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Abstract—This paper presents a new fault-tolerant 

architecture for floating-point multipliers in which the 

fault-tolerance capability is achieved at the cost of output 

precision reduction. In this approach, to achieve the fault-

tolerant floating-point multiplier, the hardware cost of the 

primary design is reduced by output precision reduction. 

Then, the appropriate redundancy is utilized to provide 

error detection/correction in such a way that the overall 

required hardware becomes almost the same as the 

primary multiplier. The proposed multiplier can tolerate a 

variety of permanent and transient faults regarding the 

acceptable reduced precisions in many applications. The 

implementation results reveal that the 17-bit and 14-bit 

mantissas are enough to obtain a floating-point multiplier 

with error detection or error correction, respectively, 

instead of the 23-bit mantissa in the IEEE-754 standard-

based multiplier with a few percent area and power 

overheads. 

 

Index Terms—Fault-tolerance, Reduced precision, 

Floating-point multiplier, Error detection, Error 

correction 

 

I.  INTRODUCTION 

Arithmetic operations are one of the primary functions 

of computer systems. This type of operations is required 

for many embedded systems, especially the ones used in 

multimedia applications [1, 2]. In particular, many 

categories of software perform vast amounts of floating-

point arithmetic operations. Meanwhile, the floating-point 

multiplication unit is an essential intellectual property (IP) 

component for modern multimedia and high performance 

computing such as graphics acceleration, signal 

processing, image processing, etc. A lot of effort is made 

over the past few decades to improve the performance 

and reliability of floating-point computations since the 

floating-point multipliers require more area and power 

consumption compared to their fixed-point counterparts. 

Because floating-point arithmetic operations are crucial 

for many applications, there are many situations in which 

an error in a floating-point calculation could be 

problematic or even disastrous. Moreover, decreasing 

feature sizes has led to reliability problems [3, 4]. Errors 

can arise due to physical faults caused by the strike of 

high-energy particles or permanent wear out of transistors 

because of continuation of shrinking the transistor and 

wire dimensions. 

The reliability and low power consumption are two 

major design objectives in today’s embedded systems. 

Since Floating Point Units (FPUs) are required for many 

embedded applications, a careful consideration should be 

given to the reliability and power consumption of FPUs 

used in the embedded systems. 

Many floating-point applications in multimedia and 

scientific computing do not require the complete 

precision, and even an approximate value will be 

sufficient for the correct operation [5]. Such floating-

point applications can tolerate imprecise computations. In 

fact, many floating-point applications can operate with 

reduced-precision floating-point values, so we can 

remove some Least Significant Bits (LSB) of mantissa in 

the floating-point values that are used in the computations. 

As a result, a part of the circuit is released that can result 

in a lower power consumption. However, in this paper, 

we add and utilize some new parts for providing 

redundant computations in order to enhance the reliability 

in the form of error detection and error correction. This 

way, we focus on error detection and error correction in 

the floating-point multiplier architecture and present two 

new 32-bit fault-tolerant floating-point multiplier designs, 

one with error detection and another with error correction 

capability. However, the main goal is to achieve the new 

fault-tolerant designs with the hardware cost very close to 

the original design. 

The proposed designs are compatible with the single-

precision representation format of floating-point values 

based on IEEE-754 standard. It is worth mentioning that 

as the proposed designs are based on reduced-precision 

computations, some computational errors may be 

produced in the outputs. Therefore, we achieve to a 

reliable floating-point multiplier against a variety of 

permanent and transient faults by accepting a few percent 

computational error in the outputs which is satisfactory in 

many multimedia applications because some output 

deviations are naturally hidden due to the limitation of 

human sense. 
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The rest of the paper is organized as follows: In 

Section II the related works, and in Section III, the 

backgrounds for IEEE floating-point standard and single-

precision floating-point multiplier are presented. Section 

IV describes the proposed fault-tolerant multiplier 

designs. Section V shows the experimental results and 

evaluates the proposed designs in terms of delay, power 

consumption and area. Finally, some conclusions are 

drawn in Section VI.  

