
I.J. Modern Education and Computer Science, 2017, 5, 43-49
Published Online May 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.05.06

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 43-49

Proposed Automated Framework to Select

Suitable Design Pattern

M. Rizwan Jameel Qureshi and Waleed Al-Geshari
Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

E-mail: rmuhammd@kau.edu.sa, waleedalgeshary@gmail.com

Abstract—Many design patterns are available in the

existing literature. Due to the availability of the enormous

quantity of design patterns, it is extremely hard for a

developer to find the suitable design pattern to address

the problem. An experienced developer can even face

problem to select the appropriate pattern for a specific

problem and it is no man's land for junior developers.

This paper proposes a novel framework that will generate

problem-related questions to a developer to find suitable

design pattern using a repository. The answers to these

questions can guide developers to select the suitable

design patterns. This paper uses the questionnaire as a

data collection instrument to conclude the results. The

results are found supportive indicating that the proposed

framework will solve the problem in hand.

Index Terms—Design patterns, repository, programming,

automated framework.

I. INTRODUCTION

Design patterns are reusable solutions to the occurring

software design problems. It is a template or description

to solve problems as per the requirements of projects and

needs of companies. Many design patterns are introduced

after the Gang of Four (GoF) publishes a book (Design

Patterns: Elements of Reusable Object-Oriented Software)

in 1994. The GOF defines 23 patterns allowing

programmers to resolve their problems. The GOF defines

name of each pattern to facilitate communication, specific

problem in the context of application to apply, solution,

and consequences of applying a pattern with respect to

results and tradeoffs. The design patterns are divided into

three types i.e., creational, structural and behavioral. It is

recommended that quality of developed software is

increased using design patterns like ease in maintenance,

reuse and flexibility to update and upgrade [1]. Many

studies are reported to reflect the importance of design

pattern on software development using case study, survey

and simulation research methods. A further investigation

is required to estimate that how much cost, time, effort

and resources consume to select a suitable pattern [2].

It merely depends on the experience of the developers

to determine the suitable design pattern for a specific

problem. Moreover, for the novice programmers, it is

extremely hard to find the appropriate pattern as per the

problem in hand. Many researchers are trying to find

ways to select suitable design pattern for specific

situations. Based on problem domain context, Intakosum

and Muangon [3] propose a model for programmers to

access the suitable design patterns to solve design

problems. The proposed model [3] is composed of two

parts, the analysis, and the calculation of index weight.

The proposed model tested by creating document indexes

from GOF design patterns descriptions. These indexes

and their weights stored in the database and tested based

on 105 queries. The result of this approach is limited to

the matching between document, query indexes, and

index weight. To improve this model, it needs to

performing a query analysis that using techniques such as

syntactic, semantic analysis, and case-based reasoning.

In this paper, an attempt is made to study the existing

literature to identify the problems relevant to selecting

suitable design patterns. The design pattern problem is

addressed by proposing a novel framework to automate

the process of pattern selection. The proposed framework

will make it easy to software development teams to

choose the most appropriate design patterns using a

repository.

The paper is organized as follows. Section 2 outlines

the related work. Section 3 defines the problem. Section 4

presents the details of the proposed solution. Section 5

validates the proposed solution.

II. RELATED WORK

Design pattern definition language (DPDL) is proposed

to help developers to implement and share design patterns

[4]. DPDL is developed using XML and it can be utilized

to define design patterns. By a combination of a natural

language, design languages are introduced to define

design patterns such as UML. DPDL is easy to use and

easy to understand. It gives a clear description of the

pattern and it can be extended. DPDL lacks in formalism,

and it is difficult to recognize design patterns by using

DPDL from source code. It requires translating the code

into XML to parse and identify patterns. DPDL is

validated through simulation using two open source tools

[4]. DPDL also needs tool support to extend and enhance.

Smith and Plante [5] develop a tool so that a

programmer can dynamically search for signs using a

particular design pattern. The suitable recommendations

are provided to a programmer during code development.

A format is developed by representing both the structural

and behavioral requirements of these patterns. This

format is flexible but somehow it is limited in the types of

44 Proposed Automated Framework to Select Suitable Design Pattern

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 43-49

behaviors and structures. In order to expand the patterns,

it requires the determination and modulation of more

anti-patterns to tool up the recommendations for more

design patterns.

