks with zero-weight dependencies.  When 

values of nodes and edges are calculated for a DAG with 

different methods then there is a considerable effect on 

schedule [11]. 

The goal of the algorithm is to provide better quality of 

schedule (or output with minimum schedule length). To 

achieve efficient scheduling, a list scheduling algorithm 

has been implemented considering time and cost factor. 

Time factor considers execution time and communication 

time. Cost factor consider cost incurred to running the 

tasks on processors. It applies general approach, give 

priority to tasks in workflow then according to priority 

the tasks are allocated to the optimal resource. 

 

III.  PROPOSED CBLWLS SCHEDULING ALGORITHM  

Child Based Level-Wise List Scheduling (CBLWLS) 

algorithm is a type of list heuristic scheduling which 

prioritizes and schedules workflow tasks on processors 

according to their priorities. This algorithm consists three 

phases which are explained as follows: 

 

a) Level Sorting Phase: In a given DAG add dummy 

entry or exit task if required then traverse it from 

up to down at every level for grouping 

independent tasks. So that same level tasks can be 

submit for parallel execution. Entry tasks at Level 

0. If level i contains all tasks vk and all edges (vj, vk) 

then there exists at least one edge (vj, vk) from 

level i-1 to i and tasks vj is in a level less than i. 

Exit task in the last level [12]. 

b) Task Prioritization Phase: In this phase, calculate 

rank and assigned to each task with the help of 

attributes Data Received Time (DRT) from parent, 

Average Computation Time of Node (ACTN), 

Data Transfer Time (DTT) to child and Average 

Computation Time of Child (ACTC). These 

attributes are explained as follows: 

 

1. Data Received Time (DRT): It is the 

communication time of a task ni to transfer the data 

from immediate parent task to task ni; for an entry node 

DRT (nentry) =0. 

2. Average Computation Time of Node (ACTN): It is 

the average of computation time of a task ni on all 

processors p [13]. 

3. Data Transfer Time (DTT): It is the 

communication time of a task ni to transfer the data 

from task ni to its immediate successor task; for an exit 

node DTT (nexit)= 0. 

4. Average Computation Time of a Child (ACTC): 

The ACTC of a task ni is the average computation time 

of a child on all the processors p. 

5. Give highest priority to the task with highest rank 

value at each level followed by task with next highest 

rank and so on. In case of tie high priority assign to the 

task having higher ACTN value. 



26 Child based Level-Wise List Scheduling Algorithm  

Copyright © 2017 MECS                                                    I.J. Modern Education and Computer Science, 2017, 9, 24-31 

The rank of each task ni is calculated with DRT, ACTN, 

DTT and ACTC values and is given by: 

 

Rank (ni) =max (DRT (ni)) + ACTN (ni) + 

max(DTT(ni, child x)+ACTC(child x)) 

 

Where n represent a node of workflow, i represent its 

number and x represents child of node n. 

 

c) Processor Allocation Phase: At each level, highest 

rank value task is selected. Calculate EST (Earliest 

Start Time) and EFT (Earliest Finish Time) value 

for selected task on every processor. Task is 

assigned to the processor who gives minimum 

EFT. 

 

IV.  SAMPLE WORKFLOW   

Fig. 2, shows sample workflow[14] with all its 

dependencies and communication time and Table 1, 

shows computation time of the tasks on individual 

processor and the average computation time of node 

(ACTN(ni)). Here entry task is T0 and exit task is T9. 

 

 

Fig.2. Sample Workflow [14] 

Table 1. Computation time in seconds for sample workflow [14] 

Task P0 P1 P2 ACTN(ni) 

T0 9 14 16 13 

T1 13 18 19 16 

T2 11 13 19 14 

T3 8 13 17 12 

T4 10 12 13 11 

T5 9 13 16 12 

T6 7 11 15 11 

T7 5 11 14 10 

T8 12 18 20 16 

T9 7 10 21 12 

Phase wise solution of sample workflow using 

CBLWLS is as follows: 

a) Level Sorting Phase: There are 4 levels in the DAG. 

Apply algorithm to levels one by one. 

Level 1 has node: T0  

Level 2 has nodes: T1, T2, T3, T4, T5 

Level 3 has nodes: T6, T7, T8 

Level 4 has node: T9 

b) Task Prioritization Phase:  

For level 1: there is only node T0. 