 

II.  RELATED WORKS 

FPUs, in particular their floating-point multipliers, are 

among the most crucial and hardest components to 

protect. So the fault-tolerance capability of such units 

against faults is one of the important issues which require 

much attention. There are several techniques to improve 

reliability. However, these techniques impose a sort of 

overheads including power consumption, delay overhead 

and area overhead. Traditional fault or error 

detection/correction techniques, such as duplication with 

comparison, Triple Modular Redundancy (TMR), and the 

methods based on time redundancy (re-execution) [6] are 

used in some of the practical floating-point processors. 

However, these techniques suffer from high area and 

power overheads.  

So far, many fault-tolerant fixed-point arithmetic 

operators or units have been designed such as [7-12]. 

However, the fault-tolerant floating-point arithmetic units 

have received less attention. In [13] a floating-point 

arithmetic unit with error detection capability is proposed 

in which a cost-efficient and complete residue checking is 

utilized. However, because of the utilized original method, 

it cannot be used for error correction. In [14] an exponent 

checking architecture is proposed for floating-point 

computations, which detects many errors but apparently it 

can detect fewer errors compared to the augmented 

design in which the mantissa is checked for errors. 

Similar to [13], this design is only useful for error 

detection. 

Previous reduced-precision or bit truncation schemes 

[15-18] focused on reducing the power consumption in 

the mantissa multiplication block, due to the fact that it 

consumes the largest amount of power consumption in a 

floating-point multiplier. In [15], it is examined that how 

a software-based system can employ the minimal number 

of bits for mantissa and exponent in the floating-point 

hardware to reduce the power consumption while 

maintaining the program’s overall accuracy. This study 

shows the relationship between the accuracy of floating-

point programs and the number of bits used in the 

representation of their data. The experimental results 

stated in [15] show that none of the floating-point 

programs displays a noticeable degradation in accuracy 

when the bit width of mantissa is reduced from 23 to 11. 

Moreover, for some programs, the accuracy does not 

change significantly with as few as 5-bit mantissa. The 

results demonstrate that many programs which 

manipulate human sensory inputs, e.g. speech and image 

recognition, suffer no loss of accuracy with reduced bit 

width in the mantissa or exponent. However, limited 

studies have been performed based on reduced-precision 

to achieve error detection capability for floating-point 

adders and multipliers. Moreover, there is not any 

research regarding error correction in the reduced-

precision FPUs. 

In [19] an error detection technique for a floating-point 

adder is presented which uses a reduced-precision 

checker adder to determine whether the result is correct 

within some error bound. In this technique, the same 

amount of bits for the exponent is maintained due to the 

fact that the exponent highly influences the last result and 

thus should not be truncated, but the mantissa is truncated 

to save area and power. The full computation is done in 

parallel with the redundant computation, with the 

reduced-precision checker adder which performs the 

redundant computation, only taking the Most Significant 

Bits (MSBs) of the operands. In the last stage of the 

design there is a hardware that compares the results and 

determines whether there is an error or not. In [20] the 

Reduced Precision Checking (RPC) technique has been 

applied to the floating-point multiplier to detect errors. 

This study shows that the RPC can successfully detect 

errors in floating-point multiplication at relatively low 

cost but cannot correct errors.  

 

III.  BACKGROUND 

A.  IEEE Floating-Point Representation 

The most common representations used for real 

numbers are in the form of fixed-point or floating-point. 

The floating-point representation provides both a wider 

dynamic range and a higher precision as compared to the 

fixed-point representation, but it incurs a higher area and 

power consumption, as well. The usual display of 

floating-point numbers is determined according to IEEE-

754 standard. In this standard two main representation 

formats are defined. The first format called single-

precision format is 32 bits wide, containing one bit for the 

sign, 8 bits for the exponent and 23 bits for the mantissa. 

The second format called double-precision format is 64 

bits wide, containing one bit for the sign, 11 bits for the 

exponent and 52 bits for the mantissa. In this paper, we 

focus only on the single-precision format. However, the 

proposed architecture can be extended to double-

precision numbers. Fig. 1 demonstrates the binary 

representation of the single-precision floating-point 

format. 

According to the IEEE-754 standard, the mantissa is 

less than 1.0, but one hidden bit, which is always '1', is 

supposed to be placed on the left of the implicit binary 

point and forms the significand. Therefore, the 

significand is a normalized number in the range of [1, 2). 