Nahar and Sakib [6] present anti-pattern based design

pattern recommended (ADPR). ADRP discovers anti-

patterns and recommends identical design patterns by

using design diagrams. It is only designed to address

abstract factory pattern and it also contrasts to the code-

based recommender. A prototype of ADPR is

implemented in Java to validate the proposed research [6].

The existing anti-patterns use the source code to perform

comparative analysis. Presently, the proposed tool needs

more work to be extended for other design patterns and

generalize the process [6].

The intelligent solutions to a specific software problem

are design patterns. The main problem with this approach

is the indexing. Therefore, the searching tools for design

patterns are needed to solve this problem. Muangon and

Intakosum [7] propose a model to solve the indexing

problem integrating case-based reasoning (CBR) and

formal concept analysis (FCA). This model offers a

technique that allows experts to regulate indexes. In

addition, it provides a method that keeps the new

experiences to solve similar problems those are to be

searched in future. Muangon and Intakosum [7] evaluate

their research using prototype technique.

Birukou et al. [8] present system for implicit culture

support (SISC) to select the appropriate patterns for a

specific design problem. It depends on the history

decisions that are already taken by other programmers.

SISC uses the implicit culture (IC) that supplies

recommendations on design patterns. The proposed

approach, by Birukou et al. [8], is validated by

conducting experiments and it can be enhanced to

provide support using advanced recommendation

scenarios.

Hasheminejad and Jalili [9] propose a method to

identify suitable design patterns. The proposed method is

an input design patterns depend on the classification of

the text. These inputs are the problem of several design

patterns. This method starts in two steps i.e., start to learn

the patterns and retrieving the appropriate pattern to a

specific situation that is textually described.

Kampffmeyer and Zschaler [10] propose design pattern

intent ontology (DPIO). The objective is to formulate and

classify the GOF design patterns by their intents. The

large number of the patterns are available that makes it

hard for developers to find the useful patterns to solve

certain design problems. Hence, it also requires tools

support to search and find the appropriate design pattern

to a certain problem. Kampffmeyer and Zschaler [10]

develop Wizard that enables developers to find the

applicable design patterns. The Wizard is a stand-alone

application. It needs to be integrated with CASE tools to

integrate the pattern.

According to the typical of helping the beginner

designers, Diaz et al. [11] propose a recommendation

system that integrates into a visually for the pattern

named VEISIG. This module depends on the cooperative

filtering. The information is formulated by expert users of

both patterns language and the solutions. The goals

organized in design views as assembly, routing,

demonstration, personalization, and protection. The

system begins rating the design patterns, which are not in

the first selection. When all ratings are acquired, the

algorithm selects the pattern that has the highest rating.

Critically, the recommendation process in this approach

is not transparent to the end users.

Cinn éide and Nixon [12] develop a new methodology

to apply on a set of patterns (from GOF design patterns).

This methodology elaborates creational patterns but it is

not supporting structural and behavioral patterns. The

proposed methodology is effective only if the

programmer has a clear rational model.

Dong et al. [13] propose an approach to identify the

design patterns based on the description of their structure

including pattern matrix and weight. This approach

consists of various phases: the first phase- the structural,

second phase- the behavioral and third phase- the

semantic analyses to minimize fake positives. Dong et al.

[13] develop tools called DP-Miner to prove this research.

DP-Miner calculates the weight of both matrix and

classes to show the relation between them using Java

packages. Further, Dong et al. [13] describe to select a

pattern based on its behavioral, structural, and semantic

analyses. It is a good idea to use data mining matrix

algorithms to compute and store design pattern. The data

mining algorithm matches a pattern based on the matrix

and weight of the system.

Berghe et al. [14] introduce inductive logic

programming techniques to choose the appropriate

software patterns. These techniques depend on the

concise relational models. The big challenge is to design

a suitable formal language to represent requirements of

the software in a relative learning framework. Issaoui et

al. [15] present approach that helps designers during the

design process. It helps the designer to select a suitable

design pattern. The recommendation patterns guide a

suitable design pattern by the number of semantic

standard and retrieval of the design pattern intents.

Alencar et al. [16] propose component based approach to

describe the design patterns to reuse components. The

research related to design patterns is supported by limited

empirical evaluations [16].

Five patterns are described i.e., Decorator, Composite,

Abstract Factory, Observer and Visitor [17]. Design

patterns are effective when simple solution is preferred.

It is extremely beneficial for the developers to adopt

common sense approach to select suitable pattern.