Rank (T0) = max (DRT (T0)) + ACTN (T0) +  

max (DTT (T0, child x) +ACTC (child x)) 

DRT (T0) =0; ACTN (T0) =13;  

 

For children’s of T0 ,  

Calculate (DTT (T0, child x) +ACTC (child x) 

For T1=DTT (T0, T1) + ACTC (T1) =5+16=21 

For T2=DTT (T0, T2) + ACTC (T2) =12+14=26 

For T3=DTT (T0, T3) + ACTC (T3) =15+12=27 

For T4=DTT (T0, T4) + ACTC (T0) =21+11=32 

For T5=DTT (T0, T5) + ACTC (T0) =14+12=26 

Maximum value 32 is selected. 

Rank (T0) = 0 + 13 + 32=45. 

Arrange level 1 nodes in descending order of rank. So 

nodes will be executed in order T0. 

Table 2, shows level, calculated value of DRT, ACTN, 

max(DTT+ACTC), rank of each node and priority of node 

within its level. 

Table 2. Priority computation for sample workflow 

Level Task DRT ACTN max( DTT

+ACTC) 

Rank Priority 

1 T0 0 13 32 45 1 

2 T1 5 16 26 47 5 

2 T2 12 14 34 60 2 

2 T3 15 12 33 60 3 

2 T4 21 11 29 61 1 

2 T5 14 12 28 54 4 

3 T6 23 11 24 58 2 

3 T7 23 10 28 61 1 

3 T8 13 16 25 54 3 

4 T9 16 12 0 28 1 

 

So the tasks execution order is T0, T4, T2, T3, T5, T1, T7, 

T6, T8, T9. 

c) Processor Allocation Phase 

Assign the tasks to processor having minimum EFT. 

Table 3, shows EST and EFT of selected task on each 

processor. The bold values indicate that the Ti task 

allocated to Pp processor. 

Makespan by Child Based Level-Wise List Scheduling 

Algorithm is 76 seconds. 

The generated schedule length of CBLWLS algorithm 

is shown in Fig. 3. 



 Child based Level-Wise List Scheduling Algorithm 27 

Copyright © 2017 MECS                                                    I.J. Modern Education and Computer Science, 2017, 9, 24-31 

Table 3. Processor Allocation for Sample Workflow 

 Processor P0 Processor P1 Processor P2 

Tasks EST EFT EST EFT EST EFT 

T0 0 9 0 14 0 16 

T4 9 19 30 42 30 43 

T2 19 30 21 34 21 40 

T3 30 38 24 37 24 41 

T5 30 39 37 50 23 39 

T1 39 52 37 55 14 33 

T7 60 65 42 53 60 74 

T6 48 55 53 64 53 68 

T8 55 67 53 71 51 71 

T9 69 76 80 90 80 101 

 

 

Fig.3. Schedule Length by CBLWLS 

The comparison of schedule length (makespan) of 

CBLWLS and HEFT is shown in Fig. 4. The makespan 

by CBLWLS algorithm is 76, which is shorter than the 

makespan obtained by HEFT algorithm which is 81. It is 

observed that the proposed CBLWLS algorithm is 

producing better schedule length as compared to HEFT 

algorithm. 

 

 

Fig.4. Makespan comparison of CBLWLS and HEFT 

 

V.  EXPERIMENTAL DETAIL AND SIMULATION RESULTS    

The effectiveness of proposed algorithm is proved 

theoretically for sample graph and experimentally for 

Epigenomics workflow structure used in different 

scientific applications[15]. 

Epigenomics: It was developed by Pegasus Team and 

USC Epigenome Center. It is used for the automation of 

different operations in genome sequence processing.  

Fig. 5, shows its structure. 

 

 

Fig.5. Epigenomics Structure [16] 

This workflow is available in DAX (Directed Acyclic 

Graph in XML) format and used as input. The two 

algorithms CBLWLS and HEFT are implemented using 

JAVA on Intel B960 Dual Core Processor machine with 

HDD of 500 GB and RAM of 2 GB having Windows 7 

OS using Eclipse. The computation time in second of a 

particular node on processor, input and output 

communication data of a node in MB and relationship 

between the nodes are fetched from the DAX. By 

assuming network bandwidth 1MB/s converted 

communication data into communication time. Example: 

50 MB data required 50 seconds to transfer data. To 

simulate a cloud environment, parameters as shown in 

Table 4 are defined. 

Table 4. Parameter Settings for Cloud Environment 

Parameter Value 

Number of Processors 10-25 

Number of Workflows 4 

Tasks per Workflow 25-1000 

 

Processor will execute the tasks in cycles. We assume 

that 1 cycle of 30 second. Now we will calculate number 

of cycles for cost calculation as follows: 

 

If execution time divided by 30 is equal to zero, then  

Number of cycle =  execution time/30; 

Otherwise 

Number of cycle = (execution time/30) +1; 

 

The processors are different in speed and cost of 

execution. So fastest processor takes less time but high 

cost as compared to slowest processor who takes more 

time but less cost for the same task. Table 5 shows the 

assumption of execution time and cost of execution of 

tasks on the processor Pi where i is the number of 

processor. 