In this representation, the exponent is modified with a 

bias of 127 (that is equal to 2number of exponent's bits-1-1) for the  
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Fig.1. Binary representation of single-precision format. 

single-precision format for some reasons that one of them 

is the representation of zero number with only zero bits. 

In addition, the sign bit represents the sign of significand 

while the sign of exponent is implicit inside it due to the 

fact that the two's complement representation is used for 

the exponent. The floating-point values based on different 

amounts of exponent and mantissa, are depicted in Table 

1. 

B.  Single-Precision Floating-Point Multiplier 

The single-precision floating-point multiplier performs 

the multiplication of two 32-bit inputs which are floating-

point numbers with single-precision format and provides 

the output in the same format. The multiplication of two 

floating-point numbers is performed in six steps as the 

following: 

 

 Step 1: Multiplication of significands 

 Step 2: Normalization 

 Step 3: Adding the exponents 

 Step 4: Checking for underflow/overflow 

occurrence  

 Step 5: Calculating the sign 

 Step 6: Standardizing  

 

Fig. 2 depicts the 32-bit floating point multiplier's data 

process flow. Each input is split into three parts (sign, 

exponent, and mantissa) so that can be easily routed into 

the corresponding components. The signs from the input 

operands A and B are connected directly to an XOR gate 

to generate the sign of the final result, in which '0' 

indicates the positive sign and '1' indicates the negative 

sign. The 23-bit mantissas are extracted from two 

operands to be sent to the multiplication unit. However, 

an explicit '1' is appended as the leading bit of both 

mantissas to produce the significand and fit into the 24-

bit multiplier unit. The output of the 24-bit multiplier is a 

48-bit result, but only 23 bits are extracted in order to 

follow the IEEE-754 standard rules. Thus, the 48-bit 

output of the multiplier should pass through the 

normalizer to be rounded to nearest 23-bit result of 

mantissa. The extraction of 23 bits out of 48 bits in the 

output after multiplication, as the final result for mantissa, 

has two conditions. It may also involve an adjustment of 

the resultant exponent, depending on the MSB of the 48-

bit multiplication's output. If this bit is equal to '1', one 

carry bit is given to the exponent calculation block to set 

the final exponent. 

Condition1: If the MSB (48th bit) is equal to '1', the bits 

with the indices from 25 to 47 will be selected as the final 

23-bit mantissa with rounding to nearest by adding 24th 

bit, and adding '1' to the exponent (carry is one). 

 

 

Table 1. Floating-Point Values Based on Different Amounts of 

Exponent and Mantissa 

E = 0  Zero 

0< E < 255  Normal numbers 

E = 255 , M = 0 Infinite 

E = 255 , M /= 0 Not-a-Number 

A B

Sign   Exponent         Mantissa Sign   Exponent          Mantissa

1
23 8 23

 1         Mantissa 1        Mantissa

24-bit Multiplier

NormalizerExponent adder

Standardizing 

Result 

1

1
1

8

23 23

2424

48Carry

8 23

1

8 8 Subtract 

127

32

 

Fig.2. The baseline 32-bit floating-point multiplier. 

Condition2:  If the MSB (48th bit) is equal to '0', then 

the bits with the indices from 24 to 46 will be selected 

with rounding to nearest by adding 23th bit without 

adding a carry to the exponent (carry is zero). 

The 8-bit exponent values from two operands are 

added to generate a sum of 9-bit result. The incoming 

values are biased, so a constant value of 127 must be 

subtracted from the result. In addition, the carry signal 

from the normalizer is added to this exponent for 

adjustment. Only the 8-bit exponent values are forwarded 

to the final output, which will be the 8-bit exponent in the 

IEEE-754 32-bit floating-point number. Equation (1) is 

used to obtain the sum of exponents: 

 

Exp. (Sum) = Exp. (A) + Exp. (B) – 

  127 + Carry from Normalizer                   (1) 

 

Moreover, the MSB (9th bit) is used to show that either 

overflow or underflow has occurred in the exponent. If 

the MSB of the exponent is equal to '1', it means the 

exponent value is overflowed (infinite value), and if it is 

'0', it means the exponent is under flowed (nearly zero 

value). 