Prechelt and Liesenberg [18], Juristo and Vegas [19],

Nanthaamornphong and Carver [20] and Krein et al. [21]

repeat the same research setting that is conducted for

experiment name PatMain in [17] to generalize the results

but with a different tool. Thirteen students take part in the

case studies those are conducted by Prechelt and

Liesenberg [18]. Two case studies are performed by

Juristo and Vegas [19] to develop two software systems.

The results are replicated that are produced in PatMin [17]

to confirm the validity of research. Juristo and Vegas [19]

 Proposed Automated Framework to Select Suitable Design Pattern 45

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 43-49

address Abstract Factory, Composite and Decorator

patterns. Nanthaamornphong and Carver [20] address

Observer, Visitor, Decorator and Composite.

Nanthaamornphong and Carver [20] include eighteen

students in the case study. Nanthaamornphong and

Carver [20] results are dissimilar from the results of

PatMin [17]. Krein et al. [21] study is based on Decorator,

Composite and Abstract Factory patterns.

Table 1. Summary of the Existing Literature

Title - Limitation

Retrieving Model for Design

Patterns [3]

- It needs to be improved

to perform a query

analysis using

techniques such as

syntactic, semantic

analysis, and case-based
reasoning.

Towards design pattern

definition language [4]

- DPDL lacks formalism.

Dynamically recommending
design patterns [5]

- This paper limited in the
types of behaviors and

cannot deal with

cyclical structure.

ACDPR: A Recommendation

System for the Creational

Design Patterns Using Anti-
patterns [6]

- ADPR is prepared for

the recommendation of

the Abstract Factory
design pattern only.

Case-Based Reasoning for

Design Patterns Searching

System [7]

- This model limited to

indexing problem.

Choosing The Right Design

Pattern: The Implicit Culture

Approach [8]

- The problem is with the

implicit information of

pattern.

Design patterns selection: An
automatic two-phase method

[9]

- The proposed method
relies on the number of

inconsistencies in the

classification of the
design patterns group.

Finding the Pattern You Need:

The Design Pattern Intent
Ontology [10]

- This ontology is not

tested with other
catalogs of design

patterns.

Using recommendations to
help novices to reuse design

knowledge [11]

- The validity of the
experiment needs to be

judged with an

industrial case study.

Automated Software Evolution

Towards Design Patterns [12]

- The tool is beneficial

only if a programmer

has a clear rational
model.

DP-Miner: Design Pattern

Discovery Using Matrix [13]

- All classes presented in

a design pattern require
being named with

pattern-related

information

Towards an Automated Pattern
Selection Procedure in

Software Models [14]

- The big challenge of
this paper is to design a

suitable formal

language.

A New Approach for

Interactive Design Pattern

Recommendation [15]

- This paper does not

examine how to offer

composition among
patterns.

A Pattern-Based Approach to

Structural Design Composition

[16]

- It does not focus on

behavioral properties of

patterns.

The consequence of using design patterns on software

development are discussed by performing experiments

using JHotDraw software system [22]. It is concluded

that design patterns have firm positive effect in

improving the efficiency of software development and

maintenance. A comprehensive literature review is

completed to map and analyze the experimental data

about GOF patterns [23]. The existing studies are

inefficient to conclude the results that there is coherence

between use of design patterns and the resultant software

quality. A similar study is conducted to find the effect of

GOF design patterns on four software quality attributes

i.e., ability to maintain, flexibility, efficiency and

correctness [24]. The outcome of the study infers that the

effect of design patterns over ability to maintain,

flexibility and correctness is adverse but efficiency is

improved [24].

An empirical study is performed to examine the impact

of selecting appropriate design patterns by developers on

the functionality quality attribute [25]. The results are

found encouraging and it show that though there is

chance of misappropriation while selecting design

patterns but use of design pattern have profound effect on

software development and maintenance.

A study is presented that how to select a suitable

design pattern using a collaborative tool to guide [2]. The

collaborative tool contains a set of matching criteria and

rules. The research is in its preliminary stage to drive

ample results. The proposed tool needs to be tested in an

industrial setting to judge its effectiveness. The impact of

design patterns on quality attributes is illustrated using

mathematical modeling and metrics [26]. Multiple case

studies are conducted using open-source software to

conclude the results. A decision support system (DSS) is

developed to facilitate the developers to select the

appropriate design pattern as per the requirements [26].