Table 5. Processor execution time and Cost of execution 

Processor 

Type 

Execution Time Cost of 

Execution 

Fastest 

Processor (P0) 

(Fetched from DAX*100) 300 units per 

cycle 

Other 

Processor (Pi) 

P0+((P0*i*10/)100)) (300-(i*10)) 

units per cycle 

72

74

76

78

80

82

CBLWLS HEFT

76 

81 

Makespan 



28 Child based Level-Wise List Scheduling Algorithm  

Copyright © 2017 MECS                                                    I.J. Modern Education and Computer Science, 2017, 9, 24-31 

A) Comparison Metrics 

The following metrics have been taken to evaluate the 

proposed algorithm. 

Makespan: It is total length of the schedule (that is, 

when all the jobs have finished). The algorithm that 

generates less makespan is efficient algorithm.  

Cost: It is the total cost occurred to run the different 

tasks on different processors. Efficient algorithm 

minimizes the cost of execution.  

SLR: it is the ratio of actual makespan to the makespan 

obtained when all the tasks assigned to fastest processor, 

so that is no communication time involved. An algorithm 

having smaller SLR value is a more efficient algorithm. It 

is calculated by following equation: 

 

SLR = actual makespan
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑

𝑤ℎ𝑒𝑛 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠 𝑜𝑛 𝑓𝑎𝑠𝑡𝑒𝑠𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
⁄

  

 

B) Comparative Analysis of Workflows from scientific 

application 

1) Makespan 

All the graphs drawn with the variation of no of 

processors and nodes in a workflow in the Epigenomics 

model. In graphs x-axis represents number of processors.  

Table 6 shows the value of makespan and Fig. 6, 

represents makespan in seconds obtained with CBLWSL 

and HEFT with y-axis represents makespan in seconds. 

Table 6. Makespan value in second for Epigenomics Model 

No of Nodes 

No of 

Processors 

25 

 
50 

 

100 

 

1000 

 

10 CBLWLS 57403 71880 663774 5441132 

HEFT 60121 81913 675074 5500792 

15 CBLWLS 57403 79180 571071 4174570 

HEFT 60121 81583 570642 4206692 

20 CBLWLS 57403 79180 465310 3537894 

HEFT 60121 81583 476692 3545463 

25 CBLWLS 57403 79180 454648 3120739 

HEFT 60121 81583 466451 3130790 

 

 

  

  
Fig.6. Makespan for Epigenomics Model 

 

As shown in Table 6 and Fig. 6, in most of the cases 

makespan obtained by CBLWSL is less than HEFT. In 

graphs, makespan decreases as number of processors 

increases because tasks have more tendency to get 

execute in parallel. In term of percentage CBLWLS 

decrease the makespan by 0.896 % then HEFT. So 

CBLWSL is more efficient. 

2) Cost 

53000
54000
55000
56000
57000
58000
59000
60000
61000

10 15 20 25

M
ak

e
sp

an
 

No of Processor 

No of Nodes 25 

CBLWLS

HEFT

400000

450000

500000

550000

600000

650000

700000

10 15 20 25

M
ak

e
sp

an
 

No of Processor 

No of Nodes 100 

CBLWLS

HEFT

66000
68000
70000
72000
74000
76000
78000
80000
82000
84000

10 15 20 25

M
ak

es
p

an
 

No of Processor 

No of Nodes 50 

CBLWLS

HEFT

0

1000000

2000000

3000000

4000000

5000000

6000000

10 15 20 25

M
ak

es
p

an
 

No of Processor 

No of Nodes 1000 

CBLWLS

HEFT



 Child based Level-Wise List Scheduling Algorithm 29 

Copyright © 2017 MECS                                                    I.J. Modern Education and Computer Science, 2017, 9, 24-31 

Table 7, shows the value of cost and Fig. 7, represents 

cost in units obtained by CBLWSL and HEFT with y-axis 

represents cost. 