Finally, the 32-bit output passes through the 

standardizing block. This block, as its name shows, is 

responsible for displaying the multiplication result 

according to the IEEE-754 standard. In addition, there are 

some special cases in which the mentioned steps are not 

needed and the answer can directly be obtained. Some of 

these special cases are shown in Table 2. 
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Table 2. Some Special Cases for Floating-Point Multiplication 

Operand A Operand B Output 

Normal Zero Zero 

Normal Infinite Infinite 

Normal Not-a-Number Not-a-Number 

Infinite Infinite Not-a-Number 

Infinite Not-a-Number Not-a-Number 

 

In the following sections, two new architectures based 

on single-precision floating-point multiplier are proposed 

and evaluated for error detection and error correction in 

such a way that the overall required hardware becomes 

almost the same as the primary multiplier. 

 

IV.  PROPOSED DESIGNS 

Many floating-point applications in multimedia and 

scientific computing can tolerate imprecise computations 

[5, 15]. In fact, many floating-point applications can 

operate with single-precision format and even less 

precision with some truncated bits. However, output 

deviations in the form of errors are not acceptable. Thus, 

the fault-tolerant methods should be considered in the 

floating-point operations to achieve error detection or 

error correction in the outputs. As the state of the art 

fault-tolerant methods incur noticeable area and power 

overheads, we utilize the bit truncation of mantissa in the 

proposed designs to reduce the overall consumed area 

while some types of redundancies are applied to achieve 

reliability in the form of error detection or error 

correction in the intended multiplier architecture. In other 

words, the precision reduction resulted by the bit 

truncation of mantissa in the floating-point representation 

of the input operands causes some blocks of the baseline 

multiplier to be smaller and thus require less area and 

power. This helps us to incorporate some redundancies to 

achieve a fault-tolerant multiplier. In this way, regarding 

the size of mantissa, the new designs can be attained with 

almost the same hardware cost as the primary design 

which is one of the main goals of this paper. 

A.  Floating-Point Multiplier with Error Detection 

As mentioned in Section III, the single-precision 

format according to the IEEE-754 standard has a bit for 

the sign, eight bits for the exponent and 23 bits for the 

mantissa, and there is also a hidden bit '1' on the left of 

the mantissa which forms the significand. To achieve an 

error detecting floating-point multiplier design, we 

maintain the same number of bits for the exponent since 

it highly influences the magnitude and the range of 

displayable floating-point numbers. However, the 

truncation of some LSBs of the mantissa is performed to 

compromise precision and reliability. 

As shown in Fig. 2, the 32-bit floating-point multiplier 

described before includes an internal 24-bit multiplier for 

multiplying two 24-bit significands of the input floating-

point operands. Thus, to achieve error detection 

capability in the multiplier, the largest part of the 

architecture, two m-bit reduced-precision internal 

multipliers (m<24) are utilized according to the concept 

of duplication with comparison method. Therefore, each 

23-bit mantissa is truncated to a new k-bit mantissa 

(which means (23–k) LSBs are removed) which together 

with the hidden bit forms an m-bit significand (m=k+1). 

This way, instead of using a large 24-bit internal 

multiplier with a 48-bit result, two m-bit reduced-

precision multipliers are utilized to produce two 2m-bit 

results to be compared in the comparator in order to 

detect probable errors with minimum hardware overheads. 

Fig. 3 depicts the proposed reduced-precision fault-

tolerant floating-point multiplier with error detection 

capability. As shown in this figure, the normalizer block 

is also duplicated to reach more error detection capability 

in entire design. In addition, an error signal will be 

asserted if the results of two m-bit internal multipliers are 

not equal after passing the normalizer blocks or two 

produced carry signals from the normalizer blocks are not 

equal. The comparators will set their output to one if their 

input operands are not equal. Otherwise, one of the 

produced results will be sent to the remaining blocks 

(exponent adder and standardizing blocks) to produce the 

last result in the form of the 32-bit single-precision 

floating-point number. It should be noted that in the 

standardizing block, (23–k) zeros are appended at the 

right of the k-bit resultant mantissa to obtain the 32-bit 

standard result. As will be shown in Section V, a proper k 

value can be selected regarding the total hardware cost 

(area, power, delay) to obtain low-cost error detecting 

design with almost the same hardware cost as the primary 

design while reducing the output's precision. 