The proposed DSS needs to select pattern at issue, size of

software and requirements regarding quality attributes.

The results show increase in reusability and low

maintenance if design patterns approach is followed

while developing software in an organization. Alghamdi

and Qureshi [27] measure the relative ratio between

design patterns and software maintenance. A tool is also

proposed to simulate the scenarios to evaluate the results.

The limitations of existing literature are illustrated in

Table 1.

III. PROBLEM STATEMENT

The huge amount of the design pattern that available

makes the developers confused for which design patterns

should select to solve their problem. So, the question of

this paper is as follows [13-14].

What are the methodologies that help developers to

select the appropriate design pattern to solve their

problem?

IV. THE PROPOSED SOLUTION

A developer faces serious issues while looking for a

suitable design pattern to address requirement. In this

46 Proposed Automated Framework to Select Suitable Design Pattern

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 43-49

research, we propose a novel framework to address this

problem as shown in fig. 1. The proposed framework

provides a way to select appropriate design pattern based

on the attributes of the design pattern that are mentioned

by Gang of Four authors (GOF) [1]. The attributes are

pattern name, intents, descriptions, applicable, and

structure. These elements help the developers to identify

the suitable design pattern that can be the better solution

of their problem. According to the GOF, the most

attributes of the design pattern are shows in Table 2 [27].

Table 2. Design Pattern Attributes

Attributes Description

Pattern Name Describe the core of the pattern

Known as List of the synonyms of the pattern

Intents Explain the purpose and what the patterns do.

Motivation This provide simple example of problem and

solve this problem by the pattern

Applicable List the applicability of the pattern

Structure Diagram and objects

Participant Describes the responsibilities of the classes
and objects

Collaborations This show how Participants Collaborations

Consequences Describes the forces that exist with the

pattern and the benefits, trade-offs, and the
variable that is isolated by the pattern.

Fig.1. The proposed Framework.

The GOF Team divides the patterns into three types: A)

Creational pattern, B) Structural patterns, and C)

Behavioral patterns. This classification spends time for a

developer who is looking for the design pattern. The

proposed framework addresses the problem in hand by

defining three goals.

Goal 1. Identify the relation between design patterns

and the problem of a developer.

Goal 2. The experience of a developer.

Goal 3. The effectiveness of design patterns.

A. Goal 1- Identify the relation between the design

patterns and the problem of a developer.

To find the relation between a design pattern and the

developer problem, need to understand the problem and

match with the design pattern based on Design pattern

attributes. It will select mare than one design pattern at

the beginning. The pattern with the highest matching will

be selected from the GOF repository. To make it easier

for the beginner developer, this is the core of our research

creates the new repository. The new repository stores all

problems and design patterns that solve those problems.

For the beginner developer, they need to check the new

repository first, if found a similar problem then display its

suitable design pattern, if not found a similar problem, in

this case, needs to check the GOF repository (Original

repository).The criteria to select design pattern from GOF

repository depend on answering some questions. These

questions build according to the properties of the design

patterns. Based on the developer answer, the system

decides which design pattern is suitable to the defined

problem.

B. Goal 2- The experience of a developer.

Developers can be categorized based on their

experiences.

1) Expert Developer.

2) Beginner Developer.

There is a relation to select appropriate design pattern

and developer experience. It shows how long time they

spent for searching to select the pattern. The expert

developer can easily find a solution based on his

experience but the beginner takes a long time to find a

solution. To benefit from the expert developer for

creating the new repository to store all problems and

select design pattern. It will help the junior developer for

selecting the similar problem.

C. Goal 3- The effectiveness of design patterns.

The effectiveness is the impact of the solution that

provided by design pattern. Most of the developers using

design patterns to solve problems. This shows how the

patterns effectively in software developments. This

methodology will formalize depend on the questionnaire

that will spread to the developers and students in the

college of computer science, and gather the answers to

validates our goals.

V. VALIDATION

This research uses the survey methods to validate the

proposed solution. The questionnaire consists of 13

questions covers three goals: the first goal is the relation

between the design patterns and the developer problem,

the second goal is developer experience, and the third

If found

No

Define

problem

New

Repository

for similar

problem

Original

Repository

GOF

Display

questions to

match between

developer’s

problem and

design pattern

Display the

selected design

pattern

Display the

similar

problems

Yes

Check

Developer

 Proposed Automated Framework to Select Suitable Design Pattern 47

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 43-49

goal is the effectiveness of the design patterns. The

questions are answered using the likert scale that is

ranging from 1 to 5.