Table 7. Cost in units for Epigenomics Model  

No of Nodes 

No of 

Processors 

25 

 
50 

 

100 

 

1000 

 

10 CBLWLS 1936140 4860430 47561050 455734730 

HEFT 1937080 4852960 47545230 455802540 

15 CBLWLS 1936140 4849060 48481310 467719860 

HEFT 1937080 4852940 48477290 467663250 

20 CBLWLS 1936140 4849060 48277760 464635910 

HEFT 1937080 4852940 48259570 464755770 

25 CBLWLS 1936140 4849060 47651490 448410520 

HEFT 1937080 4852880 47631640 448327360 

 

As shown in Table 7 and Fig. 7, in most of the cases 

cost obtained by CBLWSL is less than or nearly equal to 

the cost obtained by HEFT. So the CBLWSL maintained 

the cost of execution rather than increasing the cost. We 

can’t generalize the pattern obtained in graphs for cost 

incurred because calculation of cost depends on processor 

cycle and computation time of task. In term of percentage 

CBLWLS increase the cost by 0.000018 % then HEFT 

which is very less than makespan. 

3) SLR 

Table 8 shows the value of SLR and Fig. 8, represents 

SLR obtained by CBLWSL and HEFT with y-axis 

represents SLR. 

Table 8. SLR value for Epigenomics Model 

No of Nodes 

 

No of 

Processors 

25 

 
50 

 

100 

 

1000 

 

10 CBLWLS 0.323959 0.173625 0.164546 0.141154 

HEFT 0.339298 0.197859 0.167347 0.142702 

15 CBLWLS 0.323959 0.191258 0.141565 0.108297 

HEFT 0.339298 0.197062 0.141459 0.109130 

20 CBLWLS 0.323959 0.191258 0.115348 0.091780 

HEFT 0.339298 0.197062 0.118169 0.091976 

25 CBLWLS 0.323959 0.191258 0.112705 0.080958 

HEFT 0.339298 0.197062 0.115631 0.081219 

 

 

  

  
Fig.7. Cost for Epigenomics Model 

 

1935600
1935800
1936000
1936200
1936400
1936600
1936800
1937000
1937200

10 15 20 25

C
o

st
 

No of Processor 

No of Nodes 25 

CBLWLS

HEFT

47000000
47200000
47400000
47600000
47800000
48000000
48200000
48400000
48600000

10 15 20 25

C
o

st
 

No of Processor 

No of Nodes 100 

CBLWLS

HEFT

4842000
4844000
4846000
4848000
4850000
4852000
4854000
4856000
4858000
4860000
4862000

10 15 20 25

C
o

st
 

No of Processor 

No of Nodes 50 

CBLWLS

HEFT

435000000

440000000

445000000

450000000

455000000

460000000

465000000

470000000

10 15 20 25

C
o

st
 

No of Processor 

No of Nodes 1000 

CBLWLS

HEFT



30 Child based Level-Wise List Scheduling Algorithm  

Copyright © 2017 MECS                                                    I.J. Modern Education and Computer Science, 2017, 9, 24-31 

  

  
Fig.8. SLR for Epigenomics Model 

 

As shown in Table 8 and Fig. 8, in most of the cases 

SLR obtained by CBLWSL is less than the HEFT. So the 

CBLWSL is more efficient algorithm. In graphs, SLR 

decreases as number of processors increases because 

tasks have more tendency to get execute in parallel and 

gives less makespan which results in low SLR. 

 

VI.  CONCLUSION AND FUTURE SCOPE    

In this paper, Child Based Level-Wise List Scheduling 

(CBLWLS) algorithm is proposed, which is a non-

preemptive static type of scheduling algorithm for 

heterogeneous computing environment. The CBLWLS 

algorithm is evaluated on Epigenomics model. The 

performance of the algorithm is compared with HEFT 

algorithm based on the execution time, cost incurred and 

SLR. The effect of variation of number of machines and 

number of tasks on makespan, cost and SLR has been 

studied. It has been found that if we take the average of 

result and calculate the percentage then CBLWLS 

Algorithm decrease the makespan by 0.896 % but 

increase the cost by 0.000018% than HEFT which is very 

less than makespan. So CBLWLS performed better than 

HEFT on all the parameters. 

For future work, the same priority techniques may be 

tested on LIGO Inspiral Analysis and Montage model, 

may be using time deadline and cost constraints. Various 

other QoS parameters such as reliability and fault 

tolerance may be applied. The work of paper may be 

applied in real world cloud computation systems for 

scheduling purposes. 

REFERENCES 

[1] L. K. Arya and A. Verma, “Workflow scheduling 

algorithms in cloud environment - A survey”, RAECS, 

March 2014, IEEE, 1-4. 

[2] Md. Imran Alam, Manjusha Pandey, Siddharth S Rautaray, 

“A Comprehensive Survey on Cloud Computing”, IJITCS, 

vol. 7, no. 2, pp. 98-79, 2015. 