B.  Floating-Point Multiplier with Error Correction 

It is clear that more cost is imposed if an error 

correcting multiplier is to be reached. Thus, to maintain 

the entire cost almost unchanged, more precision 

reduction is needed. This way, tree n-bit reduced-

precision multipliers (n<m<24) are utilized according to 

the concept of TMR method to correct single errors in the 

fault-tolerant floating-point multiplier. Therefore, each 

23-bit mantissa is truncated to a new t-bit mantissa 

(which means (23–t) LSBs are removed) which together 

with the hidden bit forms an n-bit significand (n=t+1). 

This way, instead of a large 24-bit internal multiplier with 

a  48-bit  result,   tree  n-bit   reduced-precision   internal 

multipliers are utilized to produce tree 2n-bit results to be 

compared in the voter in order to mask or correct 

probable errors. 

Fig. 4 depicts the proposed reduced-precision fault-

tolerant floating-point multiplier with error correction 

capability. In this figure, the normalizer block is 

triplicated similar to the internal multiplier to reach more 

error correction capability in entire design. In addition, 

two voters are utilized including a t-bit voter for masking 

single errors in the resultant mantissa and a one-bit voter 

for the output carries of the normalizer blocks. Then, the 

voters' outputs will be sent to the remaining blocks to 

produce the last result in the form of the 32-bit single-
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precision floating-point number. Similar to the error 

detecting multiplier, several zeros (23–t) are appended at 

the right of the t-bit resultant mantissa in the 

standardizing block to obtain the 32-bit standard result. 

As will be shown later, a proper t value can be selected 

regarding the total hardware cost to obtain a low-cost 

error correcting design while reducing the output's 

precision. 

 

A B

 Sign   Exponent         Mantissa  Sign   Exponent         Mantissa

1 8 23 1
8 23

  1           Mantissa  1          Mantissa

m-bit Multiplier

K-bit Normalizer

Exponent adder

Result

m-bit Multiplier

k

2m2m

K-bit Normalizer

k-bit Comparator

Error 

Carry2 

m=k+1

m=k+1

Carry1 

1 1

Subtract 

127

8 8
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81

32
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k
11

k

11

k
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Fig.3. Proposed 32-bit reduced-precision floating-point multiplier with 

error detection. 
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Fig.4. Proposed 32-bit reduced-precision floating-point multiplier with 

error correction. 

 

V.  EXPERIMENTAL RESULTS 

To obtain a proper size for fault-tolerant floating-point 

multipliers in which the required area and power become 

very close to the baseline multiplier, different precisions 

are investigated for the mantissa in two proposed 

architectures. Therefore, the baseline and the proposed 

designs are implemented with VHDL, and then, 

synthesized using Synopsys Design Compiler to obtain 

the area, power, and delay requirements of the baseline 

and the proposed designs while changing the bit width of 

mantissa i.e. k and t values in error detecting and error 

correcting architectures, respectively. The synthesis 

results shown in Tables 3 and 4 are according to CMOS 

65 nm LPLVT STMicroelectronics standard cell library 

(with 1.2 V power supply in 25°C temperature). 

Table 3 shows the required area, power and delay of 

the proposed error detecting floating-point multiplier with 

different precisions (15, 16, and 17 bits for mantissa) in 

addition to the baseline multiplier in which a 23-bit 

mantissa is utilized. This table also presents different 

overheads (O.H.) compared to the baseline multiplier 

regarding some parameters. Each negative overhead 

shows that the new multiplier with an specific size of 

mantissa (k) not only does not have any overhead in that 

parameter, but even outperforms compared to the basic 

non-fault-tolerant design. According to Table 3, an error 

detecting floating-point multiplier with k equal to 17 

which means it includes two 18-bit internal multipliers 

instead of one 24-bit internal multiplier, requires a few 

percent area and power overheads compared to the 

baseline multiplier while its speed is still higher because 

it requires lower delay. In other words, the design with 

the 17-bit mantissa requires the area and power very close 

to that of the baseline multiplier. Therefore, it can be used 

instead of the baseline non-fault-tolerant floating-point 

multiplier.  