 Very low effect indicating 1

 Low effect indicating 2

 Nominal/Average effect indicating 3

 High effect indicating 4

 Very high effect indicating 5

A. Cumulative Analysis of Goal 1.

Cumulative responses of the Goal 1, ‘Identify the

relation between design patterns and the problem of a

developer’, are shown in Table 3.

50% of the responses were in favor of Goal 1, of which

36% agreed while 13.9% strongly agreed to the effects of

the proposed framework in helping to identify the relation

between the design pattern and the problem of a

developer. 34.4% of the cumulative responses were

neutral while 15.5% of the participants were not in favor

of it. 8.5% of the respondents disagreed and 6.9% of the

software engineers strongly disagreed to Goal 1 as shown

in fig. 2.

Table 3. Cumulative Frequency Analysis of goal 1

Q. No.

Very

Low Low Nominal High

Very

High

Q1 0 2 8 15 6

Q2 1 1 5 12 12

Q3 0 0 19 10 2

Q4 3 2 10 15 1

Q5 0 8 10 13 0

Q6 9 3 12 2 5

Total 13 16 64 67 26

Avg. 6.9% 8.6% 34.4% 36.0% 13.9%

Fig.2. The Cumulative Analysis of Goal 1.

B. Cumulative Analysis of Goal 2.

Cumulative responses of the Goal 2 (The experience of

a developer) were shown in Table 4. According to Table

4, 18.5% of the responses were in favor of Goal 2 of

which 1.6% strongly agreed and 16.9% agreed to it. 51.6%

of the respondents were not in favor of Goal 2. 26.6 of

the software engineers were disagreed while 25% of the

participants were strongly disagreed to Goal 2. Responses

which remained neutral were 29.84% as shown in fig. 3.

Table 4. Cumulative analysis of goal 2

Q. No
Very
Low Low Nominal High

Very
High

Q7 9 5 9 8 0

Q8 4 12 14 1 0

Q9 15 8 7 1 0

Q10 3 8 7 11 2

Total 31 33 37 21 2

Avg. 25% 26.6% 29.8% 16.9% 1.61%

Fig.3. The Cumulative Analysis of Goal 2.

C. Cumulative Analysis of Goal 3.

Cumulative responses of the Goal 3 were shown in

Table 5. Table 5 showed that 47.2% of the responses

agreed with goal 3 in which 6.4% of the software

engineers strongly agreed and 40.8% of the professionals

agreed with it. 40% of the responses remained neutral for

Goal 3. 11.8% of the responses were not in favor of the

Goal 3 as shown in fig. 4.

Table 5. Cumulative Frequency Analysis of goal 3

Q. No. Low Nominal High
Very
High

Q11 3 11 17 0

Q12 1 20 7 3

Q13 7 7 14 3

Total 11 38 38 6

Avg. 11.8% 40.8% 40.8% 6.4%

Fig.4. The Cumulative Analysis of Goal 3.

D. Final Cumulative Analysis of Three Goals.

Cumulative responses of the three goals were shown in Table

6. Table 6 showed that 38.5% of the responses agreed with 3

goals in which 7.3% of the software engineers strongly agreed

and 31.2% of the professionals agreed to it. 35% of the

responses remained neutral for 3 goals. A total of 26.2%

responses disagreed with the three Goals, of which, 15.6%

of the respondents disagreed while 10.6% of the software

48 Proposed Automated Framework to Select Suitable Design Pattern

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 43-49

engineers strongly disagreed with the 3 Goals as shown in

fig. 5.

Table 6. Cumulative Frequency Analysis of 3 Goals

Goal

No.

Very

Low Low Nominal High

Very

High

Goal 1 6.9 8.6 34.4 36.0 13.9

Goal 2 25 26.6 29.8 16.9 1.6

Goal 3 0 11.8 40.8 40.8 6.4

Total 31.9 47 105 93.7 21.9

Avg. 10.6% 15.6% 35.0% 31.2% 7.3%

Fig.5. The Cumulative Analysis of 3 Goals.