[3] http://aws.amazon.com/ec2 

[4] http://aws.amazon.com/s3 

[5] http://stackoverflow.com/questions/16820336/what-is-

saas-paas-and-iaas-with-examples 

[6] https://en.wikipedia.org/wiki/Microsoft_Dynamics 

[7] S. Kaur and A. Verma, “An efficient approach to genetic 

algorithm for task scheduling in cloud computing 

environment”, I.J. Information Technology and Computer 

Science, 2012, 10, 74-79. 

[8] H. Arabnejad, "List based task scheduling algorithms on 

heterogeneous systems - an overview", 

http://paginas.fe.up.pt/Ìƒprodei/dsie12/papers/paper30.pdf, 

2011, available Online. Consulted January, 2013. 

[9] A. Verma and S. Kaushal, “Cloud Computing Security 

Issues and Challenges: A Survey”, Proceedings of First 

International Conference, ACC 2011, Kochi, India, pp. 

22-24, July 2011. 

[10] M. Singh and A. Verma, “Multiple Workflow Scheduling 

using Deadline Constrained Particle Swarm Optimization 

in Cloud Computing”, Panjab University, Chandigarh, 

India, 2013.(M.E. Thesis) 

0.315

0.32

0.325

0.33

0.335

0.34

0.345

10 15 20 25

SL
R

 

No of Processor 

No of Nodes 25 

CBLWLS

HEFT

0

0.05

0.1

0.15

0.2

10 15 20 25

SL
R

 

No of Processor 

No of Nodes 100 

CBLWLS

HEFT

0.16
0.165

0.17
0.175

0.18
0.185

0.19
0.195

0.2

10 15 20 25

SL
R

 

No of Processor 

No of Nodes 50 

CBLWLS

HEFT

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

10 15 20 25

SL
R

 

No of Processor 

No of Nodes 1000 

CBLWLS

HEFT

http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://stackoverflow.com/questions/16820336/what-is-saas-paas-and-iaas-with-examples
http://stackoverflow.com/questions/16820336/what-is-saas-paas-and-iaas-with-examples
https://en.wikipedia.org/wiki/Microsoft_Dynamics


 Child based Level-Wise List Scheduling Algorithm 31 

Copyright © 2017 MECS                                                    I.J. Modern Education and Computer Science, 2017, 9, 24-31 

[11] R. Sakellariou and H. Zhao, “A Hybrid Heuristic for DAG 

Scheduling on Heterogeneous Systems”, Proceeding of 

the 18th IPDPS '04, pp. 111–124, April 2004. 

[12] E. Ilavarasan and P. Thambidurai, "Low Complexity 

Performance Effective Task Scheduling Algorithm for 

Heterogeneous Computing Environments", Journal of 

Computer Sciences, vol. 3, no. 2, pp. 94 - 103, 2007. 

[13] R. Eswari, S. Nickolas, “A Level-wise Priority Based 

Task Scheduling for Heterogeneous Systems”, IJIET, Vol. 

1, No. 5, pp. 371-386, December 2011. 

[14] E. Ilavarasan, R. Manoharan, “High Performance And 

Energy Efficient Task Scheduling Algorithm For 

Heterogeneous Mobile Computing System”, IJCSIT, Vol. 

2, No. 2, pp. 10-27, April 2010. 

[15] S. Bharti, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, 

K. Vahi, “Characterization of Scientific Workflows”, in 

proceedings of Third Workshop on Workflows in Support 

of Large – Scale Science (WORKS), Austin, TX, pp:1 – 10, 

17 Nov 2008. 

[16] https://confluence.pegasus.isi.edu/display/pegasus/Workfl

owGenerator 

 

 

 

 

Authors’ Profiles 

 
Lokesh Kumar Arya: Post-graduated 

with Master of Engineering (ME) in 

Information Technology from UIET, 

Panjab University, Chandigarh. This 

research work completed under the 

guidance of Ms. Amandeep Verma. I 

would like to record my gratitude to Ms. 

Amandeep Verma for her supervision, 

advice and guidance. 

 

 

Amandeep Verma: Assistant Professor, 

Department of Information Technology at 

University Institute of Engineering & 

Technology, Panjab University, 

Chandigarh. 
 

 

 

 

 

 

 

 

How to cite this paper: Lokesh Kr. Arya, Amandeep Verma," Child based Level-Wise List Scheduling Algorithm", 

International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.9, pp. 24-31, 2017.DOI: 

10.5815/ijmecs.2017.09.03 
 

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