It is worth mentioning that according to [15], using the 

11-bit mantissa in representing the floating-point 

numbers is enough for many applications to produce the 

satisfying results. Thus, all the designs with 15-, 16-, or 

17-bit mantissa shown in Table 3 can be used instead of 

the baseline floating-point multiplier. Especially, the 

designs with 15-bit or 16-bit mantissa require lower area, 

power consumption and delay compared to the baseline 

multiplier.   

It should be noted that in the baseline floating-point 

multiplier, the main 24-bit multiplier solely consumes 

85% of total area. Thus, making only this block fault-

tolerant, will result in a high fault-tolerance capability in 

overall architecture. The last column of Table 3 shows 

error detection probability in the designs with different 

mantissa. This probability is simply obtained according to 

the area that each part of the design is consumed. 

Therefore, error detection probability shown in Table 3 is 

the area ratio of the parts with error detection capability 

in the proposed floating-point multiplier for different k 

values. This area ratio which corresponds to the error 

detection probability is obtained based on the fact that 

only duplicated parts and comparators in the new 

multiplier have error detection capability. Thus, for 

example, for k equal to 17, two multipliers, two 

normalizers, and the comparators including the last OR 

gate, consume 10118.2 um2, 376.5 um2, and 96.2 um2, 

respectively, which leads to the error detection 

probability equal to 89.4% respecting the total area equal 
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to 11850.8 um2 in this design. It is clear that more error 

detection probability will be reached if a longer mantissa 

is used in the proposed design. 

Table 4 shows the required area, power and delay of 

the proposed error correcting floating-point multiplier 

with different precisions (11, 13, 14 and 15 bits for 

mantissa) in addition to the baseline multiplier in which a 

23-bit mantissa is utilized. This table also demonstrates 

different overheads compared to the baseline multiplier 

regarding the mentioned parameters. According to Table 

4, an error correcting floating-point multiplier with t 

equal to 14 which means it includes three 15-bit 

multipliers instead of one 24-bit internal multiplier, 

requires the area and power consumption very close to 

that of the baseline multiplier. In other words, the design 

with the 14-bit mantissa requires only 5% area overhead 

compared to the baseline multiplier. In addition, it 

requires 3.6% less power and 20.3% less delay compared 

to the baseline multiplier. Thus, it can be used instead of 

the baseline non-fault-tolerant floating-point multiplier as 

a design with error correction capability while it requires 

less power and delay, as well. In addition, as the 11-bit 

mantissa is enough for many applications to produce the 

desirable results [15], all the reduced-precision designs 

shown in Table 4 can be used instead of the baseline 

floating-point multiplier. 

Table 3. Proposed Error Detection Multiplier with Different Precisions Compared to the Baseline Multiplier 

Size of mantissa 

in bits 

Delay 

(ns) 

Delay 

O.H. 

Area 

(um2) 

Area 

O.H. 

Power 

(mw) 

Power 

O.H. 

Error 

Detection 

prob. 

k=23 (Baseline) 8.70 NA 11290.2 NA 5.62 NA NA 

k=15 6.76 -22.3% 10098.4 -10.6% 4.39 -22.9% 89.2% 

k=16 7.24 -16.8% 11213.8 -0.7% 5.08 -9.6% 89.1% 

k=17 7.00 -19.5% 11850.8 +5.0% 5.77 +2.7% 89.4% 

Table 4. Proposed Error Correction Multiplier with Different Precisions Compared to the Baseline Multiplier 

Size of mantissa 

in bits 

Delay 

(ns) 

Delay 

O.H. 

Area 

(um2) 

Area 

O.H. 

Power 

(mw) 

Power 

O.H. 

Error 

Correction 

prob. 

t=23 (Baseline) 8.70 NA 11290.2 NA 5.62 NA NA 

t=11 5.69 -34.6% 7098.5 -37.1% 3.45 -38.6% 87.1% 

t=13 6.42 -26.2% 10531.0 -6.7% 4.65 -17.3% 89.5% 

t=14 6.93 -20.3% 11850.3 +5.0% 5.42 -3.6% 90.4% 

t=15 6.81 -21.7% 14548.0 +28.9% 6.33 +12.6% 92.0% 

 

Furthermore, similar to Table 3, the last column of 

Table 4 depicts the fault-tolerance capability in the form 

of error correction as a function of the size of mantissa. 