VI. CONCLUSION

Design patterns are the repeatable solutions to the

software design problems. The developers use the design

pattern to solve their problem and to increase the

efficiency of their project. The main problem that faces

the experience and inexperience developers is how to

select the appropriate pattern to a given problem. This

paper proposed a novel framework that returns the

suitable design pattern to the developer's problem. The

result of this paper is validated by questionnaire cover

three goals: the relation between the design patterns and

the developer problem, the experience of a developer and

the effectiveness of design patterns. The proposed

framework is validated in using a survey, and it is

supported by 40% of the respondents. The results indicate

that the proposed framework is acceptable, practical and

applicable for software development companies. It is

anticipated that the illustrated work will encourage

software companies to implement the proposed

framework to select suitable design pattern to enhance the

organizational productivity. As future work, we would

like to build a project to test the proposed solution and

prove it.

REFERENCES

[1] Gamma, E., Helms, R., Johnson, R., Vlissides, J., ‘Design

Patterns: Elements of Reusable Object-Oriented Software’

(Addison-Wesley Professional, Reading, MA, 1995).

[2] Nadia, B., Kouas, A. and Ben-Abdallah, H., ‘A design

pattern recommendation approach’. Proc. of CORD

Conference, 2011, pp. 590- 593.

[3] Intakosum, S., and Muangon, W., ‘Retrieving model for

design patterns’. ECTI Transactions on Computer and

Information Technology (ECTI-CIT), 2007, 3, (1), pp.51-

55.

[4] Khwaja, S. and Alshayeb, M., ‘Towards design pattern

definition language’. Software: Practice and Experience,

2013, 43, (7), pp. 747-757.

[5] Smith, S. and Plante, D. R., ‘Dynamically Recommending

Design Patterns’. Proc. of the 24th International

Conference on Software Engineering and Knowledge

Engineering (SEKE), 2012, pp. 499–504.

[6] Nahar, N., and Sakib, K., ‘ACDPR: A Recommendation

System for the Creational Design Patterns Using Anti-

patterns’. Proc. of 23rd International Conference on

Software Analysis, Evolution, and Reengineering

(SANER), 2016, pp. 4-7.

[7] Muangon, W. and Intakosum, S., ‘Case-based Reasoning

for Design Patterns Searching System’. International

Journal of Computer Applications, 2013, 70, (26), pp. 16-

23.

[8] Birukou, A., Blanzieri, E. and Giorgini, P., ‘Choosing the

right design pattern: an implicit cultural approach’

(Technical Report, University of Trento, Italy, 2006).

[9] Hasheminejad, S.M.H. and Jalili, S., ‘Design patterns

selection: An automatic two-phase method’. Journal of

Systems and Software, 2012, 85, (2), pp.408-424.

[10] Kampffmeyer, H., and Zschaler, S., ‘Finding the pattern

you need: The design pattern intent ontology’. Proc. of

International Conference on Model Driven Engineering

Languages and Systems, Springer Berlin Heidelberg,

2007, pp. 211-225.

[11] Díaz, P., Malizia, A., Navarro, I. and Aedo, I., ‘Using

recommendations to help novices to reuse design

knowledge’ Proc. Of International Symposium on End

User Development, Springer Berlin Heidelberg, 2011, pp.

331-336.

[12] Ó Cinnéide, M., and Nixon, P., ‘Automated software

evolution towards design patterns’. Proc. of the 4th

International workshop on Principles of software

evolution, 2001, pp. 162-165.

[13] Dong, J., Lad, D.S. and Zhao, Y., ‘DP-Miner: Design

pattern discovery using matrix’. Proc. of the 14th Annual

IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems (ECBS'07),

2007, pp. 371-380

[14] Berghe, A., Haaren, J. V., Baelen, S. V., Berbers, Y. and

Joosen, W., ‘Towards an automated pattern selection

procedure in software models’. Proc. of 22nd International

conference on inductive logic programming (ILP 2012),

2012, pp. 68-73.

[15] Issaoui, I., Bouassida, N., and Ben-Abdallah, H., ‘A New

Approach for Interactive Design Pattern

Recommendation’. Lecture Notes on Software

Engineering, 3, (3), 2015, p.173-178.

[16] Alencar, P., Cowan, D., Dong, J. and Lucena, C., ‘A

pattern-based approach to structural design composition’.

Proc. of 23rd International Annual Conference on

Computer Software and Applications Conference, 1999.

pp. 160-165.

[17] Prechelt, L., Unger, B., Tichy, W. F., Brossler, P. and

Votta, L. G., ‘A controlled experiment in maintenance:

comparing design patterns to simpler solutions’. IEEE

Transactions on Software Engineering, 2001, 27, (12), pp.

1134-1144.

[18] Prechelt, L. and Liesenberg, M., ‘Design Patterns in

Software Maintenance: An Experiment Replication at

Freie University at Berlin’. Proc. of 2nd International

Workshop on Replication in Empirical Software

Engineering Research (RESER), Sept. 2011 pp.1-6.

[19] Juristo, N., Vegas, S., ‘Design Patterns in Software

Maintenance: An Experiment Replication at UPM -

 Proposed Automated Framework to Select Suitable Design Pattern 49

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 43-49

Experiences with the RESER'11 Joint Replication Project’.

Proc. of 2nd International Workshop on Replication in

Empirical Software Engineering Research (RESER), Sept.

2011, pp.7-14.

[20] Nanthaamornphong, A., and Carver, J. C., ‘Design

Patterns in Software Maintenance: An Experiment

Replication at University of Alabama’. Proc. of 2nd

International Workshop on Replication in Empirical

Software Engineering Research (RESER), Sept. 2011,

pp.15-24.

[21] Krein, J. L., Pratt, L. J., Swenson, A.B., MacLean, A. C.,

Knutson, C. D., and Eggett, D. L., ‘Design Patterns in

Software Maintenance: An Experiment Replication at

Brigham Young University’. Proc. of 2nd International

Workshop on Replication in Empirical Software

Engineering Research (RESER), Sept. 2011, pp.25-34.

[22] Hegedűs, P., Dénes, B., Rudolf, F., and Tibor, G., ‘Myth

or Reality? Myth or Reality? Analyzing the Effect of

Design Patterns on Software Maintainability’ (Computer

Applications for Software Engineering, Disaster Recovery,

and Business Continuity, Springer, 2012).

[23] Zhang, C. and Budgen, D., ‘What Do We Know about the

Effectiveness of Software Design Patterns?’. IEEE

Transactions on Software Engineering, 2012, 38, (5), pp.

1213- 1231.

[24] Ali, M., and Elish, M. O., ‘A Comparative Literature

Survey of Design Patterns Impact on Software Quality’.

Proc. of International Conference on Information Science

and Applications (ICISA), 2013, pp.1-7.

[25] Hsueh, N. L., Wen, L.C., Ting, D. H., Chu, W., Chang, C.

H., and Koong, C. S., ‘An Approach for Evaluating the

Effectiveness of Design Patterns in Software Evolution’.

Proc. of 35th Annual Computer Software and Applications

Conference Workshops (COMPSACW), July 2011, pp.

315–320.

[26] Ampatzoglou, A., Frantzeskou, G. and Stamelos, I., ‘A

methodology to assess the impact of design patterns on

software quality’. Information and Software Technology,

2012, 54, (4), pp. 331–346.

[27] Alghamdi, F. M and Qureshi, M. R. J., ‘Impact of Design

Patterns on Software Maintainability’. International

Journal of Intelligent Systems and Applications (IJISA),

2014; 6, (10), pp. 41-46.

[28] Suresh, S. S., Naidu, M. M., and Kiran, S. A., ‘Design

pattern recommendation system (methodology, data

model, and algorithms)’. Proc. of International

Conference on Computational Techniques and Artificial

Intelligence (ICCTAI'2011), 2011, pp. 11-16.

Authors’ Profiles

Dr. M. Rizwan Jameel Qureshi received his

Ph.D. degree from National College of

Business Administration & Economics,

Pakistan 2009. He is currently working as an

Associate Professor in the Department of IT,

King Abdulaziz University, Jeddah, Saudi

Arabia. This author is the best researcher

awardees from the Department of Information Technology,

King Abdulaziz University in 2013 and 2016. He is also

honoured as a best researcher in Computer Science discipline

from seven campuses of COMSATS Institute of Information

Technology, Pakistan in 2008.

Waleed M. Al-Geshari received the

Bachelor degree in Information Technology

from King Abdulaziz University, Jeddah,

Saudi Arabia in 2012 and currently, is a

Master degree student in King Abdulaziz

University, Jeddah, Saudi Arabia.

How to cite this paper: M. Rizwan Jameel Qureshi, Waleed Al-Geshari,"Proposed Automated Framework to Select

Suitable Design Pattern", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.5, pp.

43-49, 2017.DOI: 10.5815/ijmecs.2017.05.06