According to Fig. 4, the blocks in which all single errors 

will be masked or corrected include three n-bit 

multipliers and three t-bit normalizers. These blocks, for 

example for the design with t equal to 14, consume 

10712.5 um2 altogether which finally leads to 90.4% 

error correction probability respecting the total area that 

is equal to 11850.3 um2. According to Table 4, it is 

apparent that more error correction probability will be 

reached if a longer mantissa is used in the proposed 

design. However, more hardware overheads will be 

required, as well. 

As mentioned in Section II, the RPC technique [20] 

can be used for detecting errors in the floating-point 

multiplier. This technique in which the 32-bit floating-

point multiplier is checked by a k-bit (k<23) reduced-

precision floating-point checker multiplier, requires the 

area and power overheads equal to 17.8% and 35%, 

respectively, for the checker multiplier in which the 

mantissa with the size of only 7 bits has been used. It is 

clear that the area and power overheads for that method 

would be more for longer mantissa used in the checker. 

However, as shown in table 3, the required area and 

power overheads in our error detecting scheme are much 

lower, even with a longer mantissa. For example, the 

design with a 17-bit mantissa requires only 5% and 2.7% 

area and power overheads, respectively, while its 

precision is much higher than that of the checker in [20]. 

In addition, based on [15] the 11-bit mantissa is enough 

for many applications that verifies our proposed fault-

tolerant designs. 

Since the proposed fault-tolerant floating-point 

multipliers in this paper are based on output's precision 

reduction method, therefore, some small and limited 

computational errors will be produced at the output. 

However, in many applications especially the 

applications that are relevant to human senses such as 

hearing and vision, the precise computation is not 

required and some percent of computational errors is 

acceptable in the outputs. In other words, many floating-

point applications in multimedia and scientific computing 

can tolerate imprecise computations. The estimation of 

maximum relative error is straightforward for a floating-

point output, and can be calculated according to the 

following equation: 

 

Maximum Relative Error = 2-l                (2) 

 

In the equation above, l is the bit width of the mantissa 

used in the representation of floating-point number. Table 
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5 demonstrates the maximum relative errors in different 

multipliers with different precisions or bit width of 

mantissa. For example, in both proposed error detecting 

and error correcting multipliers in which m equal to 16 is 

used, the bit width of the mantissa (k) equals 15 which 

results in the maximum relative error equal to 2-15 or 

3.05×10-5. 

Table 5. Maximum Relative Errors for Different Multipliers with Different Precisions 

Type of 

Multiplier 
Error Cor. Error Cor. 

Both Error Cor. 

and Error Det. 
Error Det. Error Det. Baseline 

Size of mantissa 

in bits 
13 14 15 16 17 23 

Maximum 

Relative Error 
1.22×10-4 6.1×10-5 3.05×10-5 1.53×10-5 7.63×10-6 1.19×10-7 

VI.  CONCLUSION 

In this paper, two floating-point multiplier 

architectures were proposed beneficial for fault-tolerant 

computations especially for the applications that can 

tolerate imprecise computations. The first multiplier has 

error detection capability and the other has error 

correction capability. However, for both proposed 

multipliers, the width of mantissa can be selected so that 

they require almost the same hardware cost compared to 

the non-fault-tolerant baseline multiplier. This property is 

achieved by an appropriate output's precision reduction. 

In addition, the proposed multipliers have more speed 

compared to the baseline multiplier. In this technique, 

less precise multiplication is used which results in less 

hardware cost. Thus, more smaller and redundant 

multipliers can be utilized for error detection or error 

correction in the overall multiplication. The proposed 

multipliers can tolerate both the permanent and transient 

faults by accepting some percentage of errors in the 

output. The implementation results show that a proper 

fault-tolerant floating-point multiplier can be selected 

with almost the same area and power requirements 

compared to the baseline architecture while having an 

acceptable output precision for many floating-point 

applications. 
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